clang 20.0.0git
CGExprScalar.cpp
Go to the documentation of this file.
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCleanup.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CGOpenMPRuntime.h"
18#include "CGRecordLayout.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "TargetInfo.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/Expr.h"
32#include "llvm/ADT/APFixedPoint.h"
33#include "llvm/IR/CFG.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/FixedPointBuilder.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/GEPNoWrapFlags.h"
40#include "llvm/IR/GetElementPtrTypeIterator.h"
41#include "llvm/IR/GlobalVariable.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/IntrinsicsPowerPC.h"
44#include "llvm/IR/MatrixBuilder.h"
45#include "llvm/IR/Module.h"
46#include "llvm/Support/TypeSize.h"
47#include <cstdarg>
48#include <optional>
49
50using namespace clang;
51using namespace CodeGen;
52using llvm::Value;
53
54//===----------------------------------------------------------------------===//
55// Scalar Expression Emitter
56//===----------------------------------------------------------------------===//
57
58namespace llvm {
59extern cl::opt<bool> EnableSingleByteCoverage;
60} // namespace llvm
61
62namespace {
63
64/// Determine whether the given binary operation may overflow.
65/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
66/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
67/// the returned overflow check is precise. The returned value is 'true' for
68/// all other opcodes, to be conservative.
69bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
70 BinaryOperator::Opcode Opcode, bool Signed,
71 llvm::APInt &Result) {
72 // Assume overflow is possible, unless we can prove otherwise.
73 bool Overflow = true;
74 const auto &LHSAP = LHS->getValue();
75 const auto &RHSAP = RHS->getValue();
76 if (Opcode == BO_Add) {
77 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
78 : LHSAP.uadd_ov(RHSAP, Overflow);
79 } else if (Opcode == BO_Sub) {
80 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
81 : LHSAP.usub_ov(RHSAP, Overflow);
82 } else if (Opcode == BO_Mul) {
83 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
84 : LHSAP.umul_ov(RHSAP, Overflow);
85 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
86 if (Signed && !RHS->isZero())
87 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
88 else
89 return false;
90 }
91 return Overflow;
92}
93
94struct BinOpInfo {
95 Value *LHS;
96 Value *RHS;
97 QualType Ty; // Computation Type.
98 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
99 FPOptions FPFeatures;
100 const Expr *E; // Entire expr, for error unsupported. May not be binop.
101
102 /// Check if the binop can result in integer overflow.
103 bool mayHaveIntegerOverflow() const {
104 // Without constant input, we can't rule out overflow.
105 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
106 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
107 if (!LHSCI || !RHSCI)
108 return true;
109
110 llvm::APInt Result;
111 return ::mayHaveIntegerOverflow(
112 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
113 }
114
115 /// Check if the binop computes a division or a remainder.
116 bool isDivremOp() const {
117 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
118 Opcode == BO_RemAssign;
119 }
120
121 /// Check if the binop can result in an integer division by zero.
122 bool mayHaveIntegerDivisionByZero() const {
123 if (isDivremOp())
124 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
125 return CI->isZero();
126 return true;
127 }
128
129 /// Check if the binop can result in a float division by zero.
130 bool mayHaveFloatDivisionByZero() const {
131 if (isDivremOp())
132 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
133 return CFP->isZero();
134 return true;
135 }
136
137 /// Check if at least one operand is a fixed point type. In such cases, this
138 /// operation did not follow usual arithmetic conversion and both operands
139 /// might not be of the same type.
140 bool isFixedPointOp() const {
141 // We cannot simply check the result type since comparison operations return
142 // an int.
143 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
144 QualType LHSType = BinOp->getLHS()->getType();
145 QualType RHSType = BinOp->getRHS()->getType();
146 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
147 }
148 if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
149 return UnOp->getSubExpr()->getType()->isFixedPointType();
150 return false;
151 }
152
153 /// Check if the RHS has a signed integer representation.
154 bool rhsHasSignedIntegerRepresentation() const {
155 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
156 QualType RHSType = BinOp->getRHS()->getType();
157 return RHSType->hasSignedIntegerRepresentation();
158 }
159 return false;
160 }
161};
162
163static bool MustVisitNullValue(const Expr *E) {
164 // If a null pointer expression's type is the C++0x nullptr_t, then
165 // it's not necessarily a simple constant and it must be evaluated
166 // for its potential side effects.
167 return E->getType()->isNullPtrType();
168}
169
170/// If \p E is a widened promoted integer, get its base (unpromoted) type.
171static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
172 const Expr *E) {
173 const Expr *Base = E->IgnoreImpCasts();
174 if (E == Base)
175 return std::nullopt;
176
177 QualType BaseTy = Base->getType();
178 if (!Ctx.isPromotableIntegerType(BaseTy) ||
179 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
180 return std::nullopt;
181
182 return BaseTy;
183}
184
185/// Check if \p E is a widened promoted integer.
186static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
187 return getUnwidenedIntegerType(Ctx, E).has_value();
188}
189
190/// Check if we can skip the overflow check for \p Op.
191static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
192 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
193 "Expected a unary or binary operator");
194
195 // If the binop has constant inputs and we can prove there is no overflow,
196 // we can elide the overflow check.
197 if (!Op.mayHaveIntegerOverflow())
198 return true;
199
200 if (Op.Ty->isSignedIntegerType() &&
201 Ctx.isTypeIgnoredBySanitizer(SanitizerKind::SignedIntegerOverflow,
202 Op.Ty)) {
203 return true;
204 }
205
206 if (Op.Ty->isUnsignedIntegerType() &&
207 Ctx.isTypeIgnoredBySanitizer(SanitizerKind::UnsignedIntegerOverflow,
208 Op.Ty)) {
209 return true;
210 }
211
212 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Op.E);
213
214 if (UO && UO->getOpcode() == UO_Minus &&
216 LangOptions::OverflowPatternExclusionKind::NegUnsignedConst) &&
217 UO->isIntegerConstantExpr(Ctx))
218 return true;
219
220 // If a unary op has a widened operand, the op cannot overflow.
221 if (UO)
222 return !UO->canOverflow();
223
224 // We usually don't need overflow checks for binops with widened operands.
225 // Multiplication with promoted unsigned operands is a special case.
226 const auto *BO = cast<BinaryOperator>(Op.E);
227 if (BO->hasExcludedOverflowPattern())
228 return true;
229
230 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
231 if (!OptionalLHSTy)
232 return false;
233
234 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
235 if (!OptionalRHSTy)
236 return false;
237
238 QualType LHSTy = *OptionalLHSTy;
239 QualType RHSTy = *OptionalRHSTy;
240
241 // This is the simple case: binops without unsigned multiplication, and with
242 // widened operands. No overflow check is needed here.
243 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
244 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
245 return true;
246
247 // For unsigned multiplication the overflow check can be elided if either one
248 // of the unpromoted types are less than half the size of the promoted type.
249 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
250 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
251 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
252}
253
254class ScalarExprEmitter
255 : public StmtVisitor<ScalarExprEmitter, Value*> {
256 CodeGenFunction &CGF;
257 CGBuilderTy &Builder;
258 bool IgnoreResultAssign;
259 llvm::LLVMContext &VMContext;
260public:
261
262 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
263 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
264 VMContext(cgf.getLLVMContext()) {
265 }
266
267 //===--------------------------------------------------------------------===//
268 // Utilities
269 //===--------------------------------------------------------------------===//
270
271 bool TestAndClearIgnoreResultAssign() {
272 bool I = IgnoreResultAssign;
273 IgnoreResultAssign = false;
274 return I;
275 }
276
277 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
278 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
279 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
280 return CGF.EmitCheckedLValue(E, TCK);
281 }
282
283 void EmitBinOpCheck(
284 ArrayRef<std::pair<Value *, SanitizerKind::SanitizerOrdinal>> Checks,
285 const BinOpInfo &Info);
286
287 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
288 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
289 }
290
291 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
292 const AlignValueAttr *AVAttr = nullptr;
293 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
294 const ValueDecl *VD = DRE->getDecl();
295
296 if (VD->getType()->isReferenceType()) {
297 if (const auto *TTy =
299 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
300 } else {
301 // Assumptions for function parameters are emitted at the start of the
302 // function, so there is no need to repeat that here,
303 // unless the alignment-assumption sanitizer is enabled,
304 // then we prefer the assumption over alignment attribute
305 // on IR function param.
306 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
307 return;
308
309 AVAttr = VD->getAttr<AlignValueAttr>();
310 }
311 }
312
313 if (!AVAttr)
314 if (const auto *TTy = E->getType()->getAs<TypedefType>())
315 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
316
317 if (!AVAttr)
318 return;
319
320 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
321 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
322 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
323 }
324
325 /// EmitLoadOfLValue - Given an expression with complex type that represents a
326 /// value l-value, this method emits the address of the l-value, then loads
327 /// and returns the result.
328 Value *EmitLoadOfLValue(const Expr *E) {
329 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
330 E->getExprLoc());
331
332 EmitLValueAlignmentAssumption(E, V);
333 return V;
334 }
335
336 /// EmitConversionToBool - Convert the specified expression value to a
337 /// boolean (i1) truth value. This is equivalent to "Val != 0".
338 Value *EmitConversionToBool(Value *Src, QualType DstTy);
339
340 /// Emit a check that a conversion from a floating-point type does not
341 /// overflow.
342 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
343 Value *Src, QualType SrcType, QualType DstType,
344 llvm::Type *DstTy, SourceLocation Loc);
345
346 /// Known implicit conversion check kinds.
347 /// This is used for bitfield conversion checks as well.
348 /// Keep in sync with the enum of the same name in ubsan_handlers.h
349 enum ImplicitConversionCheckKind : unsigned char {
350 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
351 ICCK_UnsignedIntegerTruncation = 1,
352 ICCK_SignedIntegerTruncation = 2,
353 ICCK_IntegerSignChange = 3,
354 ICCK_SignedIntegerTruncationOrSignChange = 4,
355 };
356
357 /// Emit a check that an [implicit] truncation of an integer does not
358 /// discard any bits. It is not UB, so we use the value after truncation.
359 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
360 QualType DstType, SourceLocation Loc);
361
362 /// Emit a check that an [implicit] conversion of an integer does not change
363 /// the sign of the value. It is not UB, so we use the value after conversion.
364 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
365 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
366 QualType DstType, SourceLocation Loc);
367
368 /// Emit a conversion from the specified type to the specified destination
369 /// type, both of which are LLVM scalar types.
370 struct ScalarConversionOpts {
371 bool TreatBooleanAsSigned;
372 bool EmitImplicitIntegerTruncationChecks;
373 bool EmitImplicitIntegerSignChangeChecks;
374
375 ScalarConversionOpts()
376 : TreatBooleanAsSigned(false),
377 EmitImplicitIntegerTruncationChecks(false),
378 EmitImplicitIntegerSignChangeChecks(false) {}
379
380 ScalarConversionOpts(clang::SanitizerSet SanOpts)
381 : TreatBooleanAsSigned(false),
382 EmitImplicitIntegerTruncationChecks(
383 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
384 EmitImplicitIntegerSignChangeChecks(
385 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
386 };
387 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
388 llvm::Type *SrcTy, llvm::Type *DstTy,
389 ScalarConversionOpts Opts);
390 Value *
391 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
393 ScalarConversionOpts Opts = ScalarConversionOpts());
394
395 /// Convert between either a fixed point and other fixed point or fixed point
396 /// and an integer.
397 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
399
400 /// Emit a conversion from the specified complex type to the specified
401 /// destination type, where the destination type is an LLVM scalar type.
402 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
403 QualType SrcTy, QualType DstTy,
405
406 /// EmitNullValue - Emit a value that corresponds to null for the given type.
407 Value *EmitNullValue(QualType Ty);
408
409 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
410 Value *EmitFloatToBoolConversion(Value *V) {
411 // Compare against 0.0 for fp scalars.
412 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
413 return Builder.CreateFCmpUNE(V, Zero, "tobool");
414 }
415
416 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
417 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
418 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
419
420 return Builder.CreateICmpNE(V, Zero, "tobool");
421 }
422
423 Value *EmitIntToBoolConversion(Value *V) {
424 // Because of the type rules of C, we often end up computing a
425 // logical value, then zero extending it to int, then wanting it
426 // as a logical value again. Optimize this common case.
427 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
428 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
429 Value *Result = ZI->getOperand(0);
430 // If there aren't any more uses, zap the instruction to save space.
431 // Note that there can be more uses, for example if this
432 // is the result of an assignment.
433 if (ZI->use_empty())
434 ZI->eraseFromParent();
435 return Result;
436 }
437 }
438
439 return Builder.CreateIsNotNull(V, "tobool");
440 }
441
442 //===--------------------------------------------------------------------===//
443 // Visitor Methods
444 //===--------------------------------------------------------------------===//
445
446 Value *Visit(Expr *E) {
447 ApplyDebugLocation DL(CGF, E);
449 }
450
451 Value *VisitStmt(Stmt *S) {
452 S->dump(llvm::errs(), CGF.getContext());
453 llvm_unreachable("Stmt can't have complex result type!");
454 }
455 Value *VisitExpr(Expr *S);
456
457 Value *VisitConstantExpr(ConstantExpr *E) {
458 // A constant expression of type 'void' generates no code and produces no
459 // value.
460 if (E->getType()->isVoidType())
461 return nullptr;
462
463 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
464 if (E->isGLValue())
465 return CGF.EmitLoadOfScalar(
468 /*Volatile*/ false, E->getType(), E->getExprLoc());
469 return Result;
470 }
471 return Visit(E->getSubExpr());
472 }
473 Value *VisitParenExpr(ParenExpr *PE) {
474 return Visit(PE->getSubExpr());
475 }
476 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
477 return Visit(E->getReplacement());
478 }
479 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
480 return Visit(GE->getResultExpr());
481 }
482 Value *VisitCoawaitExpr(CoawaitExpr *S) {
483 return CGF.EmitCoawaitExpr(*S).getScalarVal();
484 }
485 Value *VisitCoyieldExpr(CoyieldExpr *S) {
486 return CGF.EmitCoyieldExpr(*S).getScalarVal();
487 }
488 Value *VisitUnaryCoawait(const UnaryOperator *E) {
489 return Visit(E->getSubExpr());
490 }
491
492 // Leaves.
493 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
494 return Builder.getInt(E->getValue());
495 }
496 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
497 return Builder.getInt(E->getValue());
498 }
499 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
500 return llvm::ConstantFP::get(VMContext, E->getValue());
501 }
502 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
503 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
504 }
505 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
506 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
507 }
508 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
509 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
510 }
511 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
512 if (E->getType()->isVoidType())
513 return nullptr;
514
515 return EmitNullValue(E->getType());
516 }
517 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
518 return EmitNullValue(E->getType());
519 }
520 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
521 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
522 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
523 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
524 return Builder.CreateBitCast(V, ConvertType(E->getType()));
525 }
526
527 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
528 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
529 }
530
531 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
533 }
534
535 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
536 Value *VisitEmbedExpr(EmbedExpr *E);
537
538 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
539 if (E->isGLValue())
540 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
541 E->getExprLoc());
542
543 // Otherwise, assume the mapping is the scalar directly.
545 }
546
547 Value *VisitOpenACCAsteriskSizeExpr(OpenACCAsteriskSizeExpr *E) {
548 llvm_unreachable("Codegen for this isn't defined/implemented");
549 }
550
551 // l-values.
552 Value *VisitDeclRefExpr(DeclRefExpr *E) {
553 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
554 return CGF.emitScalarConstant(Constant, E);
555 return EmitLoadOfLValue(E);
556 }
557
558 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
559 return CGF.EmitObjCSelectorExpr(E);
560 }
561 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
562 return CGF.EmitObjCProtocolExpr(E);
563 }
564 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
565 return EmitLoadOfLValue(E);
566 }
567 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
568 if (E->getMethodDecl() &&
569 E->getMethodDecl()->getReturnType()->isReferenceType())
570 return EmitLoadOfLValue(E);
571 return CGF.EmitObjCMessageExpr(E).getScalarVal();
572 }
573
574 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
575 LValue LV = CGF.EmitObjCIsaExpr(E);
577 return V;
578 }
579
580 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
581 VersionTuple Version = E->getVersion();
582
583 // If we're checking for a platform older than our minimum deployment
584 // target, we can fold the check away.
585 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
586 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
587
588 return CGF.EmitBuiltinAvailable(Version);
589 }
590
591 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
592 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
593 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
594 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
595 Value *VisitMemberExpr(MemberExpr *E);
596 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
597 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
598 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
599 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
600 // literals aren't l-values in C++. We do so simply because that's the
601 // cleanest way to handle compound literals in C++.
602 // See the discussion here: https://reviews.llvm.org/D64464
603 return EmitLoadOfLValue(E);
604 }
605
606 Value *VisitInitListExpr(InitListExpr *E);
607
608 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
609 assert(CGF.getArrayInitIndex() &&
610 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
611 return CGF.getArrayInitIndex();
612 }
613
614 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
615 return EmitNullValue(E->getType());
616 }
617 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
618 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
619 return VisitCastExpr(E);
620 }
621 Value *VisitCastExpr(CastExpr *E);
622
623 Value *VisitCallExpr(const CallExpr *E) {
624 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
625 return EmitLoadOfLValue(E);
626
628
629 EmitLValueAlignmentAssumption(E, V);
630 return V;
631 }
632
633 Value *VisitStmtExpr(const StmtExpr *E);
634
635 // Unary Operators.
636 Value *VisitUnaryPostDec(const UnaryOperator *E) {
637 LValue LV = EmitLValue(E->getSubExpr());
638 return EmitScalarPrePostIncDec(E, LV, false, false);
639 }
640 Value *VisitUnaryPostInc(const UnaryOperator *E) {
641 LValue LV = EmitLValue(E->getSubExpr());
642 return EmitScalarPrePostIncDec(E, LV, true, false);
643 }
644 Value *VisitUnaryPreDec(const UnaryOperator *E) {
645 LValue LV = EmitLValue(E->getSubExpr());
646 return EmitScalarPrePostIncDec(E, LV, false, true);
647 }
648 Value *VisitUnaryPreInc(const UnaryOperator *E) {
649 LValue LV = EmitLValue(E->getSubExpr());
650 return EmitScalarPrePostIncDec(E, LV, true, true);
651 }
652
653 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
654 llvm::Value *InVal,
655 bool IsInc);
656
657 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
658 bool isInc, bool isPre);
659
660
661 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
662 if (isa<MemberPointerType>(E->getType())) // never sugared
663 return CGF.CGM.getMemberPointerConstant(E);
664
665 return EmitLValue(E->getSubExpr()).getPointer(CGF);
666 }
667 Value *VisitUnaryDeref(const UnaryOperator *E) {
668 if (E->getType()->isVoidType())
669 return Visit(E->getSubExpr()); // the actual value should be unused
670 return EmitLoadOfLValue(E);
671 }
672
673 Value *VisitUnaryPlus(const UnaryOperator *E,
674 QualType PromotionType = QualType());
675 Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
676 Value *VisitUnaryMinus(const UnaryOperator *E,
677 QualType PromotionType = QualType());
678 Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
679
680 Value *VisitUnaryNot (const UnaryOperator *E);
681 Value *VisitUnaryLNot (const UnaryOperator *E);
682 Value *VisitUnaryReal(const UnaryOperator *E,
683 QualType PromotionType = QualType());
684 Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
685 Value *VisitUnaryImag(const UnaryOperator *E,
686 QualType PromotionType = QualType());
687 Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
688 Value *VisitUnaryExtension(const UnaryOperator *E) {
689 return Visit(E->getSubExpr());
690 }
691
692 // C++
693 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
694 return EmitLoadOfLValue(E);
695 }
696 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
697 auto &Ctx = CGF.getContext();
701 SLE->getType());
702 }
703
704 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
705 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
706 return Visit(DAE->getExpr());
707 }
708 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
709 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
710 return Visit(DIE->getExpr());
711 }
712 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
713 return CGF.LoadCXXThis();
714 }
715
716 Value *VisitExprWithCleanups(ExprWithCleanups *E);
717 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
718 return CGF.EmitCXXNewExpr(E);
719 }
720 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
721 CGF.EmitCXXDeleteExpr(E);
722 return nullptr;
723 }
724
725 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
726 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
727 }
728
729 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
730 return Builder.getInt1(E->isSatisfied());
731 }
732
733 Value *VisitRequiresExpr(const RequiresExpr *E) {
734 return Builder.getInt1(E->isSatisfied());
735 }
736
737 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
738 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
739 }
740
741 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
742 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
743 }
744
745 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
746 // C++ [expr.pseudo]p1:
747 // The result shall only be used as the operand for the function call
748 // operator (), and the result of such a call has type void. The only
749 // effect is the evaluation of the postfix-expression before the dot or
750 // arrow.
751 CGF.EmitScalarExpr(E->getBase());
752 return nullptr;
753 }
754
755 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
756 return EmitNullValue(E->getType());
757 }
758
759 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
760 CGF.EmitCXXThrowExpr(E);
761 return nullptr;
762 }
763
764 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
765 return Builder.getInt1(E->getValue());
766 }
767
768 // Binary Operators.
769 Value *EmitMul(const BinOpInfo &Ops) {
770 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
771 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
773 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
774 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
775 [[fallthrough]];
777 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
778 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
779 [[fallthrough]];
781 if (CanElideOverflowCheck(CGF.getContext(), Ops))
782 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
783 return EmitOverflowCheckedBinOp(Ops);
784 }
785 }
786
787 if (Ops.Ty->isConstantMatrixType()) {
788 llvm::MatrixBuilder MB(Builder);
789 // We need to check the types of the operands of the operator to get the
790 // correct matrix dimensions.
791 auto *BO = cast<BinaryOperator>(Ops.E);
792 auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
793 BO->getLHS()->getType().getCanonicalType());
794 auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
795 BO->getRHS()->getType().getCanonicalType());
796 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
797 if (LHSMatTy && RHSMatTy)
798 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
799 LHSMatTy->getNumColumns(),
800 RHSMatTy->getNumColumns());
801 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
802 }
803
804 if (Ops.Ty->isUnsignedIntegerType() &&
805 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
806 !CanElideOverflowCheck(CGF.getContext(), Ops))
807 return EmitOverflowCheckedBinOp(Ops);
808
809 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
810 // Preserve the old values
811 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
812 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
813 }
814 if (Ops.isFixedPointOp())
815 return EmitFixedPointBinOp(Ops);
816 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
817 }
818 /// Create a binary op that checks for overflow.
819 /// Currently only supports +, - and *.
820 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
821
822 // Check for undefined division and modulus behaviors.
823 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
824 llvm::Value *Zero,bool isDiv);
825 // Common helper for getting how wide LHS of shift is.
826 static Value *GetMaximumShiftAmount(Value *LHS, Value *RHS, bool RHSIsSigned);
827
828 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
829 // non powers of two.
830 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
831
832 Value *EmitDiv(const BinOpInfo &Ops);
833 Value *EmitRem(const BinOpInfo &Ops);
834 Value *EmitAdd(const BinOpInfo &Ops);
835 Value *EmitSub(const BinOpInfo &Ops);
836 Value *EmitShl(const BinOpInfo &Ops);
837 Value *EmitShr(const BinOpInfo &Ops);
838 Value *EmitAnd(const BinOpInfo &Ops) {
839 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
840 }
841 Value *EmitXor(const BinOpInfo &Ops) {
842 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
843 }
844 Value *EmitOr (const BinOpInfo &Ops) {
845 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
846 }
847
848 // Helper functions for fixed point binary operations.
849 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
850
851 BinOpInfo EmitBinOps(const BinaryOperator *E,
852 QualType PromotionTy = QualType());
853
854 Value *EmitPromotedValue(Value *result, QualType PromotionType);
855 Value *EmitUnPromotedValue(Value *result, QualType ExprType);
856 Value *EmitPromoted(const Expr *E, QualType PromotionType);
857
858 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
859 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
860 Value *&Result);
861
862 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
863 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
864
865 QualType getPromotionType(QualType Ty) {
866 const auto &Ctx = CGF.getContext();
867 if (auto *CT = Ty->getAs<ComplexType>()) {
868 QualType ElementType = CT->getElementType();
869 if (ElementType.UseExcessPrecision(Ctx))
870 return Ctx.getComplexType(Ctx.FloatTy);
871 }
872
873 if (Ty.UseExcessPrecision(Ctx)) {
874 if (auto *VT = Ty->getAs<VectorType>()) {
875 unsigned NumElements = VT->getNumElements();
876 return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind());
877 }
878 return Ctx.FloatTy;
879 }
880
881 return QualType();
882 }
883
884 // Binary operators and binary compound assignment operators.
885#define HANDLEBINOP(OP) \
886 Value *VisitBin##OP(const BinaryOperator *E) { \
887 QualType promotionTy = getPromotionType(E->getType()); \
888 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
889 if (result && !promotionTy.isNull()) \
890 result = EmitUnPromotedValue(result, E->getType()); \
891 return result; \
892 } \
893 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
894 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
895 }
896 HANDLEBINOP(Mul)
897 HANDLEBINOP(Div)
898 HANDLEBINOP(Rem)
899 HANDLEBINOP(Add)
900 HANDLEBINOP(Sub)
901 HANDLEBINOP(Shl)
902 HANDLEBINOP(Shr)
904 HANDLEBINOP(Xor)
906#undef HANDLEBINOP
907
908 // Comparisons.
909 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
910 llvm::CmpInst::Predicate SICmpOpc,
911 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
912#define VISITCOMP(CODE, UI, SI, FP, SIG) \
913 Value *VisitBin##CODE(const BinaryOperator *E) { \
914 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
915 llvm::FCmpInst::FP, SIG); }
916 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
917 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
918 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
919 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
920 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
921 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
922#undef VISITCOMP
923
924 Value *VisitBinAssign (const BinaryOperator *E);
925
926 Value *VisitBinLAnd (const BinaryOperator *E);
927 Value *VisitBinLOr (const BinaryOperator *E);
928 Value *VisitBinComma (const BinaryOperator *E);
929
930 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
931 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
932
933 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
934 return Visit(E->getSemanticForm());
935 }
936
937 // Other Operators.
938 Value *VisitBlockExpr(const BlockExpr *BE);
939 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
940 Value *VisitChooseExpr(ChooseExpr *CE);
941 Value *VisitVAArgExpr(VAArgExpr *VE);
942 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
943 return CGF.EmitObjCStringLiteral(E);
944 }
945 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
946 return CGF.EmitObjCBoxedExpr(E);
947 }
948 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
949 return CGF.EmitObjCArrayLiteral(E);
950 }
951 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
952 return CGF.EmitObjCDictionaryLiteral(E);
953 }
954 Value *VisitAsTypeExpr(AsTypeExpr *CE);
955 Value *VisitAtomicExpr(AtomicExpr *AE);
956 Value *VisitPackIndexingExpr(PackIndexingExpr *E) {
957 return Visit(E->getSelectedExpr());
958 }
959};
960} // end anonymous namespace.
961
962//===----------------------------------------------------------------------===//
963// Utilities
964//===----------------------------------------------------------------------===//
965
966/// EmitConversionToBool - Convert the specified expression value to a
967/// boolean (i1) truth value. This is equivalent to "Val != 0".
968Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
969 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
970
971 if (SrcType->isRealFloatingType())
972 return EmitFloatToBoolConversion(Src);
973
974 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
975 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
976
977 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
978 "Unknown scalar type to convert");
979
980 if (isa<llvm::IntegerType>(Src->getType()))
981 return EmitIntToBoolConversion(Src);
982
983 assert(isa<llvm::PointerType>(Src->getType()));
984 return EmitPointerToBoolConversion(Src, SrcType);
985}
986
987void ScalarExprEmitter::EmitFloatConversionCheck(
988 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
989 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
990 assert(SrcType->isFloatingType() && "not a conversion from floating point");
991 if (!isa<llvm::IntegerType>(DstTy))
992 return;
993
994 CodeGenFunction::SanitizerScope SanScope(&CGF);
995 using llvm::APFloat;
996 using llvm::APSInt;
997
998 llvm::Value *Check = nullptr;
999 const llvm::fltSemantics &SrcSema =
1000 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
1001
1002 // Floating-point to integer. This has undefined behavior if the source is
1003 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
1004 // to an integer).
1005 unsigned Width = CGF.getContext().getIntWidth(DstType);
1007
1008 APSInt Min = APSInt::getMinValue(Width, Unsigned);
1009 APFloat MinSrc(SrcSema, APFloat::uninitialized);
1010 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
1011 APFloat::opOverflow)
1012 // Don't need an overflow check for lower bound. Just check for
1013 // -Inf/NaN.
1014 MinSrc = APFloat::getInf(SrcSema, true);
1015 else
1016 // Find the largest value which is too small to represent (before
1017 // truncation toward zero).
1018 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
1019
1020 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
1021 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
1022 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
1023 APFloat::opOverflow)
1024 // Don't need an overflow check for upper bound. Just check for
1025 // +Inf/NaN.
1026 MaxSrc = APFloat::getInf(SrcSema, false);
1027 else
1028 // Find the smallest value which is too large to represent (before
1029 // truncation toward zero).
1030 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
1031
1032 // If we're converting from __half, convert the range to float to match
1033 // the type of src.
1034 if (OrigSrcType->isHalfType()) {
1035 const llvm::fltSemantics &Sema =
1036 CGF.getContext().getFloatTypeSemantics(SrcType);
1037 bool IsInexact;
1038 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1039 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1040 }
1041
1042 llvm::Value *GE =
1043 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
1044 llvm::Value *LE =
1045 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
1046 Check = Builder.CreateAnd(GE, LE);
1047
1048 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
1049 CGF.EmitCheckTypeDescriptor(OrigSrcType),
1050 CGF.EmitCheckTypeDescriptor(DstType)};
1051 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::SO_FloatCastOverflow),
1052 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
1053}
1054
1055// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1056// Returns 'i1 false' when the truncation Src -> Dst was lossy.
1057static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1058 std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1060 QualType DstType, CGBuilderTy &Builder) {
1061 llvm::Type *SrcTy = Src->getType();
1062 llvm::Type *DstTy = Dst->getType();
1063 (void)DstTy; // Only used in assert()
1064
1065 // This should be truncation of integral types.
1066 assert(Src != Dst);
1067 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1068 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1069 "non-integer llvm type");
1070
1071 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1072 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1073
1074 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1075 // Else, it is a signed truncation.
1076 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1078 if (!SrcSigned && !DstSigned) {
1079 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1080 Ordinal = SanitizerKind::SO_ImplicitUnsignedIntegerTruncation;
1081 } else {
1082 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1083 Ordinal = SanitizerKind::SO_ImplicitSignedIntegerTruncation;
1084 }
1085
1086 llvm::Value *Check = nullptr;
1087 // 1. Extend the truncated value back to the same width as the Src.
1088 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1089 // 2. Equality-compare with the original source value
1090 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1091 // If the comparison result is 'i1 false', then the truncation was lossy.
1092 return std::make_pair(Kind, std::make_pair(Check, Ordinal));
1093}
1094
1096 QualType SrcType, QualType DstType) {
1097 return SrcType->isIntegerType() && DstType->isIntegerType();
1098}
1099
1100void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1101 Value *Dst, QualType DstType,
1103 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1104 return;
1105
1106 // We only care about int->int conversions here.
1107 // We ignore conversions to/from pointer and/or bool.
1109 DstType))
1110 return;
1111
1112 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1113 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1114 // This must be truncation. Else we do not care.
1115 if (SrcBits <= DstBits)
1116 return;
1117
1118 assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1119
1120 // If the integer sign change sanitizer is enabled,
1121 // and we are truncating from larger unsigned type to smaller signed type,
1122 // let that next sanitizer deal with it.
1123 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1124 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1125 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1126 (!SrcSigned && DstSigned))
1127 return;
1128
1129 CodeGenFunction::SanitizerScope SanScope(&CGF);
1130
1131 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1132 std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1133 Check =
1134 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1135 // If the comparison result is 'i1 false', then the truncation was lossy.
1136
1137 // Do we care about this type of truncation?
1138 if (!CGF.SanOpts.has(Check.second.second))
1139 return;
1140
1141 // Does some SSCL ignore this type?
1143 SanitizerMask::bitPosToMask(Check.second.second), DstType))
1144 return;
1145
1146 llvm::Constant *StaticArgs[] = {
1148 CGF.EmitCheckTypeDescriptor(DstType),
1149 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first),
1150 llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1151
1152 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1153 {Src, Dst});
1154}
1155
1156static llvm::Value *EmitIsNegativeTestHelper(Value *V, QualType VType,
1157 const char *Name,
1158 CGBuilderTy &Builder) {
1159 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1160 llvm::Type *VTy = V->getType();
1161 if (!VSigned) {
1162 // If the value is unsigned, then it is never negative.
1163 return llvm::ConstantInt::getFalse(VTy->getContext());
1164 }
1165 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1166 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1167 llvm::Twine(Name) + "." + V->getName() +
1168 ".negativitycheck");
1169}
1170
1171// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1172// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1173static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1174 std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1176 QualType DstType, CGBuilderTy &Builder) {
1177 llvm::Type *SrcTy = Src->getType();
1178 llvm::Type *DstTy = Dst->getType();
1179
1180 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1181 "non-integer llvm type");
1182
1183 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1184 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1185 (void)SrcSigned; // Only used in assert()
1186 (void)DstSigned; // Only used in assert()
1187 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1188 unsigned DstBits = DstTy->getScalarSizeInBits();
1189 (void)SrcBits; // Only used in assert()
1190 (void)DstBits; // Only used in assert()
1191
1192 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1193 "either the widths should be different, or the signednesses.");
1194
1195 // 1. Was the old Value negative?
1196 llvm::Value *SrcIsNegative =
1197 EmitIsNegativeTestHelper(Src, SrcType, "src", Builder);
1198 // 2. Is the new Value negative?
1199 llvm::Value *DstIsNegative =
1200 EmitIsNegativeTestHelper(Dst, DstType, "dst", Builder);
1201 // 3. Now, was the 'negativity status' preserved during the conversion?
1202 // NOTE: conversion from negative to zero is considered to change the sign.
1203 // (We want to get 'false' when the conversion changed the sign)
1204 // So we should just equality-compare the negativity statuses.
1205 llvm::Value *Check = nullptr;
1206 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1207 // If the comparison result is 'false', then the conversion changed the sign.
1208 return std::make_pair(
1209 ScalarExprEmitter::ICCK_IntegerSignChange,
1210 std::make_pair(Check, SanitizerKind::SO_ImplicitIntegerSignChange));
1211}
1212
1213void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1214 Value *Dst, QualType DstType,
1216 if (!CGF.SanOpts.has(SanitizerKind::SO_ImplicitIntegerSignChange))
1217 return;
1218
1219 llvm::Type *SrcTy = Src->getType();
1220 llvm::Type *DstTy = Dst->getType();
1221
1222 // We only care about int->int conversions here.
1223 // We ignore conversions to/from pointer and/or bool.
1225 DstType))
1226 return;
1227
1228 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1229 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1230 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1231 unsigned DstBits = DstTy->getScalarSizeInBits();
1232
1233 // Now, we do not need to emit the check in *all* of the cases.
1234 // We can avoid emitting it in some obvious cases where it would have been
1235 // dropped by the opt passes (instcombine) always anyways.
1236 // If it's a cast between effectively the same type, no check.
1237 // NOTE: this is *not* equivalent to checking the canonical types.
1238 if (SrcSigned == DstSigned && SrcBits == DstBits)
1239 return;
1240 // At least one of the values needs to have signed type.
1241 // If both are unsigned, then obviously, neither of them can be negative.
1242 if (!SrcSigned && !DstSigned)
1243 return;
1244 // If the conversion is to *larger* *signed* type, then no check is needed.
1245 // Because either sign-extension happens (so the sign will remain),
1246 // or zero-extension will happen (the sign bit will be zero.)
1247 if ((DstBits > SrcBits) && DstSigned)
1248 return;
1249 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1250 (SrcBits > DstBits) && SrcSigned) {
1251 // If the signed integer truncation sanitizer is enabled,
1252 // and this is a truncation from signed type, then no check is needed.
1253 // Because here sign change check is interchangeable with truncation check.
1254 return;
1255 }
1256 // Does an SSCL have an entry for the DstType under its respective sanitizer
1257 // section?
1258 if (DstSigned && CGF.getContext().isTypeIgnoredBySanitizer(
1259 SanitizerKind::ImplicitSignedIntegerTruncation, DstType))
1260 return;
1261 if (!DstSigned &&
1263 SanitizerKind::ImplicitUnsignedIntegerTruncation, DstType))
1264 return;
1265 // That's it. We can't rule out any more cases with the data we have.
1266
1267 CodeGenFunction::SanitizerScope SanScope(&CGF);
1268
1269 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1270 std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1271 Check;
1272
1273 // Each of these checks needs to return 'false' when an issue was detected.
1274 ImplicitConversionCheckKind CheckKind;
1276 2>
1277 Checks;
1278 // So we can 'and' all the checks together, and still get 'false',
1279 // if at least one of the checks detected an issue.
1280
1281 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1282 CheckKind = Check.first;
1283 Checks.emplace_back(Check.second);
1284
1285 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1286 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1287 // If the signed integer truncation sanitizer was enabled,
1288 // and we are truncating from larger unsigned type to smaller signed type,
1289 // let's handle the case we skipped in that check.
1290 Check =
1291 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1292 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1293 Checks.emplace_back(Check.second);
1294 // If the comparison result is 'i1 false', then the truncation was lossy.
1295 }
1296
1297 llvm::Constant *StaticArgs[] = {
1299 CGF.EmitCheckTypeDescriptor(DstType),
1300 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1301 llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1302 // EmitCheck() will 'and' all the checks together.
1303 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1304 {Src, Dst});
1305}
1306
1307// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1308// Returns 'i1 false' when the truncation Src -> Dst was lossy.
1309static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1310 std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1312 QualType DstType, CGBuilderTy &Builder) {
1313 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1314 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1315
1316 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1317 if (!SrcSigned && !DstSigned)
1318 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1319 else
1320 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1321
1322 llvm::Value *Check = nullptr;
1323 // 1. Extend the truncated value back to the same width as the Src.
1324 Check = Builder.CreateIntCast(Dst, Src->getType(), DstSigned, "bf.anyext");
1325 // 2. Equality-compare with the original source value
1326 Check = Builder.CreateICmpEQ(Check, Src, "bf.truncheck");
1327 // If the comparison result is 'i1 false', then the truncation was lossy.
1328
1329 return std::make_pair(
1330 Kind,
1331 std::make_pair(Check, SanitizerKind::SO_ImplicitBitfieldConversion));
1332}
1333
1334// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1335// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1336static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1337 std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1339 QualType DstType, CGBuilderTy &Builder) {
1340 // 1. Was the old Value negative?
1341 llvm::Value *SrcIsNegative =
1342 EmitIsNegativeTestHelper(Src, SrcType, "bf.src", Builder);
1343 // 2. Is the new Value negative?
1344 llvm::Value *DstIsNegative =
1345 EmitIsNegativeTestHelper(Dst, DstType, "bf.dst", Builder);
1346 // 3. Now, was the 'negativity status' preserved during the conversion?
1347 // NOTE: conversion from negative to zero is considered to change the sign.
1348 // (We want to get 'false' when the conversion changed the sign)
1349 // So we should just equality-compare the negativity statuses.
1350 llvm::Value *Check = nullptr;
1351 Check =
1352 Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "bf.signchangecheck");
1353 // If the comparison result is 'false', then the conversion changed the sign.
1354 return std::make_pair(
1355 ScalarExprEmitter::ICCK_IntegerSignChange,
1356 std::make_pair(Check, SanitizerKind::SO_ImplicitBitfieldConversion));
1357}
1358
1359void CodeGenFunction::EmitBitfieldConversionCheck(Value *Src, QualType SrcType,
1360 Value *Dst, QualType DstType,
1361 const CGBitFieldInfo &Info,
1363
1364 if (!SanOpts.has(SanitizerKind::ImplicitBitfieldConversion))
1365 return;
1366
1367 // We only care about int->int conversions here.
1368 // We ignore conversions to/from pointer and/or bool.
1370 DstType))
1371 return;
1372
1373 if (DstType->isBooleanType() || SrcType->isBooleanType())
1374 return;
1375
1376 // This should be truncation of integral types.
1377 assert(isa<llvm::IntegerType>(Src->getType()) &&
1378 isa<llvm::IntegerType>(Dst->getType()) && "non-integer llvm type");
1379
1380 // TODO: Calculate src width to avoid emitting code
1381 // for unecessary cases.
1382 unsigned SrcBits = ConvertType(SrcType)->getScalarSizeInBits();
1383 unsigned DstBits = Info.Size;
1384
1385 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1386 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1387
1388 CodeGenFunction::SanitizerScope SanScope(this);
1389
1390 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1391 std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>>
1392 Check;
1393
1394 // Truncation
1395 bool EmitTruncation = DstBits < SrcBits;
1396 // If Dst is signed and Src unsigned, we want to be more specific
1397 // about the CheckKind we emit, in this case we want to emit
1398 // ICCK_SignedIntegerTruncationOrSignChange.
1399 bool EmitTruncationFromUnsignedToSigned =
1400 EmitTruncation && DstSigned && !SrcSigned;
1401 // Sign change
1402 bool SameTypeSameSize = SrcSigned == DstSigned && SrcBits == DstBits;
1403 bool BothUnsigned = !SrcSigned && !DstSigned;
1404 bool LargerSigned = (DstBits > SrcBits) && DstSigned;
1405 // We can avoid emitting sign change checks in some obvious cases
1406 // 1. If Src and Dst have the same signedness and size
1407 // 2. If both are unsigned sign check is unecessary!
1408 // 3. If Dst is signed and bigger than Src, either
1409 // sign-extension or zero-extension will make sure
1410 // the sign remains.
1411 bool EmitSignChange = !SameTypeSameSize && !BothUnsigned && !LargerSigned;
1412
1413 if (EmitTruncation)
1414 Check =
1415 EmitBitfieldTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1416 else if (EmitSignChange) {
1417 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1418 "either the widths should be different, or the signednesses.");
1419 Check =
1420 EmitBitfieldSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1421 } else
1422 return;
1423
1424 ScalarExprEmitter::ImplicitConversionCheckKind CheckKind = Check.first;
1425 if (EmitTruncationFromUnsignedToSigned)
1426 CheckKind = ScalarExprEmitter::ICCK_SignedIntegerTruncationOrSignChange;
1427
1428 llvm::Constant *StaticArgs[] = {
1430 EmitCheckTypeDescriptor(DstType),
1431 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1432 llvm::ConstantInt::get(Builder.getInt32Ty(), Info.Size)};
1433
1434 EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1435 {Src, Dst});
1436}
1437
1438Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1439 QualType DstType, llvm::Type *SrcTy,
1440 llvm::Type *DstTy,
1441 ScalarConversionOpts Opts) {
1442 // The Element types determine the type of cast to perform.
1443 llvm::Type *SrcElementTy;
1444 llvm::Type *DstElementTy;
1445 QualType SrcElementType;
1446 QualType DstElementType;
1447 if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1448 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1449 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1450 SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1451 DstElementType = DstType->castAs<MatrixType>()->getElementType();
1452 } else {
1453 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1454 "cannot cast between matrix and non-matrix types");
1455 SrcElementTy = SrcTy;
1456 DstElementTy = DstTy;
1457 SrcElementType = SrcType;
1458 DstElementType = DstType;
1459 }
1460
1461 if (isa<llvm::IntegerType>(SrcElementTy)) {
1462 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1463 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1464 InputSigned = true;
1465 }
1466
1467 if (isa<llvm::IntegerType>(DstElementTy))
1468 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1469 if (InputSigned)
1470 return Builder.CreateSIToFP(Src, DstTy, "conv");
1471 return Builder.CreateUIToFP(Src, DstTy, "conv");
1472 }
1473
1474 if (isa<llvm::IntegerType>(DstElementTy)) {
1475 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1476 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1477
1478 // If we can't recognize overflow as undefined behavior, assume that
1479 // overflow saturates. This protects against normal optimizations if we are
1480 // compiling with non-standard FP semantics.
1481 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1482 llvm::Intrinsic::ID IID =
1483 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1484 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1485 }
1486
1487 if (IsSigned)
1488 return Builder.CreateFPToSI(Src, DstTy, "conv");
1489 return Builder.CreateFPToUI(Src, DstTy, "conv");
1490 }
1491
1492 if ((DstElementTy->is16bitFPTy() && SrcElementTy->is16bitFPTy())) {
1493 Value *FloatVal = Builder.CreateFPExt(Src, Builder.getFloatTy(), "fpext");
1494 return Builder.CreateFPTrunc(FloatVal, DstTy, "fptrunc");
1495 }
1496 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1497 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1498 return Builder.CreateFPExt(Src, DstTy, "conv");
1499}
1500
1501/// Emit a conversion from the specified type to the specified destination type,
1502/// both of which are LLVM scalar types.
1503Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1504 QualType DstType,
1506 ScalarConversionOpts Opts) {
1507 // All conversions involving fixed point types should be handled by the
1508 // EmitFixedPoint family functions. This is done to prevent bloating up this
1509 // function more, and although fixed point numbers are represented by
1510 // integers, we do not want to follow any logic that assumes they should be
1511 // treated as integers.
1512 // TODO(leonardchan): When necessary, add another if statement checking for
1513 // conversions to fixed point types from other types.
1514 if (SrcType->isFixedPointType()) {
1515 if (DstType->isBooleanType())
1516 // It is important that we check this before checking if the dest type is
1517 // an integer because booleans are technically integer types.
1518 // We do not need to check the padding bit on unsigned types if unsigned
1519 // padding is enabled because overflow into this bit is undefined
1520 // behavior.
1521 return Builder.CreateIsNotNull(Src, "tobool");
1522 if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1523 DstType->isRealFloatingType())
1524 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1525
1526 llvm_unreachable(
1527 "Unhandled scalar conversion from a fixed point type to another type.");
1528 } else if (DstType->isFixedPointType()) {
1529 if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1530 // This also includes converting booleans and enums to fixed point types.
1531 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1532
1533 llvm_unreachable(
1534 "Unhandled scalar conversion to a fixed point type from another type.");
1535 }
1536
1537 QualType NoncanonicalSrcType = SrcType;
1538 QualType NoncanonicalDstType = DstType;
1539
1540 SrcType = CGF.getContext().getCanonicalType(SrcType);
1541 DstType = CGF.getContext().getCanonicalType(DstType);
1542 if (SrcType == DstType) return Src;
1543
1544 if (DstType->isVoidType()) return nullptr;
1545
1546 llvm::Value *OrigSrc = Src;
1547 QualType OrigSrcType = SrcType;
1548 llvm::Type *SrcTy = Src->getType();
1549
1550 // Handle conversions to bool first, they are special: comparisons against 0.
1551 if (DstType->isBooleanType())
1552 return EmitConversionToBool(Src, SrcType);
1553
1554 llvm::Type *DstTy = ConvertType(DstType);
1555
1556 // Cast from half through float if half isn't a native type.
1557 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1558 // Cast to FP using the intrinsic if the half type itself isn't supported.
1559 if (DstTy->isFloatingPointTy()) {
1561 return Builder.CreateCall(
1562 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1563 Src);
1564 } else {
1565 // Cast to other types through float, using either the intrinsic or FPExt,
1566 // depending on whether the half type itself is supported
1567 // (as opposed to operations on half, available with NativeHalfType).
1569 Src = Builder.CreateCall(
1570 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1571 CGF.CGM.FloatTy),
1572 Src);
1573 } else {
1574 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1575 }
1576 SrcType = CGF.getContext().FloatTy;
1577 SrcTy = CGF.FloatTy;
1578 }
1579 }
1580
1581 // Ignore conversions like int -> uint.
1582 if (SrcTy == DstTy) {
1583 if (Opts.EmitImplicitIntegerSignChangeChecks)
1584 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1585 NoncanonicalDstType, Loc);
1586
1587 return Src;
1588 }
1589
1590 // Handle pointer conversions next: pointers can only be converted to/from
1591 // other pointers and integers. Check for pointer types in terms of LLVM, as
1592 // some native types (like Obj-C id) may map to a pointer type.
1593 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1594 // The source value may be an integer, or a pointer.
1595 if (isa<llvm::PointerType>(SrcTy))
1596 return Src;
1597
1598 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1599 // First, convert to the correct width so that we control the kind of
1600 // extension.
1601 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1602 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1603 llvm::Value* IntResult =
1604 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1605 // Then, cast to pointer.
1606 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1607 }
1608
1609 if (isa<llvm::PointerType>(SrcTy)) {
1610 // Must be an ptr to int cast.
1611 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1612 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1613 }
1614
1615 // A scalar can be splatted to an extended vector of the same element type
1616 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1617 // Sema should add casts to make sure that the source expression's type is
1618 // the same as the vector's element type (sans qualifiers)
1619 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1620 SrcType.getTypePtr() &&
1621 "Splatted expr doesn't match with vector element type?");
1622
1623 // Splat the element across to all elements
1624 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1625 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1626 }
1627
1628 if (SrcType->isMatrixType() && DstType->isMatrixType())
1629 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1630
1631 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1632 // Allow bitcast from vector to integer/fp of the same size.
1633 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1634 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1635 if (SrcSize == DstSize)
1636 return Builder.CreateBitCast(Src, DstTy, "conv");
1637
1638 // Conversions between vectors of different sizes are not allowed except
1639 // when vectors of half are involved. Operations on storage-only half
1640 // vectors require promoting half vector operands to float vectors and
1641 // truncating the result, which is either an int or float vector, to a
1642 // short or half vector.
1643
1644 // Source and destination are both expected to be vectors.
1645 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1646 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1647 (void)DstElementTy;
1648
1649 assert(((SrcElementTy->isIntegerTy() &&
1650 DstElementTy->isIntegerTy()) ||
1651 (SrcElementTy->isFloatingPointTy() &&
1652 DstElementTy->isFloatingPointTy())) &&
1653 "unexpected conversion between a floating-point vector and an "
1654 "integer vector");
1655
1656 // Truncate an i32 vector to an i16 vector.
1657 if (SrcElementTy->isIntegerTy())
1658 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1659
1660 // Truncate a float vector to a half vector.
1661 if (SrcSize > DstSize)
1662 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1663
1664 // Promote a half vector to a float vector.
1665 return Builder.CreateFPExt(Src, DstTy, "conv");
1666 }
1667
1668 // Finally, we have the arithmetic types: real int/float.
1669 Value *Res = nullptr;
1670 llvm::Type *ResTy = DstTy;
1671
1672 // An overflowing conversion has undefined behavior if either the source type
1673 // or the destination type is a floating-point type. However, we consider the
1674 // range of representable values for all floating-point types to be
1675 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1676 // floating-point type.
1677 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1678 OrigSrcType->isFloatingType())
1679 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1680 Loc);
1681
1682 // Cast to half through float if half isn't a native type.
1683 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1684 // Make sure we cast in a single step if from another FP type.
1685 if (SrcTy->isFloatingPointTy()) {
1686 // Use the intrinsic if the half type itself isn't supported
1687 // (as opposed to operations on half, available with NativeHalfType).
1689 return Builder.CreateCall(
1690 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1691 // If the half type is supported, just use an fptrunc.
1692 return Builder.CreateFPTrunc(Src, DstTy);
1693 }
1694 DstTy = CGF.FloatTy;
1695 }
1696
1697 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1698
1699 if (DstTy != ResTy) {
1701 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1702 Res = Builder.CreateCall(
1703 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1704 Res);
1705 } else {
1706 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1707 }
1708 }
1709
1710 if (Opts.EmitImplicitIntegerTruncationChecks)
1711 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1712 NoncanonicalDstType, Loc);
1713
1714 if (Opts.EmitImplicitIntegerSignChangeChecks)
1715 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1716 NoncanonicalDstType, Loc);
1717
1718 return Res;
1719}
1720
1721Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1722 QualType DstTy,
1724 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1725 llvm::Value *Result;
1726 if (SrcTy->isRealFloatingType())
1727 Result = FPBuilder.CreateFloatingToFixed(Src,
1728 CGF.getContext().getFixedPointSemantics(DstTy));
1729 else if (DstTy->isRealFloatingType())
1730 Result = FPBuilder.CreateFixedToFloating(Src,
1732 ConvertType(DstTy));
1733 else {
1734 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1735 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1736
1737 if (DstTy->isIntegerType())
1738 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1739 DstFPSema.getWidth(),
1740 DstFPSema.isSigned());
1741 else if (SrcTy->isIntegerType())
1742 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1743 DstFPSema);
1744 else
1745 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1746 }
1747 return Result;
1748}
1749
1750/// Emit a conversion from the specified complex type to the specified
1751/// destination type, where the destination type is an LLVM scalar type.
1752Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1755 // Get the source element type.
1756 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1757
1758 // Handle conversions to bool first, they are special: comparisons against 0.
1759 if (DstTy->isBooleanType()) {
1760 // Complex != 0 -> (Real != 0) | (Imag != 0)
1761 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1762 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1763 return Builder.CreateOr(Src.first, Src.second, "tobool");
1764 }
1765
1766 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1767 // the imaginary part of the complex value is discarded and the value of the
1768 // real part is converted according to the conversion rules for the
1769 // corresponding real type.
1770 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1771}
1772
1773Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1774 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1775}
1776
1777/// Emit a sanitization check for the given "binary" operation (which
1778/// might actually be a unary increment which has been lowered to a binary
1779/// operation). The check passes if all values in \p Checks (which are \c i1),
1780/// are \c true.
1781void ScalarExprEmitter::EmitBinOpCheck(
1782 ArrayRef<std::pair<Value *, SanitizerKind::SanitizerOrdinal>> Checks,
1783 const BinOpInfo &Info) {
1784 assert(CGF.IsSanitizerScope);
1785 SanitizerHandler Check;
1788
1789 BinaryOperatorKind Opcode = Info.Opcode;
1792
1793 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1794 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1795 if (UO && UO->getOpcode() == UO_Minus) {
1796 Check = SanitizerHandler::NegateOverflow;
1797 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1798 DynamicData.push_back(Info.RHS);
1799 } else {
1800 if (BinaryOperator::isShiftOp(Opcode)) {
1801 // Shift LHS negative or too large, or RHS out of bounds.
1802 Check = SanitizerHandler::ShiftOutOfBounds;
1803 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1804 StaticData.push_back(
1805 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1806 StaticData.push_back(
1807 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1808 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1809 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1810 Check = SanitizerHandler::DivremOverflow;
1811 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1812 } else {
1813 // Arithmetic overflow (+, -, *).
1814 switch (Opcode) {
1815 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1816 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1817 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1818 default: llvm_unreachable("unexpected opcode for bin op check");
1819 }
1820 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1821 }
1822 DynamicData.push_back(Info.LHS);
1823 DynamicData.push_back(Info.RHS);
1824 }
1825
1826 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1827}
1828
1829//===----------------------------------------------------------------------===//
1830// Visitor Methods
1831//===----------------------------------------------------------------------===//
1832
1833Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1834 CGF.ErrorUnsupported(E, "scalar expression");
1835 if (E->getType()->isVoidType())
1836 return nullptr;
1837 return llvm::PoisonValue::get(CGF.ConvertType(E->getType()));
1838}
1839
1840Value *
1841ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1842 ASTContext &Context = CGF.getContext();
1843 unsigned AddrSpace =
1845 llvm::Constant *GlobalConstStr = Builder.CreateGlobalString(
1846 E->ComputeName(Context), "__usn_str", AddrSpace);
1847
1848 llvm::Type *ExprTy = ConvertType(E->getType());
1849 return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1850 "usn_addr_cast");
1851}
1852
1853Value *ScalarExprEmitter::VisitEmbedExpr(EmbedExpr *E) {
1854 assert(E->getDataElementCount() == 1);
1855 auto It = E->begin();
1856 return Builder.getInt((*It)->getValue());
1857}
1858
1859Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1860 // Vector Mask Case
1861 if (E->getNumSubExprs() == 2) {
1862 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1863 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1864 Value *Mask;
1865
1866 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1867 unsigned LHSElts = LTy->getNumElements();
1868
1869 Mask = RHS;
1870
1871 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1872
1873 // Mask off the high bits of each shuffle index.
1874 Value *MaskBits =
1875 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1876 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1877
1878 // newv = undef
1879 // mask = mask & maskbits
1880 // for each elt
1881 // n = extract mask i
1882 // x = extract val n
1883 // newv = insert newv, x, i
1884 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1885 MTy->getNumElements());
1886 Value* NewV = llvm::PoisonValue::get(RTy);
1887 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1888 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1889 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1890
1891 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1892 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1893 }
1894 return NewV;
1895 }
1896
1897 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1898 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1899
1900 SmallVector<int, 32> Indices;
1901 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1902 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1903 // Check for -1 and output it as undef in the IR.
1904 if (Idx.isSigned() && Idx.isAllOnes())
1905 Indices.push_back(-1);
1906 else
1907 Indices.push_back(Idx.getZExtValue());
1908 }
1909
1910 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1911}
1912
1913Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1914 QualType SrcType = E->getSrcExpr()->getType(),
1915 DstType = E->getType();
1916
1917 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1918
1919 SrcType = CGF.getContext().getCanonicalType(SrcType);
1920 DstType = CGF.getContext().getCanonicalType(DstType);
1921 if (SrcType == DstType) return Src;
1922
1923 assert(SrcType->isVectorType() &&
1924 "ConvertVector source type must be a vector");
1925 assert(DstType->isVectorType() &&
1926 "ConvertVector destination type must be a vector");
1927
1928 llvm::Type *SrcTy = Src->getType();
1929 llvm::Type *DstTy = ConvertType(DstType);
1930
1931 // Ignore conversions like int -> uint.
1932 if (SrcTy == DstTy)
1933 return Src;
1934
1935 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1936 DstEltType = DstType->castAs<VectorType>()->getElementType();
1937
1938 assert(SrcTy->isVectorTy() &&
1939 "ConvertVector source IR type must be a vector");
1940 assert(DstTy->isVectorTy() &&
1941 "ConvertVector destination IR type must be a vector");
1942
1943 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1944 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1945
1946 if (DstEltType->isBooleanType()) {
1947 assert((SrcEltTy->isFloatingPointTy() ||
1948 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1949
1950 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1951 if (SrcEltTy->isFloatingPointTy()) {
1952 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1953 } else {
1954 return Builder.CreateICmpNE(Src, Zero, "tobool");
1955 }
1956 }
1957
1958 // We have the arithmetic types: real int/float.
1959 Value *Res = nullptr;
1960
1961 if (isa<llvm::IntegerType>(SrcEltTy)) {
1962 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1963 if (isa<llvm::IntegerType>(DstEltTy))
1964 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1965 else if (InputSigned)
1966 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1967 else
1968 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1969 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1970 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1971 if (DstEltType->isSignedIntegerOrEnumerationType())
1972 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1973 else
1974 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1975 } else {
1976 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1977 "Unknown real conversion");
1978 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1979 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1980 else
1981 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1982 }
1983
1984 return Res;
1985}
1986
1987Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1988 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1989 CGF.EmitIgnoredExpr(E->getBase());
1990 return CGF.emitScalarConstant(Constant, E);
1991 } else {
1994 llvm::APSInt Value = Result.Val.getInt();
1995 CGF.EmitIgnoredExpr(E->getBase());
1996 return Builder.getInt(Value);
1997 }
1998 }
1999
2000 llvm::Value *Result = EmitLoadOfLValue(E);
2001
2002 // If -fdebug-info-for-profiling is specified, emit a pseudo variable and its
2003 // debug info for the pointer, even if there is no variable associated with
2004 // the pointer's expression.
2005 if (CGF.CGM.getCodeGenOpts().DebugInfoForProfiling && CGF.getDebugInfo()) {
2006 if (llvm::LoadInst *Load = dyn_cast<llvm::LoadInst>(Result)) {
2007 if (llvm::GetElementPtrInst *GEP =
2008 dyn_cast<llvm::GetElementPtrInst>(Load->getPointerOperand())) {
2009 if (llvm::Instruction *Pointer =
2010 dyn_cast<llvm::Instruction>(GEP->getPointerOperand())) {
2011 QualType Ty = E->getBase()->getType();
2012 if (!E->isArrow())
2013 Ty = CGF.getContext().getPointerType(Ty);
2014 CGF.getDebugInfo()->EmitPseudoVariable(Builder, Pointer, Ty);
2015 }
2016 }
2017 }
2018 }
2019 return Result;
2020}
2021
2022Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
2023 TestAndClearIgnoreResultAssign();
2024
2025 // Emit subscript expressions in rvalue context's. For most cases, this just
2026 // loads the lvalue formed by the subscript expr. However, we have to be
2027 // careful, because the base of a vector subscript is occasionally an rvalue,
2028 // so we can't get it as an lvalue.
2029 if (!E->getBase()->getType()->isVectorType() &&
2030 !E->getBase()->getType()->isSveVLSBuiltinType())
2031 return EmitLoadOfLValue(E);
2032
2033 // Handle the vector case. The base must be a vector, the index must be an
2034 // integer value.
2035 Value *Base = Visit(E->getBase());
2036 Value *Idx = Visit(E->getIdx());
2037 QualType IdxTy = E->getIdx()->getType();
2038
2039 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2040 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
2041
2042 return Builder.CreateExtractElement(Base, Idx, "vecext");
2043}
2044
2045Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
2046 TestAndClearIgnoreResultAssign();
2047
2048 // Handle the vector case. The base must be a vector, the index must be an
2049 // integer value.
2050 Value *RowIdx = CGF.EmitMatrixIndexExpr(E->getRowIdx());
2051 Value *ColumnIdx = CGF.EmitMatrixIndexExpr(E->getColumnIdx());
2052
2053 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
2054 unsigned NumRows = MatrixTy->getNumRows();
2055 llvm::MatrixBuilder MB(Builder);
2056 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
2057 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
2058 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
2059
2060 Value *Matrix = Visit(E->getBase());
2061
2062 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
2063 return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
2064}
2065
2066static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
2067 unsigned Off) {
2068 int MV = SVI->getMaskValue(Idx);
2069 if (MV == -1)
2070 return -1;
2071 return Off + MV;
2072}
2073
2074static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
2075 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
2076 "Index operand too large for shufflevector mask!");
2077 return C->getZExtValue();
2078}
2079
2080Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
2081 bool Ignore = TestAndClearIgnoreResultAssign();
2082 (void)Ignore;
2083 assert (Ignore == false && "init list ignored");
2084 unsigned NumInitElements = E->getNumInits();
2085
2086 if (E->hadArrayRangeDesignator())
2087 CGF.ErrorUnsupported(E, "GNU array range designator extension");
2088
2089 llvm::VectorType *VType =
2090 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
2091
2092 if (!VType) {
2093 if (NumInitElements == 0) {
2094 // C++11 value-initialization for the scalar.
2095 return EmitNullValue(E->getType());
2096 }
2097 // We have a scalar in braces. Just use the first element.
2098 return Visit(E->getInit(0));
2099 }
2100
2101 if (isa<llvm::ScalableVectorType>(VType)) {
2102 if (NumInitElements == 0) {
2103 // C++11 value-initialization for the vector.
2104 return EmitNullValue(E->getType());
2105 }
2106
2107 if (NumInitElements == 1) {
2108 Expr *InitVector = E->getInit(0);
2109
2110 // Initialize from another scalable vector of the same type.
2111 if (InitVector->getType().getCanonicalType() ==
2113 return Visit(InitVector);
2114 }
2115
2116 llvm_unreachable("Unexpected initialization of a scalable vector!");
2117 }
2118
2119 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
2120
2121 // Loop over initializers collecting the Value for each, and remembering
2122 // whether the source was swizzle (ExtVectorElementExpr). This will allow
2123 // us to fold the shuffle for the swizzle into the shuffle for the vector
2124 // initializer, since LLVM optimizers generally do not want to touch
2125 // shuffles.
2126 unsigned CurIdx = 0;
2127 bool VIsPoisonShuffle = false;
2128 llvm::Value *V = llvm::PoisonValue::get(VType);
2129 for (unsigned i = 0; i != NumInitElements; ++i) {
2130 Expr *IE = E->getInit(i);
2131 Value *Init = Visit(IE);
2133
2134 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
2135
2136 // Handle scalar elements. If the scalar initializer is actually one
2137 // element of a different vector of the same width, use shuffle instead of
2138 // extract+insert.
2139 if (!VVT) {
2140 if (isa<ExtVectorElementExpr>(IE)) {
2141 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
2142
2143 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
2144 ->getNumElements() == ResElts) {
2145 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
2146 Value *LHS = nullptr, *RHS = nullptr;
2147 if (CurIdx == 0) {
2148 // insert into poison -> shuffle (src, poison)
2149 // shufflemask must use an i32
2150 Args.push_back(getAsInt32(C, CGF.Int32Ty));
2151 Args.resize(ResElts, -1);
2152
2153 LHS = EI->getVectorOperand();
2154 RHS = V;
2155 VIsPoisonShuffle = true;
2156 } else if (VIsPoisonShuffle) {
2157 // insert into poison shuffle && size match -> shuffle (v, src)
2158 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
2159 for (unsigned j = 0; j != CurIdx; ++j)
2160 Args.push_back(getMaskElt(SVV, j, 0));
2161 Args.push_back(ResElts + C->getZExtValue());
2162 Args.resize(ResElts, -1);
2163
2164 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2165 RHS = EI->getVectorOperand();
2166 VIsPoisonShuffle = false;
2167 }
2168 if (!Args.empty()) {
2169 V = Builder.CreateShuffleVector(LHS, RHS, Args);
2170 ++CurIdx;
2171 continue;
2172 }
2173 }
2174 }
2175 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
2176 "vecinit");
2177 VIsPoisonShuffle = false;
2178 ++CurIdx;
2179 continue;
2180 }
2181
2182 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
2183
2184 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
2185 // input is the same width as the vector being constructed, generate an
2186 // optimized shuffle of the swizzle input into the result.
2187 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
2188 if (isa<ExtVectorElementExpr>(IE)) {
2189 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
2190 Value *SVOp = SVI->getOperand(0);
2191 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
2192
2193 if (OpTy->getNumElements() == ResElts) {
2194 for (unsigned j = 0; j != CurIdx; ++j) {
2195 // If the current vector initializer is a shuffle with poison, merge
2196 // this shuffle directly into it.
2197 if (VIsPoisonShuffle) {
2198 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
2199 } else {
2200 Args.push_back(j);
2201 }
2202 }
2203 for (unsigned j = 0, je = InitElts; j != je; ++j)
2204 Args.push_back(getMaskElt(SVI, j, Offset));
2205 Args.resize(ResElts, -1);
2206
2207 if (VIsPoisonShuffle)
2208 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2209
2210 Init = SVOp;
2211 }
2212 }
2213
2214 // Extend init to result vector length, and then shuffle its contribution
2215 // to the vector initializer into V.
2216 if (Args.empty()) {
2217 for (unsigned j = 0; j != InitElts; ++j)
2218 Args.push_back(j);
2219 Args.resize(ResElts, -1);
2220 Init = Builder.CreateShuffleVector(Init, Args, "vext");
2221
2222 Args.clear();
2223 for (unsigned j = 0; j != CurIdx; ++j)
2224 Args.push_back(j);
2225 for (unsigned j = 0; j != InitElts; ++j)
2226 Args.push_back(j + Offset);
2227 Args.resize(ResElts, -1);
2228 }
2229
2230 // If V is poison, make sure it ends up on the RHS of the shuffle to aid
2231 // merging subsequent shuffles into this one.
2232 if (CurIdx == 0)
2233 std::swap(V, Init);
2234 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
2235 VIsPoisonShuffle = isa<llvm::PoisonValue>(Init);
2236 CurIdx += InitElts;
2237 }
2238
2239 // FIXME: evaluate codegen vs. shuffling against constant null vector.
2240 // Emit remaining default initializers.
2241 llvm::Type *EltTy = VType->getElementType();
2242
2243 // Emit remaining default initializers
2244 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
2245 Value *Idx = Builder.getInt32(CurIdx);
2246 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
2247 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
2248 }
2249 return V;
2250}
2251
2253 const Expr *E = CE->getSubExpr();
2254
2255 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2256 return false;
2257
2258 if (isa<CXXThisExpr>(E->IgnoreParens())) {
2259 // We always assume that 'this' is never null.
2260 return false;
2261 }
2262
2263 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2264 // And that glvalue casts are never null.
2265 if (ICE->isGLValue())
2266 return false;
2267 }
2268
2269 return true;
2270}
2271
2272// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2273// have to handle a more broad range of conversions than explicit casts, as they
2274// handle things like function to ptr-to-function decay etc.
2275Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2276 Expr *E = CE->getSubExpr();
2277 QualType DestTy = CE->getType();
2278 CastKind Kind = CE->getCastKind();
2279 CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2280
2281 // These cases are generally not written to ignore the result of
2282 // evaluating their sub-expressions, so we clear this now.
2283 bool Ignored = TestAndClearIgnoreResultAssign();
2284
2285 // Since almost all cast kinds apply to scalars, this switch doesn't have
2286 // a default case, so the compiler will warn on a missing case. The cases
2287 // are in the same order as in the CastKind enum.
2288 switch (Kind) {
2289 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2290 case CK_BuiltinFnToFnPtr:
2291 llvm_unreachable("builtin functions are handled elsewhere");
2292
2293 case CK_LValueBitCast:
2294 case CK_ObjCObjectLValueCast: {
2295 Address Addr = EmitLValue(E).getAddress();
2296 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2297 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2298 return EmitLoadOfLValue(LV, CE->getExprLoc());
2299 }
2300
2301 case CK_LValueToRValueBitCast: {
2302 LValue SourceLVal = CGF.EmitLValue(E);
2303 Address Addr =
2304 SourceLVal.getAddress().withElementType(CGF.ConvertTypeForMem(DestTy));
2305 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2307 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2308 }
2309
2310 case CK_CPointerToObjCPointerCast:
2311 case CK_BlockPointerToObjCPointerCast:
2312 case CK_AnyPointerToBlockPointerCast:
2313 case CK_BitCast: {
2314 Value *Src = Visit(const_cast<Expr*>(E));
2315 llvm::Type *SrcTy = Src->getType();
2316 llvm::Type *DstTy = ConvertType(DestTy);
2317 assert(
2318 (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() ||
2319 SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) &&
2320 "Address-space cast must be used to convert address spaces");
2321
2322 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2323 if (auto *PT = DestTy->getAs<PointerType>()) {
2325 PT->getPointeeType(),
2326 Address(Src,
2329 CGF.getPointerAlign()),
2330 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2331 CE->getBeginLoc());
2332 }
2333 }
2334
2335 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2336 const QualType SrcType = E->getType();
2337
2338 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2339 // Casting to pointer that could carry dynamic information (provided by
2340 // invariant.group) requires launder.
2341 Src = Builder.CreateLaunderInvariantGroup(Src);
2342 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2343 // Casting to pointer that does not carry dynamic information (provided
2344 // by invariant.group) requires stripping it. Note that we don't do it
2345 // if the source could not be dynamic type and destination could be
2346 // dynamic because dynamic information is already laundered. It is
2347 // because launder(strip(src)) == launder(src), so there is no need to
2348 // add extra strip before launder.
2349 Src = Builder.CreateStripInvariantGroup(Src);
2350 }
2351 }
2352
2353 // Update heapallocsite metadata when there is an explicit pointer cast.
2354 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2355 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) &&
2356 !isa<CastExpr>(E)) {
2357 QualType PointeeType = DestTy->getPointeeType();
2358 if (!PointeeType.isNull())
2359 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2360 CE->getExprLoc());
2361 }
2362 }
2363
2364 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2365 // same element type, use the llvm.vector.insert intrinsic to perform the
2366 // bitcast.
2367 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2368 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2369 // If we are casting a fixed i8 vector to a scalable i1 predicate
2370 // vector, use a vector insert and bitcast the result.
2371 if (ScalableDstTy->getElementType()->isIntegerTy(1) &&
2372 ScalableDstTy->getElementCount().isKnownMultipleOf(8) &&
2373 FixedSrcTy->getElementType()->isIntegerTy(8)) {
2374 ScalableDstTy = llvm::ScalableVectorType::get(
2375 FixedSrcTy->getElementType(),
2376 ScalableDstTy->getElementCount().getKnownMinValue() / 8);
2377 }
2378 if (FixedSrcTy->getElementType() == ScalableDstTy->getElementType()) {
2379 llvm::Value *PoisonVec = llvm::PoisonValue::get(ScalableDstTy);
2380 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2381 llvm::Value *Result = Builder.CreateInsertVector(
2382 ScalableDstTy, PoisonVec, Src, Zero, "cast.scalable");
2383 if (Result->getType() != DstTy)
2384 Result = Builder.CreateBitCast(Result, DstTy);
2385 return Result;
2386 }
2387 }
2388 }
2389
2390 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2391 // same element type, use the llvm.vector.extract intrinsic to perform the
2392 // bitcast.
2393 if (auto *ScalableSrcTy = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2394 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2395 // If we are casting a scalable i1 predicate vector to a fixed i8
2396 // vector, bitcast the source and use a vector extract.
2397 if (ScalableSrcTy->getElementType()->isIntegerTy(1) &&
2398 ScalableSrcTy->getElementCount().isKnownMultipleOf(8) &&
2399 FixedDstTy->getElementType()->isIntegerTy(8)) {
2400 ScalableSrcTy = llvm::ScalableVectorType::get(
2401 FixedDstTy->getElementType(),
2402 ScalableSrcTy->getElementCount().getKnownMinValue() / 8);
2403 Src = Builder.CreateBitCast(Src, ScalableSrcTy);
2404 }
2405 if (ScalableSrcTy->getElementType() == FixedDstTy->getElementType()) {
2406 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2407 return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed");
2408 }
2409 }
2410 }
2411
2412 // Perform VLAT <-> VLST bitcast through memory.
2413 // TODO: since the llvm.vector.{insert,extract} intrinsics
2414 // require the element types of the vectors to be the same, we
2415 // need to keep this around for bitcasts between VLAT <-> VLST where
2416 // the element types of the vectors are not the same, until we figure
2417 // out a better way of doing these casts.
2418 if ((isa<llvm::FixedVectorType>(SrcTy) &&
2419 isa<llvm::ScalableVectorType>(DstTy)) ||
2420 (isa<llvm::ScalableVectorType>(SrcTy) &&
2421 isa<llvm::FixedVectorType>(DstTy))) {
2422 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2423 LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2424 CGF.EmitStoreOfScalar(Src, LV);
2425 Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2426 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2428 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2429 }
2430
2431 llvm::Value *Result = Builder.CreateBitCast(Src, DstTy);
2432 return CGF.authPointerToPointerCast(Result, E->getType(), DestTy);
2433 }
2434 case CK_AddressSpaceConversion: {
2436 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2437 Result.Val.isNullPointer()) {
2438 // If E has side effect, it is emitted even if its final result is a
2439 // null pointer. In that case, a DCE pass should be able to
2440 // eliminate the useless instructions emitted during translating E.
2441 if (Result.HasSideEffects)
2442 Visit(E);
2443 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2444 ConvertType(DestTy)), DestTy);
2445 }
2446 // Since target may map different address spaces in AST to the same address
2447 // space, an address space conversion may end up as a bitcast.
2449 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2450 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2451 }
2452 case CK_AtomicToNonAtomic:
2453 case CK_NonAtomicToAtomic:
2454 case CK_UserDefinedConversion:
2455 return Visit(const_cast<Expr*>(E));
2456
2457 case CK_NoOp: {
2458 return CE->changesVolatileQualification() ? EmitLoadOfLValue(CE)
2459 : Visit(const_cast<Expr *>(E));
2460 }
2461
2462 case CK_BaseToDerived: {
2463 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2464 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2465
2467 Address Derived =
2468 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2469 CE->path_begin(), CE->path_end(),
2471
2472 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2473 // performed and the object is not of the derived type.
2474 if (CGF.sanitizePerformTypeCheck())
2476 Derived, DestTy->getPointeeType());
2477
2478 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2479 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2480 /*MayBeNull=*/true,
2482 CE->getBeginLoc());
2483
2484 return CGF.getAsNaturalPointerTo(Derived, CE->getType()->getPointeeType());
2485 }
2486 case CK_UncheckedDerivedToBase:
2487 case CK_DerivedToBase: {
2488 // The EmitPointerWithAlignment path does this fine; just discard
2489 // the alignment.
2491 CE->getType()->getPointeeType());
2492 }
2493
2494 case CK_Dynamic: {
2496 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2497 return CGF.EmitDynamicCast(V, DCE);
2498 }
2499
2500 case CK_ArrayToPointerDecay:
2502 CE->getType()->getPointeeType());
2503 case CK_FunctionToPointerDecay:
2504 return EmitLValue(E).getPointer(CGF);
2505
2506 case CK_NullToPointer:
2507 if (MustVisitNullValue(E))
2508 CGF.EmitIgnoredExpr(E);
2509
2510 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2511 DestTy);
2512
2513 case CK_NullToMemberPointer: {
2514 if (MustVisitNullValue(E))
2515 CGF.EmitIgnoredExpr(E);
2516
2517 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2518 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2519 }
2520
2521 case CK_ReinterpretMemberPointer:
2522 case CK_BaseToDerivedMemberPointer:
2523 case CK_DerivedToBaseMemberPointer: {
2524 Value *Src = Visit(E);
2525
2526 // Note that the AST doesn't distinguish between checked and
2527 // unchecked member pointer conversions, so we always have to
2528 // implement checked conversions here. This is inefficient when
2529 // actual control flow may be required in order to perform the
2530 // check, which it is for data member pointers (but not member
2531 // function pointers on Itanium and ARM).
2532 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2533 }
2534
2535 case CK_ARCProduceObject:
2536 return CGF.EmitARCRetainScalarExpr(E);
2537 case CK_ARCConsumeObject:
2538 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2539 case CK_ARCReclaimReturnedObject:
2540 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2541 case CK_ARCExtendBlockObject:
2542 return CGF.EmitARCExtendBlockObject(E);
2543
2544 case CK_CopyAndAutoreleaseBlockObject:
2545 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2546
2547 case CK_FloatingRealToComplex:
2548 case CK_FloatingComplexCast:
2549 case CK_IntegralRealToComplex:
2550 case CK_IntegralComplexCast:
2551 case CK_IntegralComplexToFloatingComplex:
2552 case CK_FloatingComplexToIntegralComplex:
2553 case CK_ConstructorConversion:
2554 case CK_ToUnion:
2555 case CK_HLSLArrayRValue:
2556 llvm_unreachable("scalar cast to non-scalar value");
2557
2558 case CK_LValueToRValue:
2559 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2560 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2561 return Visit(const_cast<Expr*>(E));
2562
2563 case CK_IntegralToPointer: {
2564 Value *Src = Visit(const_cast<Expr*>(E));
2565
2566 // First, convert to the correct width so that we control the kind of
2567 // extension.
2568 auto DestLLVMTy = ConvertType(DestTy);
2569 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2570 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2571 llvm::Value* IntResult =
2572 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2573
2574 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2575
2576 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2577 // Going from integer to pointer that could be dynamic requires reloading
2578 // dynamic information from invariant.group.
2579 if (DestTy.mayBeDynamicClass())
2580 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2581 }
2582
2583 IntToPtr = CGF.authPointerToPointerCast(IntToPtr, E->getType(), DestTy);
2584 return IntToPtr;
2585 }
2586 case CK_PointerToIntegral: {
2587 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2588 auto *PtrExpr = Visit(E);
2589
2590 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2591 const QualType SrcType = E->getType();
2592
2593 // Casting to integer requires stripping dynamic information as it does
2594 // not carries it.
2595 if (SrcType.mayBeDynamicClass())
2596 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2597 }
2598
2599 PtrExpr = CGF.authPointerToPointerCast(PtrExpr, E->getType(), DestTy);
2600 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2601 }
2602 case CK_ToVoid: {
2603 CGF.EmitIgnoredExpr(E);
2604 return nullptr;
2605 }
2606 case CK_MatrixCast: {
2607 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2608 CE->getExprLoc());
2609 }
2610 case CK_VectorSplat: {
2611 llvm::Type *DstTy = ConvertType(DestTy);
2612 Value *Elt = Visit(const_cast<Expr *>(E));
2613 // Splat the element across to all elements
2614 llvm::ElementCount NumElements =
2615 cast<llvm::VectorType>(DstTy)->getElementCount();
2616 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2617 }
2618
2619 case CK_FixedPointCast:
2620 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2621 CE->getExprLoc());
2622
2623 case CK_FixedPointToBoolean:
2624 assert(E->getType()->isFixedPointType() &&
2625 "Expected src type to be fixed point type");
2626 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2627 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2628 CE->getExprLoc());
2629
2630 case CK_FixedPointToIntegral:
2631 assert(E->getType()->isFixedPointType() &&
2632 "Expected src type to be fixed point type");
2633 assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2634 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2635 CE->getExprLoc());
2636
2637 case CK_IntegralToFixedPoint:
2638 assert(E->getType()->isIntegerType() &&
2639 "Expected src type to be an integer");
2640 assert(DestTy->isFixedPointType() &&
2641 "Expected dest type to be fixed point type");
2642 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2643 CE->getExprLoc());
2644
2645 case CK_IntegralCast: {
2646 if (E->getType()->isExtVectorType() && DestTy->isExtVectorType()) {
2647 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2648 return Builder.CreateIntCast(Visit(E), ConvertType(DestTy),
2650 "conv");
2651 }
2652 ScalarConversionOpts Opts;
2653 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2654 if (!ICE->isPartOfExplicitCast())
2655 Opts = ScalarConversionOpts(CGF.SanOpts);
2656 }
2657 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2658 CE->getExprLoc(), Opts);
2659 }
2660 case CK_IntegralToFloating: {
2661 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2662 // TODO: Support constrained FP intrinsics.
2663 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2664 if (SrcElTy->isSignedIntegerOrEnumerationType())
2665 return Builder.CreateSIToFP(Visit(E), ConvertType(DestTy), "conv");
2666 return Builder.CreateUIToFP(Visit(E), ConvertType(DestTy), "conv");
2667 }
2668 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2669 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2670 CE->getExprLoc());
2671 }
2672 case CK_FloatingToIntegral: {
2673 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2674 // TODO: Support constrained FP intrinsics.
2675 QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2676 if (DstElTy->isSignedIntegerOrEnumerationType())
2677 return Builder.CreateFPToSI(Visit(E), ConvertType(DestTy), "conv");
2678 return Builder.CreateFPToUI(Visit(E), ConvertType(DestTy), "conv");
2679 }
2680 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2681 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2682 CE->getExprLoc());
2683 }
2684 case CK_FloatingCast: {
2685 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2686 // TODO: Support constrained FP intrinsics.
2687 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2688 QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2689 if (DstElTy->castAs<BuiltinType>()->getKind() <
2690 SrcElTy->castAs<BuiltinType>()->getKind())
2691 return Builder.CreateFPTrunc(Visit(E), ConvertType(DestTy), "conv");
2692 return Builder.CreateFPExt(Visit(E), ConvertType(DestTy), "conv");
2693 }
2694 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2695 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2696 CE->getExprLoc());
2697 }
2698 case CK_FixedPointToFloating:
2699 case CK_FloatingToFixedPoint: {
2700 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2701 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2702 CE->getExprLoc());
2703 }
2704 case CK_BooleanToSignedIntegral: {
2705 ScalarConversionOpts Opts;
2706 Opts.TreatBooleanAsSigned = true;
2707 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2708 CE->getExprLoc(), Opts);
2709 }
2710 case CK_IntegralToBoolean:
2711 return EmitIntToBoolConversion(Visit(E));
2712 case CK_PointerToBoolean:
2713 return EmitPointerToBoolConversion(Visit(E), E->getType());
2714 case CK_FloatingToBoolean: {
2715 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2716 return EmitFloatToBoolConversion(Visit(E));
2717 }
2718 case CK_MemberPointerToBoolean: {
2719 llvm::Value *MemPtr = Visit(E);
2721 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2722 }
2723
2724 case CK_FloatingComplexToReal:
2725 case CK_IntegralComplexToReal:
2726 return CGF.EmitComplexExpr(E, false, true).first;
2727
2728 case CK_FloatingComplexToBoolean:
2729 case CK_IntegralComplexToBoolean: {
2731
2732 // TODO: kill this function off, inline appropriate case here
2733 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2734 CE->getExprLoc());
2735 }
2736
2737 case CK_ZeroToOCLOpaqueType: {
2738 assert((DestTy->isEventT() || DestTy->isQueueT() ||
2739 DestTy->isOCLIntelSubgroupAVCType()) &&
2740 "CK_ZeroToOCLEvent cast on non-event type");
2741 return llvm::Constant::getNullValue(ConvertType(DestTy));
2742 }
2743
2744 case CK_IntToOCLSampler:
2745 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2746
2747 case CK_HLSLVectorTruncation: {
2748 assert((DestTy->isVectorType() || DestTy->isBuiltinType()) &&
2749 "Destination type must be a vector or builtin type.");
2750 Value *Vec = Visit(const_cast<Expr *>(E));
2751 if (auto *VecTy = DestTy->getAs<VectorType>()) {
2752 SmallVector<int> Mask;
2753 unsigned NumElts = VecTy->getNumElements();
2754 for (unsigned I = 0; I != NumElts; ++I)
2755 Mask.push_back(I);
2756
2757 return Builder.CreateShuffleVector(Vec, Mask, "trunc");
2758 }
2759 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.SizeTy);
2760 return Builder.CreateExtractElement(Vec, Zero, "cast.vtrunc");
2761 }
2762
2763 } // end of switch
2764
2765 llvm_unreachable("unknown scalar cast");
2766}
2767
2768Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2769 CodeGenFunction::StmtExprEvaluation eval(CGF);
2770 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2771 !E->getType()->isVoidType());
2772 if (!RetAlloca.isValid())
2773 return nullptr;
2774 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2775 E->getExprLoc());
2776}
2777
2778Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2779 CodeGenFunction::RunCleanupsScope Scope(CGF);
2780 Value *V = Visit(E->getSubExpr());
2781 // Defend against dominance problems caused by jumps out of expression
2782 // evaluation through the shared cleanup block.
2783 Scope.ForceCleanup({&V});
2784 return V;
2785}
2786
2787//===----------------------------------------------------------------------===//
2788// Unary Operators
2789//===----------------------------------------------------------------------===//
2790
2792 llvm::Value *InVal, bool IsInc,
2793 FPOptions FPFeatures) {
2794 BinOpInfo BinOp;
2795 BinOp.LHS = InVal;
2796 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2797 BinOp.Ty = E->getType();
2798 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2799 BinOp.FPFeatures = FPFeatures;
2800 BinOp.E = E;
2801 return BinOp;
2802}
2803
2804llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2805 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2806 llvm::Value *Amount =
2807 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2808 StringRef Name = IsInc ? "inc" : "dec";
2809 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2811 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2812 return Builder.CreateAdd(InVal, Amount, Name);
2813 [[fallthrough]];
2815 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2816 return Builder.CreateNSWAdd(InVal, Amount, Name);
2817 [[fallthrough]];
2819 BinOpInfo Info = createBinOpInfoFromIncDec(
2820 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2821 if (!E->canOverflow() || CanElideOverflowCheck(CGF.getContext(), Info))
2822 return Builder.CreateNSWAdd(InVal, Amount, Name);
2823 return EmitOverflowCheckedBinOp(Info);
2824 }
2825 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2826}
2827
2828/// For the purposes of overflow pattern exclusion, does this match the
2829/// "while(i--)" pattern?
2830static bool matchesPostDecrInWhile(const UnaryOperator *UO, bool isInc,
2831 bool isPre, ASTContext &Ctx) {
2832 if (isInc || isPre)
2833 return false;
2834
2835 // -fsanitize-undefined-ignore-overflow-pattern=unsigned-post-decr-while
2838 return false;
2839
2840 // all Parents (usually just one) must be a WhileStmt
2841 for (const auto &Parent : Ctx.getParentMapContext().getParents(*UO))
2842 if (!Parent.get<WhileStmt>())
2843 return false;
2844
2845 return true;
2846}
2847
2848namespace {
2849/// Handles check and update for lastprivate conditional variables.
2850class OMPLastprivateConditionalUpdateRAII {
2851private:
2852 CodeGenFunction &CGF;
2853 const UnaryOperator *E;
2854
2855public:
2856 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2857 const UnaryOperator *E)
2858 : CGF(CGF), E(E) {}
2859 ~OMPLastprivateConditionalUpdateRAII() {
2860 if (CGF.getLangOpts().OpenMP)
2862 CGF, E->getSubExpr());
2863 }
2864};
2865} // namespace
2866
2867llvm::Value *
2868ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2869 bool isInc, bool isPre) {
2870 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2871 QualType type = E->getSubExpr()->getType();
2872 llvm::PHINode *atomicPHI = nullptr;
2873 llvm::Value *value;
2874 llvm::Value *input;
2875 llvm::Value *Previous = nullptr;
2876 QualType SrcType = E->getType();
2877
2878 int amount = (isInc ? 1 : -1);
2879 bool isSubtraction = !isInc;
2880
2881 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2882 type = atomicTy->getValueType();
2883 if (isInc && type->isBooleanType()) {
2884 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2885 if (isPre) {
2886 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2887 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2888 return Builder.getTrue();
2889 }
2890 // For atomic bool increment, we just store true and return it for
2891 // preincrement, do an atomic swap with true for postincrement
2892 return Builder.CreateAtomicRMW(
2893 llvm::AtomicRMWInst::Xchg, LV.getAddress(), True,
2894 llvm::AtomicOrdering::SequentiallyConsistent);
2895 }
2896 // Special case for atomic increment / decrement on integers, emit
2897 // atomicrmw instructions. We skip this if we want to be doing overflow
2898 // checking, and fall into the slow path with the atomic cmpxchg loop.
2899 if (!type->isBooleanType() && type->isIntegerType() &&
2900 !(type->isUnsignedIntegerType() &&
2901 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2902 CGF.getLangOpts().getSignedOverflowBehavior() !=
2904 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2905 llvm::AtomicRMWInst::Sub;
2906 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2907 llvm::Instruction::Sub;
2908 llvm::Value *amt = CGF.EmitToMemory(
2909 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2910 llvm::Value *old =
2911 Builder.CreateAtomicRMW(aop, LV.getAddress(), amt,
2912 llvm::AtomicOrdering::SequentiallyConsistent);
2913 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2914 }
2915 // Special case for atomic increment/decrement on floats.
2916 // Bail out non-power-of-2-sized floating point types (e.g., x86_fp80).
2917 if (type->isFloatingType()) {
2918 llvm::Type *Ty = ConvertType(type);
2919 if (llvm::has_single_bit(Ty->getScalarSizeInBits())) {
2920 llvm::AtomicRMWInst::BinOp aop =
2921 isInc ? llvm::AtomicRMWInst::FAdd : llvm::AtomicRMWInst::FSub;
2922 llvm::Instruction::BinaryOps op =
2923 isInc ? llvm::Instruction::FAdd : llvm::Instruction::FSub;
2924 llvm::Value *amt = llvm::ConstantFP::get(Ty, 1.0);
2925 llvm::AtomicRMWInst *old =
2926 CGF.emitAtomicRMWInst(aop, LV.getAddress(), amt,
2927 llvm::AtomicOrdering::SequentiallyConsistent);
2928
2929 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2930 }
2931 }
2932 value = EmitLoadOfLValue(LV, E->getExprLoc());
2933 input = value;
2934 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2935 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2936 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2937 value = CGF.EmitToMemory(value, type);
2938 Builder.CreateBr(opBB);
2939 Builder.SetInsertPoint(opBB);
2940 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2941 atomicPHI->addIncoming(value, startBB);
2942 value = atomicPHI;
2943 } else {
2944 value = EmitLoadOfLValue(LV, E->getExprLoc());
2945 input = value;
2946 }
2947
2948 // Special case of integer increment that we have to check first: bool++.
2949 // Due to promotion rules, we get:
2950 // bool++ -> bool = bool + 1
2951 // -> bool = (int)bool + 1
2952 // -> bool = ((int)bool + 1 != 0)
2953 // An interesting aspect of this is that increment is always true.
2954 // Decrement does not have this property.
2955 if (isInc && type->isBooleanType()) {
2956 value = Builder.getTrue();
2957
2958 // Most common case by far: integer increment.
2959 } else if (type->isIntegerType()) {
2960 QualType promotedType;
2961 bool canPerformLossyDemotionCheck = false;
2962
2963 bool excludeOverflowPattern =
2964 matchesPostDecrInWhile(E, isInc, isPre, CGF.getContext());
2965
2967 promotedType = CGF.getContext().getPromotedIntegerType(type);
2968 assert(promotedType != type && "Shouldn't promote to the same type.");
2969 canPerformLossyDemotionCheck = true;
2970 canPerformLossyDemotionCheck &=
2972 CGF.getContext().getCanonicalType(promotedType);
2973 canPerformLossyDemotionCheck &=
2975 type, promotedType);
2976 assert((!canPerformLossyDemotionCheck ||
2977 type->isSignedIntegerOrEnumerationType() ||
2978 promotedType->isSignedIntegerOrEnumerationType() ||
2979 ConvertType(type)->getScalarSizeInBits() ==
2980 ConvertType(promotedType)->getScalarSizeInBits()) &&
2981 "The following check expects that if we do promotion to different "
2982 "underlying canonical type, at least one of the types (either "
2983 "base or promoted) will be signed, or the bitwidths will match.");
2984 }
2985 if (CGF.SanOpts.hasOneOf(
2986 SanitizerKind::ImplicitIntegerArithmeticValueChange |
2987 SanitizerKind::ImplicitBitfieldConversion) &&
2988 canPerformLossyDemotionCheck) {
2989 // While `x += 1` (for `x` with width less than int) is modeled as
2990 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2991 // ease; inc/dec with width less than int can't overflow because of
2992 // promotion rules, so we omit promotion+demotion, which means that we can
2993 // not catch lossy "demotion". Because we still want to catch these cases
2994 // when the sanitizer is enabled, we perform the promotion, then perform
2995 // the increment/decrement in the wider type, and finally
2996 // perform the demotion. This will catch lossy demotions.
2997
2998 // We have a special case for bitfields defined using all the bits of the
2999 // type. In this case we need to do the same trick as for the integer
3000 // sanitizer checks, i.e., promotion -> increment/decrement -> demotion.
3001
3002 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
3003 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
3004 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
3005 // Do pass non-default ScalarConversionOpts so that sanitizer check is
3006 // emitted if LV is not a bitfield, otherwise the bitfield sanitizer
3007 // checks will take care of the conversion.
3008 ScalarConversionOpts Opts;
3009 if (!LV.isBitField())
3010 Opts = ScalarConversionOpts(CGF.SanOpts);
3011 else if (CGF.SanOpts.has(SanitizerKind::ImplicitBitfieldConversion)) {
3012 Previous = value;
3013 SrcType = promotedType;
3014 }
3015
3016 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
3017 Opts);
3018
3019 // Note that signed integer inc/dec with width less than int can't
3020 // overflow because of promotion rules; we're just eliding a few steps
3021 // here.
3022 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
3023 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
3024 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
3025 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3026 !excludeOverflowPattern &&
3028 SanitizerKind::UnsignedIntegerOverflow, E->getType())) {
3029 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
3030 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
3031 } else {
3032 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
3033 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
3034 }
3035
3036 // Next most common: pointer increment.
3037 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
3038 QualType type = ptr->getPointeeType();
3039
3040 // VLA types don't have constant size.
3041 if (const VariableArrayType *vla
3043 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
3044 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
3045 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3047 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
3048 else
3049 value = CGF.EmitCheckedInBoundsGEP(
3050 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
3051 E->getExprLoc(), "vla.inc");
3052
3053 // Arithmetic on function pointers (!) is just +-1.
3054 } else if (type->isFunctionType()) {
3055 llvm::Value *amt = Builder.getInt32(amount);
3056
3058 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
3059 else
3060 value =
3061 CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
3062 /*SignedIndices=*/false, isSubtraction,
3063 E->getExprLoc(), "incdec.funcptr");
3064
3065 // For everything else, we can just do a simple increment.
3066 } else {
3067 llvm::Value *amt = Builder.getInt32(amount);
3068 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
3070 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
3071 else
3072 value = CGF.EmitCheckedInBoundsGEP(
3073 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
3074 E->getExprLoc(), "incdec.ptr");
3075 }
3076
3077 // Vector increment/decrement.
3078 } else if (type->isVectorType()) {
3079 if (type->hasIntegerRepresentation()) {
3080 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
3081
3082 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
3083 } else {
3084 value = Builder.CreateFAdd(
3085 value,
3086 llvm::ConstantFP::get(value->getType(), amount),
3087 isInc ? "inc" : "dec");
3088 }
3089
3090 // Floating point.
3091 } else if (type->isRealFloatingType()) {
3092 // Add the inc/dec to the real part.
3093 llvm::Value *amt;
3094 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
3095
3096 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3097 // Another special case: half FP increment should be done via float
3099 value = Builder.CreateCall(
3100 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
3101 CGF.CGM.FloatTy),
3102 input, "incdec.conv");
3103 } else {
3104 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
3105 }
3106 }
3107
3108 if (value->getType()->isFloatTy())
3109 amt = llvm::ConstantFP::get(VMContext,
3110 llvm::APFloat(static_cast<float>(amount)));
3111 else if (value->getType()->isDoubleTy())
3112 amt = llvm::ConstantFP::get(VMContext,
3113 llvm::APFloat(static_cast<double>(amount)));
3114 else {
3115 // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128.
3116 // Convert from float.
3117 llvm::APFloat F(static_cast<float>(amount));
3118 bool ignored;
3119 const llvm::fltSemantics *FS;
3120 // Don't use getFloatTypeSemantics because Half isn't
3121 // necessarily represented using the "half" LLVM type.
3122 if (value->getType()->isFP128Ty())
3123 FS = &CGF.getTarget().getFloat128Format();
3124 else if (value->getType()->isHalfTy())
3125 FS = &CGF.getTarget().getHalfFormat();
3126 else if (value->getType()->isBFloatTy())
3127 FS = &CGF.getTarget().getBFloat16Format();
3128 else if (value->getType()->isPPC_FP128Ty())
3129 FS = &CGF.getTarget().getIbm128Format();
3130 else
3131 FS = &CGF.getTarget().getLongDoubleFormat();
3132 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
3133 amt = llvm::ConstantFP::get(VMContext, F);
3134 }
3135 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
3136
3137 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3139 value = Builder.CreateCall(
3140 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
3141 CGF.CGM.FloatTy),
3142 value, "incdec.conv");
3143 } else {
3144 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
3145 }
3146 }
3147
3148 // Fixed-point types.
3149 } else if (type->isFixedPointType()) {
3150 // Fixed-point types are tricky. In some cases, it isn't possible to
3151 // represent a 1 or a -1 in the type at all. Piggyback off of
3152 // EmitFixedPointBinOp to avoid having to reimplement saturation.
3153 BinOpInfo Info;
3154 Info.E = E;
3155 Info.Ty = E->getType();
3156 Info.Opcode = isInc ? BO_Add : BO_Sub;
3157 Info.LHS = value;
3158 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
3159 // If the type is signed, it's better to represent this as +(-1) or -(-1),
3160 // since -1 is guaranteed to be representable.
3161 if (type->isSignedFixedPointType()) {
3162 Info.Opcode = isInc ? BO_Sub : BO_Add;
3163 Info.RHS = Builder.CreateNeg(Info.RHS);
3164 }
3165 // Now, convert from our invented integer literal to the type of the unary
3166 // op. This will upscale and saturate if necessary. This value can become
3167 // undef in some cases.
3168 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3169 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
3170 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
3171 value = EmitFixedPointBinOp(Info);
3172
3173 // Objective-C pointer types.
3174 } else {
3175 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
3176
3178 if (!isInc) size = -size;
3179 llvm::Value *sizeValue =
3180 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
3181
3183 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
3184 else
3185 value = CGF.EmitCheckedInBoundsGEP(
3186 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
3187 E->getExprLoc(), "incdec.objptr");
3188 value = Builder.CreateBitCast(value, input->getType());
3189 }
3190
3191 if (atomicPHI) {
3192 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3193 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3194 auto Pair = CGF.EmitAtomicCompareExchange(
3195 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
3196 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
3197 llvm::Value *success = Pair.second;
3198 atomicPHI->addIncoming(old, curBlock);
3199 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3200 Builder.SetInsertPoint(contBB);
3201 return isPre ? value : input;
3202 }
3203
3204 // Store the updated result through the lvalue.
3205 if (LV.isBitField()) {
3206 Value *Src = Previous ? Previous : value;
3207 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
3208 CGF.EmitBitfieldConversionCheck(Src, SrcType, value, E->getType(),
3209 LV.getBitFieldInfo(), E->getExprLoc());
3210 } else
3211 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
3212
3213 // If this is a postinc, return the value read from memory, otherwise use the
3214 // updated value.
3215 return isPre ? value : input;
3216}
3217
3218
3219Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
3220 QualType PromotionType) {
3221 QualType promotionTy = PromotionType.isNull()
3222 ? getPromotionType(E->getSubExpr()->getType())
3223 : PromotionType;
3224 Value *result = VisitPlus(E, promotionTy);
3225 if (result && !promotionTy.isNull())
3226 result = EmitUnPromotedValue(result, E->getType());
3227 return result;
3228}
3229
3230Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
3231 QualType PromotionType) {
3232 // This differs from gcc, though, most likely due to a bug in gcc.
3233 TestAndClearIgnoreResultAssign();
3234 if (!PromotionType.isNull())
3235 return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3236 return Visit(E->getSubExpr());
3237}
3238
3239Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
3240 QualType PromotionType) {
3241 QualType promotionTy = PromotionType.isNull()
3242 ? getPromotionType(E->getSubExpr()->getType())
3243 : PromotionType;
3244 Value *result = VisitMinus(E, promotionTy);
3245 if (result && !promotionTy.isNull())
3246 result = EmitUnPromotedValue(result, E->getType());
3247 return result;
3248}
3249
3250Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
3251 QualType PromotionType) {
3252 TestAndClearIgnoreResultAssign();
3253 Value *Op;
3254 if (!PromotionType.isNull())
3255 Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3256 else
3257 Op = Visit(E->getSubExpr());
3258
3259 // Generate a unary FNeg for FP ops.
3260 if (Op->getType()->isFPOrFPVectorTy())
3261 return Builder.CreateFNeg(Op, "fneg");
3262
3263 // Emit unary minus with EmitSub so we handle overflow cases etc.
3264 BinOpInfo BinOp;
3265 BinOp.RHS = Op;
3266 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
3267 BinOp.Ty = E->getType();
3268 BinOp.Opcode = BO_Sub;
3269 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3270 BinOp.E = E;
3271 return EmitSub(BinOp);
3272}
3273
3274Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
3275 TestAndClearIgnoreResultAssign();
3276 Value *Op = Visit(E->getSubExpr());
3277 return Builder.CreateNot(Op, "not");
3278}
3279
3280Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
3281 // Perform vector logical not on comparison with zero vector.
3282 if (E->getType()->isVectorType() &&
3285 Value *Oper = Visit(E->getSubExpr());
3286 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
3287 Value *Result;
3288 if (Oper->getType()->isFPOrFPVectorTy()) {
3289 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
3290 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
3291 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
3292 } else
3293 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
3294 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3295 }
3296
3297 // Compare operand to zero.
3298 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
3299
3300 // Invert value.
3301 // TODO: Could dynamically modify easy computations here. For example, if
3302 // the operand is an icmp ne, turn into icmp eq.
3303 BoolVal = Builder.CreateNot(BoolVal, "lnot");
3304
3305 // ZExt result to the expr type.
3306 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
3307}
3308
3309Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
3310 // Try folding the offsetof to a constant.
3311 Expr::EvalResult EVResult;
3312 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
3313 llvm::APSInt Value = EVResult.Val.getInt();
3314 return Builder.getInt(Value);
3315 }
3316
3317 // Loop over the components of the offsetof to compute the value.
3318 unsigned n = E->getNumComponents();
3319 llvm::Type* ResultType = ConvertType(E->getType());
3320 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
3321 QualType CurrentType = E->getTypeSourceInfo()->getType();
3322 for (unsigned i = 0; i != n; ++i) {
3323 OffsetOfNode ON = E->getComponent(i);
3324 llvm::Value *Offset = nullptr;
3325 switch (ON.getKind()) {
3326 case OffsetOfNode::Array: {
3327 // Compute the index
3328 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
3329 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
3330 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
3331 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
3332
3333 // Save the element type
3334 CurrentType =
3335 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
3336
3337 // Compute the element size
3338 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
3339 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
3340
3341 // Multiply out to compute the result
3342 Offset = Builder.CreateMul(Idx, ElemSize);
3343 break;
3344 }
3345
3346 case OffsetOfNode::Field: {
3347 FieldDecl *MemberDecl = ON.getField();
3348 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3349 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3350
3351 // Compute the index of the field in its parent.
3352 unsigned i = 0;
3353 // FIXME: It would be nice if we didn't have to loop here!
3354 for (RecordDecl::field_iterator Field = RD->field_begin(),
3355 FieldEnd = RD->field_end();
3356 Field != FieldEnd; ++Field, ++i) {
3357 if (*Field == MemberDecl)
3358 break;
3359 }
3360 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
3361
3362 // Compute the offset to the field
3363 int64_t OffsetInt = RL.getFieldOffset(i) /
3364 CGF.getContext().getCharWidth();
3365 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
3366
3367 // Save the element type.
3368 CurrentType = MemberDecl->getType();
3369 break;
3370 }
3371
3373 llvm_unreachable("dependent __builtin_offsetof");
3374
3375 case OffsetOfNode::Base: {
3376 if (ON.getBase()->isVirtual()) {
3377 CGF.ErrorUnsupported(E, "virtual base in offsetof");
3378 continue;
3379 }
3380
3381 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3382 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3383
3384 // Save the element type.
3385 CurrentType = ON.getBase()->getType();
3386
3387 // Compute the offset to the base.
3388 auto *BaseRT = CurrentType->castAs<RecordType>();
3389 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3390 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3391 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3392 break;
3393 }
3394 }
3395 Result = Builder.CreateAdd(Result, Offset);
3396 }
3397 return Result;
3398}
3399
3400/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3401/// argument of the sizeof expression as an integer.
3402Value *
3403ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3404 const UnaryExprOrTypeTraitExpr *E) {
3405 QualType TypeToSize = E->getTypeOfArgument();
3406 if (auto Kind = E->getKind();
3407 Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
3408 if (const VariableArrayType *VAT =
3409 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3410 if (E->isArgumentType()) {
3411 // sizeof(type) - make sure to emit the VLA size.
3412 CGF.EmitVariablyModifiedType(TypeToSize);
3413 } else {
3414 // C99 6.5.3.4p2: If the argument is an expression of type
3415 // VLA, it is evaluated.
3416 CGF.EmitIgnoredExpr(E->getArgumentExpr());
3417 }
3418
3419 auto VlaSize = CGF.getVLASize(VAT);
3420 llvm::Value *size = VlaSize.NumElts;
3421
3422 // Scale the number of non-VLA elements by the non-VLA element size.
3423 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3424 if (!eltSize.isOne())
3425 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3426
3427 return size;
3428 }
3429 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3430 auto Alignment =
3431 CGF.getContext()
3433 E->getTypeOfArgument()->getPointeeType()))
3434 .getQuantity();
3435 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3436 } else if (E->getKind() == UETT_VectorElements) {
3437 auto *VecTy = cast<llvm::VectorType>(ConvertType(E->getTypeOfArgument()));
3438 return Builder.CreateElementCount(CGF.SizeTy, VecTy->getElementCount());
3439 }
3440
3441 // If this isn't sizeof(vla), the result must be constant; use the constant
3442 // folding logic so we don't have to duplicate it here.
3443 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3444}
3445
3446Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3447 QualType PromotionType) {
3448 QualType promotionTy = PromotionType.isNull()
3449 ? getPromotionType(E->getSubExpr()->getType())
3450 : PromotionType;
3451 Value *result = VisitReal(E, promotionTy);
3452 if (result && !promotionTy.isNull())
3453 result = EmitUnPromotedValue(result, E->getType());
3454 return result;
3455}
3456
3457Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3458 QualType PromotionType) {
3459 Expr *Op = E->getSubExpr();
3460 if (Op->getType()->isAnyComplexType()) {
3461 // If it's an l-value, load through the appropriate subobject l-value.
3462 // Note that we have to ask E because Op might be an l-value that
3463 // this won't work for, e.g. an Obj-C property.
3464 if (E->isGLValue()) {
3465 if (!PromotionType.isNull()) {
3467 Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3468 if (result.first)
3469 result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3470 return result.first;
3471 } else {
3472 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3473 .getScalarVal();
3474 }
3475 }
3476 // Otherwise, calculate and project.
3477 return CGF.EmitComplexExpr(Op, false, true).first;
3478 }
3479
3480 if (!PromotionType.isNull())
3481 return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3482 return Visit(Op);
3483}
3484
3485Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3486 QualType PromotionType) {
3487 QualType promotionTy = PromotionType.isNull()
3488 ? getPromotionType(E->getSubExpr()->getType())
3489 : PromotionType;
3490 Value *result = VisitImag(E, promotionTy);
3491 if (result && !promotionTy.isNull())
3492 result = EmitUnPromotedValue(result, E->getType());
3493 return result;
3494}
3495
3496Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3497 QualType PromotionType) {
3498 Expr *Op = E->getSubExpr();
3499 if (Op->getType()->isAnyComplexType()) {
3500 // If it's an l-value, load through the appropriate subobject l-value.
3501 // Note that we have to ask E because Op might be an l-value that
3502 // this won't work for, e.g. an Obj-C property.
3503 if (Op->isGLValue()) {
3504 if (!PromotionType.isNull()) {
3506 Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3507 if (result.second)
3508 result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3509 return result.second;
3510 } else {
3511 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3512 .getScalarVal();
3513 }
3514 }
3515 // Otherwise, calculate and project.
3516 return CGF.EmitComplexExpr(Op, true, false).second;
3517 }
3518
3519 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3520 // effects are evaluated, but not the actual value.
3521 if (Op->isGLValue())
3522 CGF.EmitLValue(Op);
3523 else if (!PromotionType.isNull())
3524 CGF.EmitPromotedScalarExpr(Op, PromotionType);
3525 else
3526 CGF.EmitScalarExpr(Op, true);
3527 if (!PromotionType.isNull())
3528 return llvm::Constant::getNullValue(ConvertType(PromotionType));
3529 return llvm::Constant::getNullValue(ConvertType(E->getType()));
3530}
3531
3532//===----------------------------------------------------------------------===//
3533// Binary Operators
3534//===----------------------------------------------------------------------===//
3535
3536Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3537 QualType PromotionType) {
3538 return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3539}
3540
3541Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3542 QualType ExprType) {
3543 return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3544}
3545
3546Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3547 E = E->IgnoreParens();
3548 if (auto BO = dyn_cast<BinaryOperator>(E)) {
3549 switch (BO->getOpcode()) {
3550#define HANDLE_BINOP(OP) \
3551 case BO_##OP: \
3552 return Emit##OP(EmitBinOps(BO, PromotionType));
3553 HANDLE_BINOP(Add)
3554 HANDLE_BINOP(Sub)
3555 HANDLE_BINOP(Mul)
3556 HANDLE_BINOP(Div)
3557#undef HANDLE_BINOP
3558 default:
3559 break;
3560 }
3561 } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3562 switch (UO->getOpcode()) {
3563 case UO_Imag:
3564 return VisitImag(UO, PromotionType);
3565 case UO_Real:
3566 return VisitReal(UO, PromotionType);
3567 case UO_Minus:
3568 return VisitMinus(UO, PromotionType);
3569 case UO_Plus:
3570 return VisitPlus(UO, PromotionType);
3571 default:
3572 break;
3573 }
3574 }
3575 auto result = Visit(const_cast<Expr *>(E));
3576 if (result) {
3577 if (!PromotionType.isNull())
3578 return EmitPromotedValue(result, PromotionType);
3579 else
3580 return EmitUnPromotedValue(result, E->getType());
3581 }
3582 return result;
3583}
3584
3585BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3586 QualType PromotionType) {
3587 TestAndClearIgnoreResultAssign();
3588 BinOpInfo Result;
3589 Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3590 Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3591 if (!PromotionType.isNull())
3592 Result.Ty = PromotionType;
3593 else
3594 Result.Ty = E->getType();
3595 Result.Opcode = E->getOpcode();
3596 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3597 Result.E = E;
3598 return Result;
3599}
3600
3601LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3603 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3604 Value *&Result) {
3605 QualType LHSTy = E->getLHS()->getType();
3606 BinOpInfo OpInfo;
3607
3608 if (E->getComputationResultType()->isAnyComplexType())
3610
3611 // Emit the RHS first. __block variables need to have the rhs evaluated
3612 // first, plus this should improve codegen a little.
3613
3614 QualType PromotionTypeCR;
3615 PromotionTypeCR = getPromotionType(E->getComputationResultType());
3616 if (PromotionTypeCR.isNull())
3617 PromotionTypeCR = E->getComputationResultType();
3618 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3619 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3620 if (!PromotionTypeRHS.isNull())
3621 OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3622 else
3623 OpInfo.RHS = Visit(E->getRHS());
3624 OpInfo.Ty = PromotionTypeCR;
3625 OpInfo.Opcode = E->getOpcode();
3626 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3627 OpInfo.E = E;
3628 // Load/convert the LHS.
3629 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3630
3631 llvm::PHINode *atomicPHI = nullptr;
3632 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3633 QualType type = atomicTy->getValueType();
3634 if (!type->isBooleanType() && type->isIntegerType() &&
3635 !(type->isUnsignedIntegerType() &&
3636 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3637 CGF.getLangOpts().getSignedOverflowBehavior() !=
3639 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3640 llvm::Instruction::BinaryOps Op;
3641 switch (OpInfo.Opcode) {
3642 // We don't have atomicrmw operands for *, %, /, <<, >>
3643 case BO_MulAssign: case BO_DivAssign:
3644 case BO_RemAssign:
3645 case BO_ShlAssign:
3646 case BO_ShrAssign:
3647 break;
3648 case BO_AddAssign:
3649 AtomicOp = llvm::AtomicRMWInst::Add;
3650 Op = llvm::Instruction::Add;
3651 break;
3652 case BO_SubAssign:
3653 AtomicOp = llvm::AtomicRMWInst::Sub;
3654 Op = llvm::Instruction::Sub;
3655 break;
3656 case BO_AndAssign:
3657 AtomicOp = llvm::AtomicRMWInst::And;
3658 Op = llvm::Instruction::And;
3659 break;
3660 case BO_XorAssign:
3661 AtomicOp = llvm::AtomicRMWInst::Xor;
3662 Op = llvm::Instruction::Xor;
3663 break;
3664 case BO_OrAssign:
3665 AtomicOp = llvm::AtomicRMWInst::Or;
3666 Op = llvm::Instruction::Or;
3667 break;
3668 default:
3669 llvm_unreachable("Invalid compound assignment type");
3670 }
3671 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3672 llvm::Value *Amt = CGF.EmitToMemory(
3673 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3674 E->getExprLoc()),
3675 LHSTy);
3676
3677 llvm::AtomicRMWInst *OldVal =
3678 CGF.emitAtomicRMWInst(AtomicOp, LHSLV.getAddress(), Amt);
3679
3680 // Since operation is atomic, the result type is guaranteed to be the
3681 // same as the input in LLVM terms.
3682 Result = Builder.CreateBinOp(Op, OldVal, Amt);
3683 return LHSLV;
3684 }
3685 }
3686 // FIXME: For floating point types, we should be saving and restoring the
3687 // floating point environment in the loop.
3688 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3689 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3690 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3691 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3692 Builder.CreateBr(opBB);
3693 Builder.SetInsertPoint(opBB);
3694 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3695 atomicPHI->addIncoming(OpInfo.LHS, startBB);
3696 OpInfo.LHS = atomicPHI;
3697 }
3698 else
3699 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3700
3701 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3703 if (!PromotionTypeLHS.isNull())
3704 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3705 E->getExprLoc());
3706 else
3707 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3708 E->getComputationLHSType(), Loc);
3709
3710 // Expand the binary operator.
3711 Result = (this->*Func)(OpInfo);
3712
3713 // Convert the result back to the LHS type,
3714 // potentially with Implicit Conversion sanitizer check.
3715 // If LHSLV is a bitfield, use default ScalarConversionOpts
3716 // to avoid emit any implicit integer checks.
3717 Value *Previous = nullptr;
3718 if (LHSLV.isBitField()) {
3719 Previous = Result;
3720 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc);
3721 } else
3722 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3723 ScalarConversionOpts(CGF.SanOpts));
3724
3725 if (atomicPHI) {
3726 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3727 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3728 auto Pair = CGF.EmitAtomicCompareExchange(
3729 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3730 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3731 llvm::Value *success = Pair.second;
3732 atomicPHI->addIncoming(old, curBlock);
3733 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3734 Builder.SetInsertPoint(contBB);
3735 return LHSLV;
3736 }
3737
3738 // Store the result value into the LHS lvalue. Bit-fields are handled
3739 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3740 // 'An assignment expression has the value of the left operand after the
3741 // assignment...'.
3742 if (LHSLV.isBitField()) {
3743 Value *Src = Previous ? Previous : Result;
3744 QualType SrcType = E->getRHS()->getType();
3745 QualType DstType = E->getLHS()->getType();
3747 CGF.EmitBitfieldConversionCheck(Src, SrcType, Result, DstType,
3748 LHSLV.getBitFieldInfo(), E->getExprLoc());
3749 } else
3751
3752 if (CGF.getLangOpts().OpenMP)
3754 E->getLHS());
3755 return LHSLV;
3756}
3757
3758Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3759 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3760 bool Ignore = TestAndClearIgnoreResultAssign();
3761 Value *RHS = nullptr;
3762 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3763
3764 // If the result is clearly ignored, return now.
3765 if (Ignore)
3766 return nullptr;
3767
3768 // The result of an assignment in C is the assigned r-value.
3769 if (!CGF.getLangOpts().CPlusPlus)
3770 return RHS;
3771
3772 // If the lvalue is non-volatile, return the computed value of the assignment.
3773 if (!LHS.isVolatileQualified())
3774 return RHS;
3775
3776 // Otherwise, reload the value.
3777 return EmitLoadOfLValue(LHS, E->getExprLoc());
3778}
3779
3780void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3781 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3783 Checks;
3784
3785 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3786 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3787 SanitizerKind::SO_IntegerDivideByZero));
3788 }
3789
3790 const auto *BO = cast<BinaryOperator>(Ops.E);
3791 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3792 Ops.Ty->hasSignedIntegerRepresentation() &&
3793 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3794 Ops.mayHaveIntegerOverflow()) {
3795 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3796
3797 llvm::Value *IntMin =
3798 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3799 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3800
3801 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3802 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3803 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3804 Checks.push_back(
3805 std::make_pair(NotOverflow, SanitizerKind::SO_SignedIntegerOverflow));
3806 }
3807
3808 if (Checks.size() > 0)
3809 EmitBinOpCheck(Checks, Ops);
3810}
3811
3812Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3813 {
3814 CodeGenFunction::SanitizerScope SanScope(&CGF);
3815 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3816 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3817 Ops.Ty->isIntegerType() &&
3818 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3819 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3820 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3821 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3822 Ops.Ty->isRealFloatingType() &&
3823 Ops.mayHaveFloatDivisionByZero()) {
3824 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3825 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3826 EmitBinOpCheck(
3827 std::make_pair(NonZero, SanitizerKind::SO_FloatDivideByZero), Ops);
3828 }
3829 }
3830
3831 if (Ops.Ty->isConstantMatrixType()) {
3832 llvm::MatrixBuilder MB(Builder);
3833 // We need to check the types of the operands of the operator to get the
3834 // correct matrix dimensions.
3835 auto *BO = cast<BinaryOperator>(Ops.E);
3836 (void)BO;
3837 assert(
3838 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3839 "first operand must be a matrix");
3840 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3841 "second operand must be an arithmetic type");
3842 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3843 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3844 Ops.Ty->hasUnsignedIntegerRepresentation());
3845 }
3846
3847 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3848 llvm::Value *Val;
3849 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3850 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3851 CGF.SetDivFPAccuracy(Val);
3852 return Val;
3853 }
3854 else if (Ops.isFixedPointOp())
3855 return EmitFixedPointBinOp(Ops);
3856 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3857 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3858 else
3859 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3860}
3861
3862Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3863 // Rem in C can't be a floating point type: C99 6.5.5p2.
3864 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3865 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3866 Ops.Ty->isIntegerType() &&
3867 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3868 CodeGenFunction::SanitizerScope SanScope(&CGF);
3869 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3870 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3871 }
3872
3873 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3874 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3875 else
3876 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3877}
3878
3879Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3880 unsigned IID;
3881 unsigned OpID = 0;
3882 SanitizerHandler OverflowKind;
3883
3884 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3885 switch (Ops.Opcode) {
3886 case BO_Add:
3887 case BO_AddAssign:
3888 OpID = 1;
3889 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3890 llvm::Intrinsic::uadd_with_overflow;
3891 OverflowKind = SanitizerHandler::AddOverflow;
3892 break;
3893 case BO_Sub:
3894 case BO_SubAssign:
3895 OpID = 2;
3896 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3897 llvm::Intrinsic::usub_with_overflow;
3898 OverflowKind = SanitizerHandler::SubOverflow;
3899 break;
3900 case BO_Mul:
3901 case BO_MulAssign:
3902 OpID = 3;
3903 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3904 llvm::Intrinsic::umul_with_overflow;
3905 OverflowKind = SanitizerHandler::MulOverflow;
3906 break;
3907 default:
3908 llvm_unreachable("Unsupported operation for overflow detection");
3909 }
3910 OpID <<= 1;
3911 if (isSigned)
3912 OpID |= 1;
3913
3914 CodeGenFunction::SanitizerScope SanScope(&CGF);
3915 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3916
3917 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3918
3919 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3920 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3921 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3922
3923 // Handle overflow with llvm.trap if no custom handler has been specified.
3924 const std::string *handlerName =
3926 if (handlerName->empty()) {
3927 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3928 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3929 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3930 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3932 isSigned ? SanitizerKind::SO_SignedIntegerOverflow
3933 : SanitizerKind::SO_UnsignedIntegerOverflow;
3934 EmitBinOpCheck(std::make_pair(NotOverflow, Ordinal), Ops);
3935 } else
3936 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3937 return result;
3938 }
3939
3940 // Branch in case of overflow.
3941 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3942 llvm::BasicBlock *continueBB =
3943 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3944 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3945
3946 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3947
3948 // If an overflow handler is set, then we want to call it and then use its
3949 // result, if it returns.
3950 Builder.SetInsertPoint(overflowBB);
3951
3952 // Get the overflow handler.
3953 llvm::Type *Int8Ty = CGF.Int8Ty;
3954 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3955 llvm::FunctionType *handlerTy =
3956 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3957 llvm::FunctionCallee handler =
3958 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3959
3960 // Sign extend the args to 64-bit, so that we can use the same handler for
3961 // all types of overflow.
3962 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3963 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3964
3965 // Call the handler with the two arguments, the operation, and the size of
3966 // the result.
3967 llvm::Value *handlerArgs[] = {
3968 lhs,
3969 rhs,
3970 Builder.getInt8(OpID),
3971 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3972 };
3973 llvm::Value *handlerResult =
3974 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3975
3976 // Truncate the result back to the desired size.
3977 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3978 Builder.CreateBr(continueBB);
3979
3980 Builder.SetInsertPoint(continueBB);
3981 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3982 phi->addIncoming(result, initialBB);
3983 phi->addIncoming(handlerResult, overflowBB);
3984
3985 return phi;
3986}
3987
3988/// Emit pointer + index arithmetic.
3990 const BinOpInfo &op,
3991 bool isSubtraction) {
3992 // Must have binary (not unary) expr here. Unary pointer
3993 // increment/decrement doesn't use this path.
3994 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3995
3996 Value *pointer = op.LHS;
3997 Expr *pointerOperand = expr->getLHS();
3998 Value *index = op.RHS;
3999 Expr *indexOperand = expr->getRHS();
4000
4001 // In a subtraction, the LHS is always the pointer.
4002 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
4003 std::swap(pointer, index);
4004 std::swap(pointerOperand, indexOperand);
4005 }
4006
4007 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
4008
4009 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
4010 auto &DL = CGF.CGM.getDataLayout();
4011 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
4012
4013 // Some versions of glibc and gcc use idioms (particularly in their malloc
4014 // routines) that add a pointer-sized integer (known to be a pointer value)
4015 // to a null pointer in order to cast the value back to an integer or as
4016 // part of a pointer alignment algorithm. This is undefined behavior, but
4017 // we'd like to be able to compile programs that use it.
4018 //
4019 // Normally, we'd generate a GEP with a null-pointer base here in response
4020 // to that code, but it's also UB to dereference a pointer created that
4021 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
4022 // generate a direct cast of the integer value to a pointer.
4023 //
4024 // The idiom (p = nullptr + N) is not met if any of the following are true:
4025 //
4026 // The operation is subtraction.
4027 // The index is not pointer-sized.
4028 // The pointer type is not byte-sized.
4029 //
4031 op.Opcode,
4032 expr->getLHS(),
4033 expr->getRHS()))
4034 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
4035
4036 if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
4037 // Zero-extend or sign-extend the pointer value according to
4038 // whether the index is signed or not.
4039 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
4040 "idx.ext");
4041 }
4042
4043 // If this is subtraction, negate the index.
4044 if (isSubtraction)
4045 index = CGF.Builder.CreateNeg(index, "idx.neg");
4046
4047 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
4048 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
4049 /*Accessed*/ false);
4050
4052 = pointerOperand->getType()->getAs<PointerType>();
4053 if (!pointerType) {
4054 QualType objectType = pointerOperand->getType()
4056 ->getPointeeType();
4057 llvm::Value *objectSize
4058 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
4059
4060 index = CGF.Builder.CreateMul(index, objectSize);
4061
4062 Value *result =
4063 CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr");
4064 return CGF.Builder.CreateBitCast(result, pointer->getType());
4065 }
4066
4067 QualType elementType = pointerType->getPointeeType();
4068 if (const VariableArrayType *vla
4069 = CGF.getContext().getAsVariableArrayType(elementType)) {
4070 // The element count here is the total number of non-VLA elements.
4071 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
4072
4073 // Effectively, the multiply by the VLA size is part of the GEP.
4074 // GEP indexes are signed, and scaling an index isn't permitted to
4075 // signed-overflow, so we use the same semantics for our explicit
4076 // multiply. We suppress this if overflow is not undefined behavior.
4077 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
4079 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
4080 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
4081 } else {
4082 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
4083 pointer = CGF.EmitCheckedInBoundsGEP(
4084 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
4085 "add.ptr");
4086 }
4087 return pointer;
4088 }
4089
4090 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
4091 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
4092 // future proof.
4093 llvm::Type *elemTy;
4094 if (elementType->isVoidType() || elementType->isFunctionType())
4095 elemTy = CGF.Int8Ty;
4096 else
4097 elemTy = CGF.ConvertTypeForMem(elementType);
4098
4100 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
4101
4102 return CGF.EmitCheckedInBoundsGEP(
4103 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
4104 "add.ptr");
4105}
4106
4107// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
4108// Addend. Use negMul and negAdd to negate the first operand of the Mul or
4109// the add operand respectively. This allows fmuladd to represent a*b-c, or
4110// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
4111// efficient operations.
4112static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
4113 const CodeGenFunction &CGF, CGBuilderTy &Builder,
4114 bool negMul, bool negAdd) {
4115 Value *MulOp0 = MulOp->getOperand(0);
4116 Value *MulOp1 = MulOp->getOperand(1);
4117 if (negMul)
4118 MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
4119 if (negAdd)
4120 Addend = Builder.CreateFNeg(Addend, "neg");
4121
4122 Value *FMulAdd = nullptr;
4123 if (Builder.getIsFPConstrained()) {
4124 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
4125 "Only constrained operation should be created when Builder is in FP "
4126 "constrained mode");
4127 FMulAdd = Builder.CreateConstrainedFPCall(
4128 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
4129 Addend->getType()),
4130 {MulOp0, MulOp1, Addend});
4131 } else {
4132 FMulAdd = Builder.CreateCall(
4133 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
4134 {MulOp0, MulOp1, Addend});
4135 }
4136 MulOp->eraseFromParent();
4137
4138 return FMulAdd;
4139}
4140
4141// Check whether it would be legal to emit an fmuladd intrinsic call to
4142// represent op and if so, build the fmuladd.
4143//
4144// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
4145// Does NOT check the type of the operation - it's assumed that this function
4146// will be called from contexts where it's known that the type is contractable.
4147static Value* tryEmitFMulAdd(const BinOpInfo &op,
4148 const CodeGenFunction &CGF, CGBuilderTy &Builder,
4149 bool isSub=false) {
4150
4151 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
4152 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
4153 "Only fadd/fsub can be the root of an fmuladd.");
4154
4155 // Check whether this op is marked as fusable.
4156 if (!op.FPFeatures.allowFPContractWithinStatement())
4157 return nullptr;
4158
4159 Value *LHS = op.LHS;
4160 Value *RHS = op.RHS;
4161
4162 // Peek through fneg to look for fmul. Make sure fneg has no users, and that
4163 // it is the only use of its operand.
4164 bool NegLHS = false;
4165 if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) {
4166 if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4167 LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) {
4168 LHS = LHSUnOp->getOperand(0);
4169 NegLHS = true;
4170 }
4171 }
4172
4173 bool NegRHS = false;
4174 if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) {
4175 if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4176 RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) {
4177 RHS = RHSUnOp->getOperand(0);
4178 NegRHS = true;
4179 }
4180 }
4181
4182 // We have a potentially fusable op. Look for a mul on one of the operands.
4183 // Also, make sure that the mul result isn't used directly. In that case,
4184 // there's no point creating a muladd operation.
4185 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) {
4186 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4187 (LHSBinOp->use_empty() || NegLHS)) {
4188 // If we looked through fneg, erase it.
4189 if (NegLHS)
4190 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4191 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4192 }
4193 }
4194 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) {
4195 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4196 (RHSBinOp->use_empty() || NegRHS)) {
4197 // If we looked through fneg, erase it.
4198 if (NegRHS)
4199 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4200 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4201 }
4202 }
4203
4204 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) {
4205 if (LHSBinOp->getIntrinsicID() ==
4206 llvm::Intrinsic::experimental_constrained_fmul &&
4207 (LHSBinOp->use_empty() || NegLHS)) {
4208 // If we looked through fneg, erase it.
4209 if (NegLHS)
4210 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4211 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4212 }
4213 }
4214 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) {
4215 if (RHSBinOp->getIntrinsicID() ==
4216 llvm::Intrinsic::experimental_constrained_fmul &&
4217 (RHSBinOp->use_empty() || NegRHS)) {
4218 // If we looked through fneg, erase it.
4219 if (NegRHS)
4220 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4221 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4222 }
4223 }
4224
4225 return nullptr;
4226}
4227
4228Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
4229 if (op.LHS->getType()->isPointerTy() ||
4230 op.RHS->getType()->isPointerTy())
4232
4233 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4234 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4236 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4237 return Builder.CreateAdd(op.LHS, op.RHS, "add");
4238 [[fallthrough]];
4240 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4241 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4242 [[fallthrough]];
4244 if (CanElideOverflowCheck(CGF.getContext(), op))
4245 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4246 return EmitOverflowCheckedBinOp(op);
4247 }
4248 }
4249
4250 // For vector and matrix adds, try to fold into a fmuladd.
4251 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4252 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4253 // Try to form an fmuladd.
4254 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
4255 return FMulAdd;
4256 }
4257
4258 if (op.Ty->isConstantMatrixType()) {
4259 llvm::MatrixBuilder MB(Builder);
4260 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4261 return MB.CreateAdd(op.LHS, op.RHS);
4262 }
4263
4264 if (op.Ty->isUnsignedIntegerType() &&
4265 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4266 !CanElideOverflowCheck(CGF.getContext(), op))
4267 return EmitOverflowCheckedBinOp(op);
4268
4269 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4270 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4271 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
4272 }
4273
4274 if (op.isFixedPointOp())
4275 return EmitFixedPointBinOp(op);
4276
4277 return Builder.CreateAdd(op.LHS, op.RHS, "add");
4278}
4279
4280/// The resulting value must be calculated with exact precision, so the operands
4281/// may not be the same type.
4282Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
4283 using llvm::APSInt;
4284 using llvm::ConstantInt;
4285
4286 // This is either a binary operation where at least one of the operands is
4287 // a fixed-point type, or a unary operation where the operand is a fixed-point
4288 // type. The result type of a binary operation is determined by
4289 // Sema::handleFixedPointConversions().
4290 QualType ResultTy = op.Ty;
4291 QualType LHSTy, RHSTy;
4292 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
4293 RHSTy = BinOp->getRHS()->getType();
4294 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
4295 // For compound assignment, the effective type of the LHS at this point
4296 // is the computation LHS type, not the actual LHS type, and the final
4297 // result type is not the type of the expression but rather the
4298 // computation result type.
4299 LHSTy = CAO->getComputationLHSType();
4300 ResultTy = CAO->getComputationResultType();
4301 } else
4302 LHSTy = BinOp->getLHS()->getType();
4303 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
4304 LHSTy = UnOp->getSubExpr()->getType();
4305 RHSTy = UnOp->getSubExpr()->getType();
4306 }
4307 ASTContext &Ctx = CGF.getContext();
4308 Value *LHS = op.LHS;
4309 Value *RHS = op.RHS;
4310
4311 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
4312 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
4313 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
4314 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
4315
4316 // Perform the actual operation.
4317 Value *Result;
4318 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
4319 switch (op.Opcode) {
4320 case BO_AddAssign:
4321 case BO_Add:
4322 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
4323 break;
4324 case BO_SubAssign:
4325 case BO_Sub:
4326 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
4327 break;
4328 case BO_MulAssign:
4329 case BO_Mul:
4330 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
4331 break;
4332 case BO_DivAssign:
4333 case BO_Div:
4334 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
4335 break;
4336 case BO_ShlAssign:
4337 case BO_Shl:
4338 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
4339 break;
4340 case BO_ShrAssign:
4341 case BO_Shr:
4342 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
4343 break;
4344 case BO_LT:
4345 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4346 case BO_GT:
4347 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4348 case BO_LE:
4349 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4350 case BO_GE:
4351 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4352 case BO_EQ:
4353 // For equality operations, we assume any padding bits on unsigned types are
4354 // zero'd out. They could be overwritten through non-saturating operations
4355 // that cause overflow, but this leads to undefined behavior.
4356 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
4357 case BO_NE:
4358 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4359 case BO_Cmp:
4360 case BO_LAnd:
4361 case BO_LOr:
4362 llvm_unreachable("Found unimplemented fixed point binary operation");
4363 case BO_PtrMemD:
4364 case BO_PtrMemI:
4365 case BO_Rem:
4366 case BO_Xor:
4367 case BO_And:
4368 case BO_Or:
4369 case BO_Assign:
4370 case BO_RemAssign:
4371 case BO_AndAssign:
4372 case BO_XorAssign:
4373 case BO_OrAssign:
4374 case BO_Comma:
4375 llvm_unreachable("Found unsupported binary operation for fixed point types.");
4376 }
4377
4378 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
4380 // Convert to the result type.
4381 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
4382 : CommonFixedSema,
4383 ResultFixedSema);
4384}
4385
4386Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4387 // The LHS is always a pointer if either side is.
4388 if (!op.LHS->getType()->isPointerTy()) {
4389 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4390 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4392 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4393 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4394 [[fallthrough]];
4396 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4397 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4398 [[fallthrough]];
4400 if (CanElideOverflowCheck(CGF.getContext(), op))
4401 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4402 return EmitOverflowCheckedBinOp(op);
4403 }
4404 }
4405
4406 // For vector and matrix subs, try to fold into a fmuladd.
4407 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4408 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4409 // Try to form an fmuladd.
4410 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
4411 return FMulAdd;
4412 }
4413
4414 if (op.Ty->isConstantMatrixType()) {
4415 llvm::MatrixBuilder MB(Builder);
4416 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4417 return MB.CreateSub(op.LHS, op.RHS);
4418 }
4419
4420 if (op.Ty->isUnsignedIntegerType() &&
4421 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4422 !CanElideOverflowCheck(CGF.getContext(), op))
4423 return EmitOverflowCheckedBinOp(op);
4424
4425 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4426 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4427 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4428 }
4429
4430 if (op.isFixedPointOp())
4431 return EmitFixedPointBinOp(op);
4432
4433 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4434 }
4435
4436 // If the RHS is not a pointer, then we have normal pointer
4437 // arithmetic.
4438 if (!op.RHS->getType()->isPointerTy())
4440
4441 // Otherwise, this is a pointer subtraction.
4442
4443 // Do the raw subtraction part.
4444 llvm::Value *LHS
4445 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4446 llvm::Value *RHS
4447 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4448 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4449
4450 // Okay, figure out the element size.
4451 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4452 QualType elementType = expr->getLHS()->getType()->getPointeeType();
4453
4454 llvm::Value *divisor = nullptr;
4455
4456 // For a variable-length array, this is going to be non-constant.
4457 if (const VariableArrayType *vla
4458 = CGF.getContext().getAsVariableArrayType(elementType)) {
4459 auto VlaSize = CGF.getVLASize(vla);
4460 elementType = VlaSize.Type;
4461 divisor = VlaSize.NumElts;
4462
4463 // Scale the number of non-VLA elements by the non-VLA element size.
4464 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4465 if (!eltSize.isOne())
4466 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4467
4468 // For everything elese, we can just compute it, safe in the
4469 // assumption that Sema won't let anything through that we can't
4470 // safely compute the size of.
4471 } else {
4472 CharUnits elementSize;
4473 // Handle GCC extension for pointer arithmetic on void* and
4474 // function pointer types.
4475 if (elementType->isVoidType() || elementType->isFunctionType())
4476 elementSize = CharUnits::One();
4477 else
4478 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4479
4480 // Don't even emit the divide for element size of 1.
4481 if (elementSize.isOne())
4482 return diffInChars;
4483
4484 divisor = CGF.CGM.getSize(elementSize);
4485 }
4486
4487 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4488 // pointer difference in C is only defined in the case where both operands
4489 // are pointing to elements of an array.
4490 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4491}
4492
4493Value *ScalarExprEmitter::GetMaximumShiftAmount(Value *LHS, Value *RHS,
4494 bool RHSIsSigned) {
4495 llvm::IntegerType *Ty;
4496 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4497 Ty = cast<llvm::IntegerType>(VT->getElementType());
4498 else
4499 Ty = cast<llvm::IntegerType>(LHS->getType());
4500 // For a given type of LHS the maximum shift amount is width(LHS)-1, however
4501 // it can occur that width(LHS)-1 > range(RHS). Since there is no check for
4502 // this in ConstantInt::get, this results in the value getting truncated.
4503 // Constrain the return value to be max(RHS) in this case.
4504 llvm::Type *RHSTy = RHS->getType();
4505 llvm::APInt RHSMax =
4506 RHSIsSigned ? llvm::APInt::getSignedMaxValue(RHSTy->getScalarSizeInBits())
4507 : llvm::APInt::getMaxValue(RHSTy->getScalarSizeInBits());
4508 if (RHSMax.ult(Ty->getBitWidth()))
4509 return llvm::ConstantInt::get(RHSTy, RHSMax);
4510 return llvm::ConstantInt::get(RHSTy, Ty->getBitWidth() - 1);
4511}
4512
4513Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4514 const Twine &Name) {
4515 llvm::IntegerType *Ty;
4516 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4517 Ty = cast<llvm::IntegerType>(VT->getElementType());
4518 else
4519 Ty = cast<llvm::IntegerType>(LHS->getType());
4520
4521 if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4522 return Builder.CreateAnd(RHS, GetMaximumShiftAmount(LHS, RHS, false), Name);
4523
4524 return Builder.CreateURem(
4525 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4526}
4527
4528Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4529 // TODO: This misses out on the sanitizer check below.
4530 if (Ops.isFixedPointOp())
4531 return EmitFixedPointBinOp(Ops);
4532
4533 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4534 // RHS to the same size as the LHS.
4535 Value *RHS = Ops.RHS;
4536 if (Ops.LHS->getType() != RHS->getType())
4537 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4538
4539 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4540 Ops.Ty->hasSignedIntegerRepresentation() &&
4542 !CGF.getLangOpts().CPlusPlus20;
4543 bool SanitizeUnsignedBase =
4544 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4545 Ops.Ty->hasUnsignedIntegerRepresentation();
4546 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4547 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4548 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4549 if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4550 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4551 else if ((SanitizeBase || SanitizeExponent) &&
4552 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4553 CodeGenFunction::SanitizerScope SanScope(&CGF);
4555 bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4556 llvm::Value *WidthMinusOne =
4557 GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned);
4558 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4559
4560 if (SanitizeExponent) {
4561 Checks.push_back(
4562 std::make_pair(ValidExponent, SanitizerKind::SO_ShiftExponent));
4563 }
4564
4565 if (SanitizeBase) {
4566 // Check whether we are shifting any non-zero bits off the top of the
4567 // integer. We only emit this check if exponent is valid - otherwise
4568 // instructions below will have undefined behavior themselves.
4569 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4570 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4571 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4572 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4573 llvm::Value *PromotedWidthMinusOne =
4574 (RHS == Ops.RHS) ? WidthMinusOne
4575 : GetMaximumShiftAmount(Ops.LHS, RHS, RHSIsSigned);
4576 CGF.EmitBlock(CheckShiftBase);
4577 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4578 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4579 /*NUW*/ true, /*NSW*/ true),
4580 "shl.check");
4581 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4582 // In C99, we are not permitted to shift a 1 bit into the sign bit.
4583 // Under C++11's rules, shifting a 1 bit into the sign bit is
4584 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4585 // define signed left shifts, so we use the C99 and C++11 rules there).
4586 // Unsigned shifts can always shift into the top bit.
4587 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4588 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4589 }
4590 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4591 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4592 CGF.EmitBlock(Cont);
4593 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4594 BaseCheck->addIncoming(Builder.getTrue(), Orig);
4595 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4596 Checks.push_back(std::make_pair(
4597 BaseCheck, SanitizeSignedBase ? SanitizerKind::SO_ShiftBase
4598 : SanitizerKind::SO_UnsignedShiftBase));
4599 }
4600
4601 assert(!Checks.empty());
4602 EmitBinOpCheck(Checks, Ops);
4603 }
4604
4605 return Builder.CreateShl(Ops.LHS, RHS, "shl");
4606}
4607
4608Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4609 // TODO: This misses out on the sanitizer check below.
4610 if (Ops.isFixedPointOp())
4611 return EmitFixedPointBinOp(Ops);
4612
4613 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4614 // RHS to the same size as the LHS.
4615 Value *RHS = Ops.RHS;
4616 if (Ops.LHS->getType() != RHS->getType())
4617 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4618
4619 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4620 if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4621 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4622 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4623 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4624 CodeGenFunction::SanitizerScope SanScope(&CGF);
4625 bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4626 llvm::Value *Valid = Builder.CreateICmpULE(
4627 Ops.RHS, GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned));
4628 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::SO_ShiftExponent), Ops);
4629 }
4630
4631 if (Ops.Ty->hasUnsignedIntegerRepresentation())
4632 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4633 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4634}
4635
4637// return corresponding comparison intrinsic for given vector type
4638static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4639 BuiltinType::Kind ElemKind) {
4640 switch (ElemKind) {
4641 default: llvm_unreachable("unexpected element type");
4642 case BuiltinType::Char_U:
4643 case BuiltinType::UChar:
4644 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4645 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4646 case BuiltinType::Char_S:
4647 case BuiltinType::SChar:
4648 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4649 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4650 case BuiltinType::UShort:
4651 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4652 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4653 case BuiltinType::Short:
4654 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4655 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4656 case BuiltinType::UInt:
4657 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4658 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4659 case BuiltinType::Int:
4660 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4661 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4662 case BuiltinType::ULong:
4663 case BuiltinType::ULongLong:
4664 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4665 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4666 case BuiltinType::Long:
4667 case BuiltinType::LongLong:
4668 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4669 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4670 case BuiltinType::Float:
4671 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4672 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4673 case BuiltinType::Double:
4674 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4675 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4676 case BuiltinType::UInt128:
4677 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4678 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4679 case BuiltinType::Int128:
4680 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4681 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4682 }
4683}
4684
4685Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4686 llvm::CmpInst::Predicate UICmpOpc,
4687 llvm::CmpInst::Predicate SICmpOpc,
4688 llvm::CmpInst::Predicate FCmpOpc,
4689 bool IsSignaling) {
4690 TestAndClearIgnoreResultAssign();
4691 Value *Result;
4692 QualType LHSTy = E->getLHS()->getType();
4693 QualType RHSTy = E->getRHS()->getType();
4694 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4695 assert(E->getOpcode() == BO_EQ ||
4696 E->getOpcode() == BO_NE);
4697 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4698 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4700 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4701 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4702 BinOpInfo BOInfo = EmitBinOps(E);
4703 Value *LHS = BOInfo.LHS;
4704 Value *RHS = BOInfo.RHS;
4705
4706 // If AltiVec, the comparison results in a numeric type, so we use
4707 // intrinsics comparing vectors and giving 0 or 1 as a result
4708 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4709 // constants for mapping CR6 register bits to predicate result
4710 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4711
4712 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4713
4714 // in several cases vector arguments order will be reversed
4715 Value *FirstVecArg = LHS,
4716 *SecondVecArg = RHS;
4717
4718 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4719 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4720
4721 switch(E->getOpcode()) {
4722 default: llvm_unreachable("is not a comparison operation");
4723 case BO_EQ:
4724 CR6 = CR6_LT;
4725 ID = GetIntrinsic(VCMPEQ, ElementKind);
4726 break;
4727 case BO_NE:
4728 CR6 = CR6_EQ;
4729 ID = GetIntrinsic(VCMPEQ, ElementKind);
4730 break;
4731 case BO_LT:
4732 CR6 = CR6_LT;
4733 ID = GetIntrinsic(VCMPGT, ElementKind);
4734 std::swap(FirstVecArg, SecondVecArg);
4735 break;
4736 case BO_GT:
4737 CR6 = CR6_LT;
4738 ID = GetIntrinsic(VCMPGT, ElementKind);
4739 break;
4740 case BO_LE:
4741 if (ElementKind == BuiltinType::Float) {
4742 CR6 = CR6_LT;
4743 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4744 std::swap(FirstVecArg, SecondVecArg);
4745 }
4746 else {
4747 CR6 = CR6_EQ;
4748 ID = GetIntrinsic(VCMPGT, ElementKind);
4749 }
4750 break;
4751 case BO_GE:
4752 if (ElementKind == BuiltinType::Float) {
4753 CR6 = CR6_LT;
4754 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4755 }
4756 else {
4757 CR6 = CR6_EQ;
4758 ID = GetIntrinsic(VCMPGT, ElementKind);
4759 std::swap(FirstVecArg, SecondVecArg);
4760 }
4761 break;
4762 }
4763
4764 Value *CR6Param = Builder.getInt32(CR6);
4765 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4766 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4767
4768 // The result type of intrinsic may not be same as E->getType().
4769 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4770 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4771 // do nothing, if ResultTy is not i1 at the same time, it will cause
4772 // crash later.
4773 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4774 if (ResultTy->getBitWidth() > 1 &&
4775 E->getType() == CGF.getContext().BoolTy)
4776 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4777 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4778 E->getExprLoc());
4779 }
4780
4781 if (BOInfo.isFixedPointOp()) {
4782 Result = EmitFixedPointBinOp(BOInfo);
4783 } else if (LHS->getType()->isFPOrFPVectorTy()) {
4784 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4785 if (!IsSignaling)
4786 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4787 else
4788 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4789 } else if (LHSTy->hasSignedIntegerRepresentation()) {
4790 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4791 } else {
4792 // Unsigned integers and pointers.
4793
4794 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4795 !isa<llvm::ConstantPointerNull>(LHS) &&
4796 !isa<llvm::ConstantPointerNull>(RHS)) {
4797
4798 // Dynamic information is required to be stripped for comparisons,
4799 // because it could leak the dynamic information. Based on comparisons
4800 // of pointers to dynamic objects, the optimizer can replace one pointer
4801 // with another, which might be incorrect in presence of invariant
4802 // groups. Comparison with null is safe because null does not carry any
4803 // dynamic information.
4804 if (LHSTy.mayBeDynamicClass())
4805 LHS = Builder.CreateStripInvariantGroup(LHS);
4806 if (RHSTy.mayBeDynamicClass())
4807 RHS = Builder.CreateStripInvariantGroup(RHS);
4808 }
4809
4810 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4811 }
4812
4813 // If this is a vector comparison, sign extend the result to the appropriate
4814 // vector integer type and return it (don't convert to bool).
4815 if (LHSTy->isVectorType())
4816 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4817
4818 } else {
4819 // Complex Comparison: can only be an equality comparison.
4821 QualType CETy;
4822 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4823 LHS = CGF.EmitComplexExpr(E->getLHS());
4824 CETy = CTy->getElementType();
4825 } else {
4826 LHS.first = Visit(E->getLHS());
4827 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4828 CETy = LHSTy;
4829 }
4830 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4831 RHS = CGF.EmitComplexExpr(E->getRHS());
4832 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4833 CTy->getElementType()) &&
4834 "The element types must always match.");
4835 (void)CTy;
4836 } else {
4837 RHS.first = Visit(E->getRHS());
4838 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4839 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4840 "The element types must always match.");
4841 }
4842
4843 Value *ResultR, *ResultI;
4844 if (CETy->isRealFloatingType()) {
4845 // As complex comparisons can only be equality comparisons, they
4846 // are never signaling comparisons.
4847 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4848 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4849 } else {
4850 // Complex comparisons can only be equality comparisons. As such, signed
4851 // and unsigned opcodes are the same.
4852 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4853 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4854 }
4855
4856 if (E->getOpcode() == BO_EQ) {
4857 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4858 } else {
4859 assert(E->getOpcode() == BO_NE &&
4860 "Complex comparison other than == or != ?");
4861 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4862 }
4863 }
4864
4865 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4866 E->getExprLoc());
4867}
4868
4870 const BinaryOperator *E, Value **Previous, QualType *SrcType) {
4871 // In case we have the integer or bitfield sanitizer checks enabled
4872 // we want to get the expression before scalar conversion.
4873 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E->getRHS())) {
4874 CastKind Kind = ICE->getCastKind();
4875 if (Kind == CK_IntegralCast || Kind == CK_LValueToRValue) {
4876 *SrcType = ICE->getSubExpr()->getType();
4877 *Previous = EmitScalarExpr(ICE->getSubExpr());
4878 // Pass default ScalarConversionOpts to avoid emitting
4879 // integer sanitizer checks as E refers to bitfield.
4880 return EmitScalarConversion(*Previous, *SrcType, ICE->getType(),
4881 ICE->getExprLoc());
4882 }
4883 }
4884 return EmitScalarExpr(E->getRHS());
4885}
4886
4887Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4888 bool Ignore = TestAndClearIgnoreResultAssign();
4889
4890 Value *RHS;
4891 LValue LHS;
4892
4893 switch (E->getLHS()->getType().getObjCLifetime()) {
4895 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4896 break;
4897
4899 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4900 break;
4901
4903 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4904 break;
4905
4907 RHS = Visit(E->getRHS());
4908 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4909 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
4910 break;
4911
4913 // __block variables need to have the rhs evaluated first, plus
4914 // this should improve codegen just a little.
4915 Value *Previous = nullptr;
4916 QualType SrcType = E->getRHS()->getType();
4917 // Check if LHS is a bitfield, if RHS contains an implicit cast expression
4918 // we want to extract that value and potentially (if the bitfield sanitizer
4919 // is enabled) use it to check for an implicit conversion.
4920 if (E->getLHS()->refersToBitField())
4921 RHS = CGF.EmitWithOriginalRHSBitfieldAssignment(E, &Previous, &SrcType);
4922 else
4923 RHS = Visit(E->getRHS());
4924
4925 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4926
4927 // Store the value into the LHS. Bit-fields are handled specially
4928 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4929 // 'An assignment expression has the value of the left operand after
4930 // the assignment...'.
4931 if (LHS.isBitField()) {
4932 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4933 // If the expression contained an implicit conversion, make sure
4934 // to use the value before the scalar conversion.
4935 Value *Src = Previous ? Previous : RHS;
4936 QualType DstType = E->getLHS()->getType();
4937 CGF.EmitBitfieldConversionCheck(Src, SrcType, RHS, DstType,
4938 LHS.getBitFieldInfo(), E->getExprLoc());
4939 } else {
4940 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4941 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4942 }
4943 }
4944
4945 // If the result is clearly ignored, return now.
4946 if (Ignore)
4947 return nullptr;
4948
4949 // The result of an assignment in C is the assigned r-value.
4950 if (!CGF.getLangOpts().CPlusPlus)
4951 return RHS;
4952
4953 // If the lvalue is non-volatile, return the computed value of the assignment.
4954 if (!LHS.isVolatileQualified())
4955 return RHS;
4956
4957 // Otherwise, reload the value.
4958 return EmitLoadOfLValue(LHS, E->getExprLoc());
4959}
4960
4961Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4962 // Perform vector logical and on comparisons with zero vectors.
4963 if (E->getType()->isVectorType()) {
4965
4966 Value *LHS = Visit(E->getLHS());
4967 Value *RHS = Visit(E->getRHS());
4968 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4969 if (LHS->getType()->isFPOrFPVectorTy()) {
4970 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4971 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4972 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4973 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4974 } else {
4975 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4976 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4977 }
4978 Value *And = Builder.CreateAnd(LHS, RHS);
4979 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4980 }
4981
4982 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4983 llvm::Type *ResTy = ConvertType(E->getType());
4984
4985 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4986 // If we have 1 && X, just emit X without inserting the control flow.
4987 bool LHSCondVal;
4988 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4989 if (LHSCondVal) { // If we have 1 && X, just emit X.
4991
4992 // If the top of the logical operator nest, reset the MCDC temp to 0.
4993 if (CGF.MCDCLogOpStack.empty())
4995
4996 CGF.MCDCLogOpStack.push_back(E);
4997
4998 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4999
5000 // If we're generating for profiling or coverage, generate a branch to a
5001 // block that increments the RHS counter needed to track branch condition
5002 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
5003 // "FalseBlock" after the increment is done.
5004 if (InstrumentRegions &&
5006 CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5007 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
5008 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
5009 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
5010 CGF.EmitBlock(RHSBlockCnt);
5011 CGF.incrementProfileCounter(E->getRHS());
5012 CGF.EmitBranch(FBlock);
5013 CGF.EmitBlock(FBlock);
5014 } else
5015 CGF.markStmtMaybeUsed(E->getRHS());
5016
5017 CGF.MCDCLogOpStack.pop_back();
5018 // If the top of the logical operator nest, update the MCDC bitmap.
5019 if (CGF.MCDCLogOpStack.empty())
5021
5022 // ZExt result to int or bool.
5023 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
5024 }
5025
5026 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
5027 if (!CGF.ContainsLabel(E->getRHS())) {
5028 CGF.markStmtMaybeUsed(E->getRHS());
5029 return llvm::Constant::getNullValue(ResTy);
5030 }
5031 }
5032
5033 // If the top of the logical operator nest, reset the MCDC temp to 0.
5034 if (CGF.MCDCLogOpStack.empty())
5036
5037 CGF.MCDCLogOpStack.push_back(E);
5038
5039 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
5040 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
5041
5042 CodeGenFunction::ConditionalEvaluation eval(CGF);
5043
5044 // Branch on the LHS first. If it is false, go to the failure (cont) block.
5045 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
5046 CGF.getProfileCount(E->getRHS()));
5047
5048 // Any edges into the ContBlock are now from an (indeterminate number of)
5049 // edges from this first condition. All of these values will be false. Start
5050 // setting up the PHI node in the Cont Block for this.
5051 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
5052 "", ContBlock);
5053 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
5054 PI != PE; ++PI)
5055 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
5056
5057 eval.begin(CGF);
5058 CGF.EmitBlock(RHSBlock);
5060 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5061 eval.end(CGF);
5062
5063 // Reaquire the RHS block, as there may be subblocks inserted.
5064 RHSBlock = Builder.GetInsertBlock();
5065
5066 // If we're generating for profiling or coverage, generate a branch on the
5067 // RHS to a block that increments the RHS true counter needed to track branch
5068 // condition coverage.
5069 if (InstrumentRegions &&
5071 CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5072 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
5073 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
5074 CGF.EmitBlock(RHSBlockCnt);
5075 CGF.incrementProfileCounter(E->getRHS());
5076 CGF.EmitBranch(ContBlock);
5077 PN->addIncoming(RHSCond, RHSBlockCnt);
5078 }
5079
5080 // Emit an unconditional branch from this block to ContBlock.
5081 {
5082 // There is no need to emit line number for unconditional branch.
5083 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
5084 CGF.EmitBlock(ContBlock);
5085 }
5086 // Insert an entry into the phi node for the edge with the value of RHSCond.
5087 PN->addIncoming(RHSCond, RHSBlock);
5088
5089 CGF.MCDCLogOpStack.pop_back();
5090 // If the top of the logical operator nest, update the MCDC bitmap.
5091 if (CGF.MCDCLogOpStack.empty())
5093
5094 // Artificial location to preserve the scope information
5095 {
5097 PN->setDebugLoc(Builder.getCurrentDebugLocation());
5098 }
5099
5100 // ZExt result to int.
5101 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
5102}
5103
5104Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
5105 // Perform vector logical or on comparisons with zero vectors.
5106 if (E->getType()->isVectorType()) {
5108
5109 Value *LHS = Visit(E->getLHS());
5110 Value *RHS = Visit(E->getRHS());
5111 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
5112 if (LHS->getType()->isFPOrFPVectorTy()) {
5113 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
5114 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
5115 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
5116 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
5117 } else {
5118 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
5119 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
5120 }
5121 Value *Or = Builder.CreateOr(LHS, RHS);
5122 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
5123 }
5124
5125 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
5126 llvm::Type *ResTy = ConvertType(E->getType());
5127
5128 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
5129 // If we have 0 || X, just emit X without inserting the control flow.
5130 bool LHSCondVal;
5131 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
5132 if (!LHSCondVal) { // If we have 0 || X, just emit X.
5134
5135 // If the top of the logical operator nest, reset the MCDC temp to 0.
5136 if (CGF.MCDCLogOpStack.empty())
5138
5139 CGF.MCDCLogOpStack.push_back(E);
5140
5141 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5142
5143 // If we're generating for profiling or coverage, generate a branch to a
5144 // block that increments the RHS counter need to track branch condition
5145 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
5146 // "FalseBlock" after the increment is done.
5147 if (InstrumentRegions &&
5149 CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5150 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
5151 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5152 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
5153 CGF.EmitBlock(RHSBlockCnt);
5154 CGF.incrementProfileCounter(E->getRHS());
5155 CGF.EmitBranch(FBlock);
5156 CGF.EmitBlock(FBlock);
5157 } else
5158 CGF.markStmtMaybeUsed(E->getRHS());
5159
5160 CGF.MCDCLogOpStack.pop_back();
5161 // If the top of the logical operator nest, update the MCDC bitmap.
5162 if (CGF.MCDCLogOpStack.empty())
5164
5165 // ZExt result to int or bool.
5166 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
5167 }
5168
5169 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
5170 if (!CGF.ContainsLabel(E->getRHS())) {
5171 CGF.markStmtMaybeUsed(E->getRHS());
5172 return llvm::ConstantInt::get(ResTy, 1);
5173 }
5174 }
5175
5176 // If the top of the logical operator nest, reset the MCDC temp to 0.
5177 if (CGF.MCDCLogOpStack.empty())
5179
5180 CGF.MCDCLogOpStack.push_back(E);
5181
5182 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
5183 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
5184
5185 CodeGenFunction::ConditionalEvaluation eval(CGF);
5186
5187 // Branch on the LHS first. If it is true, go to the success (cont) block.
5188 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
5190 CGF.getProfileCount(E->getRHS()));
5191
5192 // Any edges into the ContBlock are now from an (indeterminate number of)
5193 // edges from this first condition. All of these values will be true. Start
5194 // setting up the PHI node in the Cont Block for this.
5195 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
5196 "", ContBlock);
5197 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
5198 PI != PE; ++PI)
5199 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
5200
5201 eval.begin(CGF);
5202
5203 // Emit the RHS condition as a bool value.
5204 CGF.EmitBlock(RHSBlock);
5206 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5207
5208 eval.end(CGF);
5209
5210 // Reaquire the RHS block, as there may be subblocks inserted.
5211 RHSBlock = Builder.GetInsertBlock();
5212
5213 // If we're generating for profiling or coverage, generate a branch on the
5214 // RHS to a block that increments the RHS true counter needed to track branch
5215 // condition coverage.
5216 if (InstrumentRegions &&
5218 CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5219 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5220 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
5221 CGF.EmitBlock(RHSBlockCnt);
5222 CGF.incrementProfileCounter(E->getRHS());
5223 CGF.EmitBranch(ContBlock);
5224 PN->addIncoming(RHSCond, RHSBlockCnt);
5225 }
5226
5227 // Emit an unconditional branch from this block to ContBlock. Insert an entry
5228 // into the phi node for the edge with the value of RHSCond.
5229 CGF.EmitBlock(ContBlock);
5230 PN->addIncoming(RHSCond, RHSBlock);
5231
5232 CGF.MCDCLogOpStack.pop_back();
5233 // If the top of the logical operator nest, update the MCDC bitmap.
5234 if (CGF.MCDCLogOpStack.empty())
5236
5237 // ZExt result to int.
5238 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
5239}
5240
5241Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
5242 CGF.EmitIgnoredExpr(E->getLHS());
5243 CGF.EnsureInsertPoint();
5244 return Visit(E->getRHS());
5245}
5246
5247//===----------------------------------------------------------------------===//
5248// Other Operators
5249//===----------------------------------------------------------------------===//
5250
5251/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
5252/// expression is cheap enough and side-effect-free enough to evaluate
5253/// unconditionally instead of conditionally. This is used to convert control
5254/// flow into selects in some cases.
5256 CodeGenFunction &CGF) {
5257 // Anything that is an integer or floating point constant is fine.
5258 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
5259
5260 // Even non-volatile automatic variables can't be evaluated unconditionally.
5261 // Referencing a thread_local may cause non-trivial initialization work to
5262 // occur. If we're inside a lambda and one of the variables is from the scope
5263 // outside the lambda, that function may have returned already. Reading its
5264 // locals is a bad idea. Also, these reads may introduce races there didn't
5265 // exist in the source-level program.
5266}
5267
5268
5269Value *ScalarExprEmitter::
5270VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
5271 TestAndClearIgnoreResultAssign();
5272
5273 // Bind the common expression if necessary.
5274 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
5275
5276 Expr *condExpr = E->getCond();
5277 Expr *lhsExpr = E->getTrueExpr();
5278 Expr *rhsExpr = E->getFalseExpr();
5279
5280 // If the condition constant folds and can be elided, try to avoid emitting
5281 // the condition and the dead arm.
5282 bool CondExprBool;
5283 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
5284 Expr *live = lhsExpr, *dead = rhsExpr;
5285 if (!CondExprBool) std::swap(live, dead);
5286
5287 // If the dead side doesn't have labels we need, just emit the Live part.
5288 if (!CGF.ContainsLabel(dead)) {
5289 if (CondExprBool) {
5291 CGF.incrementProfileCounter(lhsExpr);
5292 CGF.incrementProfileCounter(rhsExpr);
5293 }
5295 }
5296 Value *Result = Visit(live);
5297 CGF.markStmtMaybeUsed(dead);
5298
5299 // If the live part is a throw expression, it acts like it has a void
5300 // type, so evaluating it returns a null Value*. However, a conditional
5301 // with non-void type must return a non-null Value*.
5302 if (!Result && !E->getType()->isVoidType())
5303 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
5304
5305 return Result;
5306 }
5307 }
5308
5309 // OpenCL: If the condition is a vector, we can treat this condition like
5310 // the select function.
5311 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
5312 condExpr->getType()->isExtVectorType()) {
5314
5315 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5316 llvm::Value *LHS = Visit(lhsExpr);
5317 llvm::Value *RHS = Visit(rhsExpr);
5318
5319 llvm::Type *condType = ConvertType(condExpr->getType());
5320 auto *vecTy = cast<llvm::FixedVectorType>(condType);
5321
5322 unsigned numElem = vecTy->getNumElements();
5323 llvm::Type *elemType = vecTy->getElementType();
5324
5325 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
5326 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
5327 llvm::Value *tmp = Builder.CreateSExt(
5328 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
5329 llvm::Value *tmp2 = Builder.CreateNot(tmp);
5330
5331 // Cast float to int to perform ANDs if necessary.
5332 llvm::Value *RHSTmp = RHS;
5333 llvm::Value *LHSTmp = LHS;
5334 bool wasCast = false;
5335 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
5336 if (rhsVTy->getElementType()->isFloatingPointTy()) {
5337 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
5338 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
5339 wasCast = true;
5340 }
5341
5342 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
5343 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
5344 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
5345 if (wasCast)
5346 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
5347
5348 return tmp5;
5349 }
5350
5351 if (condExpr->getType()->isVectorType() ||
5352 condExpr->getType()->isSveVLSBuiltinType()) {
5354
5355 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5356 llvm::Value *LHS = Visit(lhsExpr);
5357 llvm::Value *RHS = Visit(rhsExpr);
5358
5359 llvm::Type *CondType = ConvertType(condExpr->getType());
5360 auto *VecTy = cast<llvm::VectorType>(CondType);
5361 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
5362
5363 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
5364 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
5365 }
5366
5367 // If this is a really simple expression (like x ? 4 : 5), emit this as a
5368 // select instead of as control flow. We can only do this if it is cheap and
5369 // safe to evaluate the LHS and RHS unconditionally.
5370 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
5372 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
5373 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
5374
5376 CGF.incrementProfileCounter(lhsExpr);
5377 CGF.incrementProfileCounter(rhsExpr);
5379 } else
5380 CGF.incrementProfileCounter(E, StepV);
5381
5382 llvm::Value *LHS = Visit(lhsExpr);
5383 llvm::Value *RHS = Visit(rhsExpr);
5384 if (!LHS) {
5385 // If the conditional has void type, make sure we return a null Value*.
5386 assert(!RHS && "LHS and RHS types must match");
5387 return nullptr;
5388 }
5389 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
5390 }
5391
5392 // If the top of the logical operator nest, reset the MCDC temp to 0.
5393 if (CGF.MCDCLogOpStack.empty())
5394 CGF.maybeResetMCDCCondBitmap(condExpr);
5395
5396 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
5397 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
5398 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
5399
5400 CodeGenFunction::ConditionalEvaluation eval(CGF);
5401 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
5402 CGF.getProfileCount(lhsExpr));
5403
5404 CGF.EmitBlock(LHSBlock);
5405
5406 // If the top of the logical operator nest, update the MCDC bitmap for the
5407 // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5408 // may also contain a boolean expression.
5409 if (CGF.MCDCLogOpStack.empty())
5410 CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5411
5413 CGF.incrementProfileCounter(lhsExpr);
5414 else
5416
5417 eval.begin(CGF);
5418 Value *LHS = Visit(lhsExpr);
5419 eval.end(CGF);
5420
5421 LHSBlock = Builder.GetInsertBlock();
5422 Builder.CreateBr(ContBlock);
5423
5424 CGF.EmitBlock(RHSBlock);
5425
5426 // If the top of the logical operator nest, update the MCDC bitmap for the
5427 // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5428 // may also contain a boolean expression.
5429 if (CGF.MCDCLogOpStack.empty())
5430 CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5431
5433 CGF.incrementProfileCounter(rhsExpr);
5434
5435 eval.begin(CGF);
5436 Value *RHS = Visit(rhsExpr);
5437 eval.end(CGF);
5438
5439 RHSBlock = Builder.GetInsertBlock();
5440 CGF.EmitBlock(ContBlock);
5441
5442 // If the LHS or RHS is a throw expression, it will be legitimately null.
5443 if (!LHS)
5444 return RHS;
5445 if (!RHS)
5446 return LHS;
5447
5448 // Create a PHI node for the real part.
5449 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
5450 PN->addIncoming(LHS, LHSBlock);
5451 PN->addIncoming(RHS, RHSBlock);
5452
5453 // When single byte coverage mode is enabled, add a counter to continuation
5454 // block.
5457
5458 return PN;
5459}
5460
5461Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
5462 return Visit(E->getChosenSubExpr());
5463}
5464
5465Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
5466 Address ArgValue = Address::invalid();
5467 RValue ArgPtr = CGF.EmitVAArg(VE, ArgValue);
5468
5469 return ArgPtr.getScalarVal();
5470}
5471
5472Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
5473 return CGF.EmitBlockLiteral(block);
5474}
5475
5476// Convert a vec3 to vec4, or vice versa.
5478 Value *Src, unsigned NumElementsDst) {
5479 static constexpr int Mask[] = {0, 1, 2, -1};
5480 return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
5481}
5482
5483// Create cast instructions for converting LLVM value \p Src to LLVM type \p
5484// DstTy. \p Src has the same size as \p DstTy. Both are single value types
5485// but could be scalar or vectors of different lengths, and either can be
5486// pointer.
5487// There are 4 cases:
5488// 1. non-pointer -> non-pointer : needs 1 bitcast
5489// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
5490// 3. pointer -> non-pointer
5491// a) pointer -> intptr_t : needs 1 ptrtoint
5492// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
5493// 4. non-pointer -> pointer
5494// a) intptr_t -> pointer : needs 1 inttoptr
5495// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
5496// Note: for cases 3b and 4b two casts are required since LLVM casts do not
5497// allow casting directly between pointer types and non-integer non-pointer
5498// types.
5500 const llvm::DataLayout &DL,
5501 Value *Src, llvm::Type *DstTy,
5502 StringRef Name = "") {
5503 auto SrcTy = Src->getType();
5504
5505 // Case 1.
5506 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
5507 return Builder.CreateBitCast(Src, DstTy, Name);
5508
5509 // Case 2.
5510 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
5511 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
5512
5513 // Case 3.
5514 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
5515 // Case 3b.
5516 if (!DstTy->isIntegerTy())
5517 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
5518 // Cases 3a and 3b.
5519 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
5520 }
5521
5522 // Case 4b.
5523 if (!SrcTy->isIntegerTy())
5524 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
5525 // Cases 4a and 4b.
5526 return Builder.CreateIntToPtr(Src, DstTy, Name);
5527}
5528
5529Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
5530 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
5531 llvm::Type *DstTy = ConvertType(E->getType());
5532
5533 llvm::Type *SrcTy = Src->getType();
5534 unsigned NumElementsSrc =
5535 isa<llvm::VectorType>(SrcTy)
5536 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
5537 : 0;
5538 unsigned NumElementsDst =
5539 isa<llvm::VectorType>(DstTy)
5540 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
5541 : 0;
5542
5543 // Use bit vector expansion for ext_vector_type boolean vectors.
5544 if (E->getType()->isExtVectorBoolType())
5545 return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
5546
5547 // Going from vec3 to non-vec3 is a special case and requires a shuffle
5548 // vector to get a vec4, then a bitcast if the target type is different.
5549 if (NumElementsSrc == 3 && NumElementsDst != 3) {
5550 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5551 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5552 DstTy);
5553
5554 Src->setName("astype");
5555 return Src;
5556 }
5557
5558 // Going from non-vec3 to vec3 is a special case and requires a bitcast
5559 // to vec4 if the original type is not vec4, then a shuffle vector to
5560 // get a vec3.
5561 if (NumElementsSrc != 3 && NumElementsDst == 3) {
5562 auto *Vec4Ty = llvm::FixedVectorType::get(
5563 cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5564 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5565 Vec4Ty);
5566
5567 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5568 Src->setName("astype");
5569 return Src;
5570 }
5571
5572 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5573 Src, DstTy, "astype");
5574}
5575
5576Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5577 return CGF.EmitAtomicExpr(E).getScalarVal();
5578}
5579
5580//===----------------------------------------------------------------------===//
5581// Entry Point into this File
5582//===----------------------------------------------------------------------===//
5583
5584/// Emit the computation of the specified expression of scalar type, ignoring
5585/// the result.
5586Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5587 assert(E && hasScalarEvaluationKind(E->getType()) &&
5588 "Invalid scalar expression to emit");
5589
5590 return ScalarExprEmitter(*this, IgnoreResultAssign)
5591 .Visit(const_cast<Expr *>(E));
5592}
5593
5594/// Emit a conversion from the specified type to the specified destination type,
5595/// both of which are LLVM scalar types.
5597 QualType DstTy,
5599 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5600 "Invalid scalar expression to emit");
5601 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5602}
5603
5604/// Emit a conversion from the specified complex type to the specified
5605/// destination type, where the destination type is an LLVM scalar type.
5607 QualType SrcTy,
5608 QualType DstTy,
5610 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5611 "Invalid complex -> scalar conversion");
5612 return ScalarExprEmitter(*this)
5613 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5614}
5615
5616
5617Value *
5619 QualType PromotionType) {
5620 if (!PromotionType.isNull())
5621 return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5622 else
5623 return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5624}
5625
5626
5627llvm::Value *CodeGenFunction::
5629 bool isInc, bool isPre) {
5630 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5631}
5632
5634 // object->isa or (*object).isa
5635 // Generate code as for: *(Class*)object
5636
5637 Expr *BaseExpr = E->getBase();
5638 Address Addr = Address::invalid();
5639 if (BaseExpr->isPRValue()) {
5640 llvm::Type *BaseTy =
5642 Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5643 } else {
5644 Addr = EmitLValue(BaseExpr).getAddress();
5645 }
5646
5647 // Cast the address to Class*.
5648 Addr = Addr.withElementType(ConvertType(E->getType()));
5649 return MakeAddrLValue(Addr, E->getType());
5650}
5651
5652
5654 const CompoundAssignOperator *E) {
5655 ScalarExprEmitter Scalar(*this);
5656 Value *Result = nullptr;
5657 switch (E->getOpcode()) {
5658#define COMPOUND_OP(Op) \
5659 case BO_##Op##Assign: \
5660 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5661 Result)
5662 COMPOUND_OP(Mul);
5663 COMPOUND_OP(Div);
5664 COMPOUND_OP(Rem);
5665 COMPOUND_OP(Add);
5666 COMPOUND_OP(Sub);
5667 COMPOUND_OP(Shl);
5668 COMPOUND_OP(Shr);
5670 COMPOUND_OP(Xor);
5671 COMPOUND_OP(Or);
5672#undef COMPOUND_OP
5673
5674 case BO_PtrMemD:
5675 case BO_PtrMemI:
5676 case BO_Mul:
5677 case BO_Div:
5678 case BO_Rem:
5679 case BO_Add:
5680 case BO_Sub:
5681 case BO_Shl:
5682 case BO_Shr:
5683 case BO_LT:
5684 case BO_GT:
5685 case BO_LE:
5686 case BO_GE:
5687 case BO_EQ:
5688 case BO_NE:
5689 case BO_Cmp:
5690 case BO_And:
5691 case BO_Xor:
5692 case BO_Or:
5693 case BO_LAnd:
5694 case BO_LOr:
5695 case BO_Assign:
5696 case BO_Comma:
5697 llvm_unreachable("Not valid compound assignment operators");
5698 }
5699
5700 llvm_unreachable("Unhandled compound assignment operator");
5701}
5702
5704 // The total (signed) byte offset for the GEP.
5705 llvm::Value *TotalOffset;
5706 // The offset overflow flag - true if the total offset overflows.
5707 llvm::Value *OffsetOverflows;
5708};
5709
5710/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5711/// and compute the total offset it applies from it's base pointer BasePtr.
5712/// Returns offset in bytes and a boolean flag whether an overflow happened
5713/// during evaluation.
5715 llvm::LLVMContext &VMContext,
5716 CodeGenModule &CGM,
5717 CGBuilderTy &Builder) {
5718 const auto &DL = CGM.getDataLayout();
5719
5720 // The total (signed) byte offset for the GEP.
5721 llvm::Value *TotalOffset = nullptr;
5722
5723 // Was the GEP already reduced to a constant?
5724 if (isa<llvm::Constant>(GEPVal)) {
5725 // Compute the offset by casting both pointers to integers and subtracting:
5726 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5727 Value *BasePtr_int =
5728 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5729 Value *GEPVal_int =
5730 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5731 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5732 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5733 }
5734
5735 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5736 assert(GEP->getPointerOperand() == BasePtr &&
5737 "BasePtr must be the base of the GEP.");
5738 assert(GEP->isInBounds() && "Expected inbounds GEP");
5739
5740 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5741
5742 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5743 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5744 auto *SAddIntrinsic =
5745 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5746 auto *SMulIntrinsic =
5747 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5748
5749 // The offset overflow flag - true if the total offset overflows.
5750 llvm::Value *OffsetOverflows = Builder.getFalse();
5751
5752 /// Return the result of the given binary operation.
5753 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5754 llvm::Value *RHS) -> llvm::Value * {
5755 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5756
5757 // If the operands are constants, return a constant result.
5758 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5759 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5760 llvm::APInt N;
5761 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5762 /*Signed=*/true, N);
5763 if (HasOverflow)
5764 OffsetOverflows = Builder.getTrue();
5765 return llvm::ConstantInt::get(VMContext, N);
5766 }
5767 }
5768
5769 // Otherwise, compute the result with checked arithmetic.
5770 auto *ResultAndOverflow = Builder.CreateCall(
5771 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5772 OffsetOverflows = Builder.CreateOr(
5773 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5774 return Builder.CreateExtractValue(ResultAndOverflow, 0);
5775 };
5776
5777 // Determine the total byte offset by looking at each GEP operand.
5778 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5779 GTI != GTE; ++GTI) {
5780 llvm::Value *LocalOffset;
5781 auto *Index = GTI.getOperand();
5782 // Compute the local offset contributed by this indexing step:
5783 if (auto *STy = GTI.getStructTypeOrNull()) {
5784 // For struct indexing, the local offset is the byte position of the
5785 // specified field.
5786 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5787 LocalOffset = llvm::ConstantInt::get(
5788 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5789 } else {
5790 // Otherwise this is array-like indexing. The local offset is the index
5791 // multiplied by the element size.
5792 auto *ElementSize =
5793 llvm::ConstantInt::get(IntPtrTy, GTI.getSequentialElementStride(DL));
5794 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5795 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5796 }
5797
5798 // If this is the first offset, set it as the total offset. Otherwise, add
5799 // the local offset into the running total.
5800 if (!TotalOffset || TotalOffset == Zero)
5801 TotalOffset = LocalOffset;
5802 else
5803 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5804 }
5805
5806 return {TotalOffset, OffsetOverflows};
5807}
5808
5809Value *
5810CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5811 ArrayRef<Value *> IdxList,
5812 bool SignedIndices, bool IsSubtraction,
5813 SourceLocation Loc, const Twine &Name) {
5814 llvm::Type *PtrTy = Ptr->getType();
5815
5816 llvm::GEPNoWrapFlags NWFlags = llvm::GEPNoWrapFlags::inBounds();
5817 if (!SignedIndices && !IsSubtraction)
5818 NWFlags |= llvm::GEPNoWrapFlags::noUnsignedWrap();
5819
5820 Value *GEPVal = Builder.CreateGEP(ElemTy, Ptr, IdxList, Name, NWFlags);
5821
5822 // If the pointer overflow sanitizer isn't enabled, do nothing.
5823 if (!SanOpts.has(SanitizerKind::PointerOverflow))
5824 return GEPVal;
5825
5826 // Perform nullptr-and-offset check unless the nullptr is defined.
5827 bool PerformNullCheck = !NullPointerIsDefined(
5828 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5829 // Check for overflows unless the GEP got constant-folded,
5830 // and only in the default address space
5831 bool PerformOverflowCheck =
5832 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5833
5834 if (!(PerformNullCheck || PerformOverflowCheck))
5835 return GEPVal;
5836
5837 const auto &DL = CGM.getDataLayout();
5838
5839 SanitizerScope SanScope(this);
5840 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5841
5842 GEPOffsetAndOverflow EvaluatedGEP =
5844
5845 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5846 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5847 "If the offset got constant-folded, we don't expect that there was an "
5848 "overflow.");
5849
5850 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5851
5852 // Common case: if the total offset is zero, don't emit a check.
5853 if (EvaluatedGEP.TotalOffset == Zero)
5854 return GEPVal;
5855
5856 // Now that we've computed the total offset, add it to the base pointer (with
5857 // wrapping semantics).
5858 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5859 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5860
5862 2>
5863 Checks;
5864
5865 if (PerformNullCheck) {
5866 // If the base pointer evaluates to a null pointer value,
5867 // the only valid pointer this inbounds GEP can produce is also
5868 // a null pointer, so the offset must also evaluate to zero.
5869 // Likewise, if we have non-zero base pointer, we can not get null pointer
5870 // as a result, so the offset can not be -intptr_t(BasePtr).
5871 // In other words, both pointers are either null, or both are non-null,
5872 // or the behaviour is undefined.
5873 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5874 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5875 auto *Valid = Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr);
5876 Checks.emplace_back(Valid, SanitizerKind::SO_PointerOverflow);
5877 }
5878
5879 if (PerformOverflowCheck) {
5880 // The GEP is valid if:
5881 // 1) The total offset doesn't overflow, and
5882 // 2) The sign of the difference between the computed address and the base
5883 // pointer matches the sign of the total offset.
5884 llvm::Value *ValidGEP;
5885 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5886 if (SignedIndices) {
5887 // GEP is computed as `unsigned base + signed offset`, therefore:
5888 // * If offset was positive, then the computed pointer can not be
5889 // [unsigned] less than the base pointer, unless it overflowed.
5890 // * If offset was negative, then the computed pointer can not be
5891 // [unsigned] greater than the bas pointere, unless it overflowed.
5892 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5893 auto *PosOrZeroOffset =
5894 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5895 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5896 ValidGEP =
5897 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5898 } else if (!IsSubtraction) {
5899 // GEP is computed as `unsigned base + unsigned offset`, therefore the
5900 // computed pointer can not be [unsigned] less than base pointer,
5901 // unless there was an overflow.
5902 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5903 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5904 } else {
5905 // GEP is computed as `unsigned base - unsigned offset`, therefore the
5906 // computed pointer can not be [unsigned] greater than base pointer,
5907 // unless there was an overflow.
5908 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5909 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5910 }
5911 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5912 Checks.emplace_back(ValidGEP, SanitizerKind::SO_PointerOverflow);
5913 }
5914
5915 assert(!Checks.empty() && "Should have produced some checks.");
5916
5917 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5918 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5919 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5920 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5921
5922 return GEPVal;
5923}
5924
5926 Address Addr, ArrayRef<Value *> IdxList, llvm::Type *elementType,
5927 bool SignedIndices, bool IsSubtraction, SourceLocation Loc, CharUnits Align,
5928 const Twine &Name) {
5929 if (!SanOpts.has(SanitizerKind::PointerOverflow)) {
5930 llvm::GEPNoWrapFlags NWFlags = llvm::GEPNoWrapFlags::inBounds();
5931 if (!SignedIndices && !IsSubtraction)
5932 NWFlags |= llvm::GEPNoWrapFlags::noUnsignedWrap();
5933
5934 return Builder.CreateGEP(Addr, IdxList, elementType, Align, Name, NWFlags);
5935 }
5936
5937 return RawAddress(
5939 IdxList, SignedIndices, IsSubtraction, Loc, Name),
5940 elementType, Align);
5941}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3453
NodeId Parent
Definition: ASTDiff.cpp:191
ASTImporterLookupTable & LT
static llvm::Value * EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, const BinaryOperator *E, llvm::Value *LHS, llvm::Value *RHS, CompareKind Kind, const char *NameSuffix="")
Definition: CGExprAgg.cpp:996
CodeGenFunction::ComplexPairTy ComplexPairTy
#define HANDLE_BINOP(OP)
#define VISITCOMP(CODE, UI, SI, FP, SIG)
static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty)
static Value * emitPointerArithmetic(CodeGenFunction &CGF, const BinOpInfo &op, bool isSubtraction)
Emit pointer + index arithmetic.
static llvm::Value * EmitIsNegativeTestHelper(Value *V, QualType VType, const char *Name, CGBuilderTy &Builder)
static Value * createCastsForTypeOfSameSize(CGBuilderTy &Builder, const llvm::DataLayout &DL, Value *Src, llvm::Type *DstTy, StringRef Name="")
static bool matchesPostDecrInWhile(const UnaryOperator *UO, bool isInc, bool isPre, ASTContext &Ctx)
For the purposes of overflow pattern exclusion, does this match the "while(i--)" pattern?
IntrinsicType
@ VCMPGT
@ VCMPEQ
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, BuiltinType::Kind ElemKind)
#define COMPOUND_OP(Op)
#define HANDLEBINOP(OP)
static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, llvm::LLVMContext &VMContext, CodeGenModule &CGM, CGBuilderTy &Builder)
Evaluate given GEPVal, which is either an inbounds GEP, or a constant, and compute the total offset i...
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, CodeGenFunction &CGF)
isCheapEnoughToEvaluateUnconditionally - Return true if the specified expression is cheap enough and ...
static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(QualType SrcType, QualType DstType)
static std::pair< ScalarExprEmitter::ImplicitConversionCheckKind, std::pair< llvm::Value *, SanitizerKind::SanitizerOrdinal > > EmitBitfieldTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, QualType DstType, CGBuilderTy &Builder)
static Value * buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool negMul, bool negAdd)
static std::pair< ScalarExprEmitter::ImplicitConversionCheckKind, std::pair< llvm::Value *, SanitizerKind::SanitizerOrdinal > > EmitBitfieldSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, QualType DstType, CGBuilderTy &Builder)
static std::pair< ScalarExprEmitter::ImplicitConversionCheckKind, std::pair< llvm::Value *, SanitizerKind::SanitizerOrdinal > > EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, QualType DstType, CGBuilderTy &Builder)
static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, unsigned Off)
static std::pair< ScalarExprEmitter::ImplicitConversionCheckKind, std::pair< llvm::Value *, SanitizerKind::SanitizerOrdinal > > EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, QualType DstType, CGBuilderTy &Builder)
static Value * ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, Value *Src, unsigned NumElementsDst)
static Value * tryEmitFMulAdd(const BinOpInfo &op, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool isSub=false)
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, llvm::Value *InVal, bool IsInc, FPOptions FPFeatures)
Expr * E
llvm::APSInt APSInt
Definition: Compiler.cpp:23
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:1172
SourceLocation Loc
Definition: SemaObjC.cpp:759
static QualType getPointeeType(const MemRegion *R)
StateNode * Previous
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition: APValue.h:122
APSInt & getInt()
Definition: APValue.h:465
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
ParentMapContext & getParentMapContext()
Returns the dynamic AST node parent map context.
Definition: ASTContext.cpp:894
unsigned getIntWidth(QualType T) const
const llvm::fltSemantics & getFloatTypeSemantics(QualType T) const
Return the APFloat 'semantics' for the specified scalar floating point type.
CanQualType FloatTy
Definition: ASTContext.h:1172
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2716
QualType getVectorType(QualType VectorType, unsigned NumElts, VectorKind VecKind) const
Return the unique reference to a vector type of the specified element type and size.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
const LangOptions & getLangOpts() const
Definition: ASTContext.h:834
bool isTypeIgnoredBySanitizer(const SanitizerMask &Mask, const QualType &Ty) const
Check if a type can have its sanitizer instrumentation elided based on its presence within an ignorel...
Definition: ASTContext.cpp:854
CanQualType BoolTy
Definition: ASTContext.h:1161
unsigned getOpenMPDefaultSimdAlign(QualType T) const
Get default simd alignment of the specified complete type in bits.
llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2763
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2482
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
QualType getPromotedIntegerType(QualType PromotableType) const
Return the type that PromotableType will promote to: C99 6.3.1.1p2, assuming that PromotableType is a...
const VariableArrayType * getAsVariableArrayType(QualType T) const
Definition: ASTContext.h:2918
QualType getComplexType(QualType T) const
Return the uniqued reference to the type for a complex number with the specified element type.
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
unsigned getTargetAddressSpace(LangAS AS) const
bool isPromotableIntegerType(QualType T) const
More type predicates useful for type checking/promotion.
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2486
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
unsigned getFieldCount() const
getFieldCount - Get the number of fields in the layout.
Definition: RecordLayout.h:196
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:200
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:249
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:4224
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:4421
Represents the index of the current element of an array being initialized by an ArrayInitLoopExpr.
Definition: Expr.h:5805
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2718
An Embarcadero array type trait, as used in the implementation of __array_rank and __array_extent.
Definition: ExprCXX.h:2853
QualType getElementType() const
Definition: Type.h:3589
AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2] This AST node provides support ...
Definition: Expr.h:6475
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load,...
Definition: Expr.h:6678
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3909
Expr * getLHS() const
Definition: Expr.h:3959
static Opcode getOpForCompoundAssignment(Opcode Opc)
Definition: Expr.h:4056
bool isCompoundAssignmentOp() const
Definition: Expr.h:4053
bool isShiftOp() const
Definition: Expr.h:3998
Expr * getRHS() const
Definition: Expr.h:3961
bool isShiftAssignOp() const
Definition: Expr.h:4067
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, const Expr *LHS, const Expr *RHS)
Return true if a binary operator using the specified opcode and operands would match the 'p = (i8*)nu...
Definition: Expr.cpp:2221
Opcode getOpcode() const
Definition: Expr.h:3954
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:6414
This class is used for builtin types like 'int'.
Definition: Type.h:3034
Kind getKind() const
Definition: Type.h:3082
bool isVirtual() const
Determines whether the base class is a virtual base class (or not).
Definition: DeclCXX.h:203
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:249
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:720
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1268
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1375
Expr * getExpr()
Get the initialization expression that will be used.
Definition: ExprCXX.cpp:1084
Represents a delete expression for memory deallocation and destructor calls, e.g.
Definition: ExprCXX.h:2498
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:478
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)".
Definition: ExprCXX.h:2241
Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
Definition: ExprCXX.h:4126
The null pointer literal (C++11 [lex.nullptr])
Definition: ExprCXX.h:765
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2617
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
A rewritten comparison expression that was originally written using operator syntax.
Definition: ExprCXX.h:283
An expression "T()" which creates an rvalue of a non-class type T.
Definition: ExprCXX.h:2182
Represents the this expression in C++.
Definition: ExprCXX.h:1152
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1206
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2874
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3547
path_iterator path_begin()
Definition: Expr.h:3617
CastKind getCastKind() const
Definition: Expr.h:3591
bool changesVolatileQualification() const
Return.
Definition: Expr.h:3681
path_iterator path_end()
Definition: Expr.h:3618
Expr * getSubExpr()
Definition: Expr.h:3597
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:125
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:4641
Represents a 'co_await' expression.
Definition: ExprCXX.h:5191
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:128
static Address invalid()
Definition: Address.h:176
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:251
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:207
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition: Address.h:274
bool isValid() const
Definition: Address.h:177
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:858
static ApplyDebugLocation CreateArtificial(CodeGenFunction &CGF)
Apply TemporaryLocation if it is valid.
Definition: CGDebugInfo.h:898
static ApplyDebugLocation CreateEmpty(CodeGenFunction &CGF)
Set the IRBuilder to not attach debug locations.
Definition: CGDebugInfo.h:915
Address CreateGEP(CodeGenFunction &CGF, Address Addr, llvm::Value *Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:292
virtual llvm::Constant * EmitNullMemberPointer(const MemberPointerType *MPT)
Create a null member pointer of the given type.
Definition: CGCXXABI.cpp:105
virtual llvm::Value * EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *MemPtr, const MemberPointerType *MPT)
Determine if a member pointer is non-null. Returns an i1.
Definition: CGCXXABI.cpp:97
virtual llvm::Value * EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality)
Emit a comparison between two member pointers. Returns an i1.
Definition: CGCXXABI.cpp:87
virtual llvm::Value * EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src)
Perform a derived-to-base, base-to-derived, or bitcast member pointer conversion.
Definition: CGCXXABI.cpp:74
void EmitPseudoVariable(CGBuilderTy &Builder, llvm::Instruction *Value, QualType Ty)
Emit a pseudo variable and debug info for an intermediate value if it does not correspond to a variab...
void addHeapAllocSiteMetadata(llvm::CallBase *CallSite, QualType AllocatedTy, SourceLocation Loc)
Add heapallocsite metadata for MSAllocator calls.
virtual void checkAndEmitLastprivateConditional(CodeGenFunction &CGF, const Expr *LHS)
Checks if the provided LVal is lastprivate conditional and emits the code to update the value of the ...
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Value * EmitFromMemory(llvm::Value *Value, QualType Ty)
EmitFromMemory - Change a scalar value from its memory representation to its value representation.
std::pair< RValue, llvm::Value * > EmitAtomicCompareExchange(LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, llvm::AtomicOrdering Success=llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering Failure=llvm::AtomicOrdering::SequentiallyConsistent, bool IsWeak=false, AggValueSlot Slot=AggValueSlot::ignored())
llvm::Value * EmitARCExtendBlockObject(const Expr *expr)
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
CurrentSourceLocExprScope CurSourceLocExprScope
Source location information about the default argument or member initializer expression we're evaluat...
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount, Stmt::Likelihood LH=Stmt::LH_None, const Expr *ConditionalOp=nullptr)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
bool sanitizePerformTypeCheck() const
Whether any type-checking sanitizers are enabled.
SanitizerSet SanOpts
Sanitizers enabled for this function.
LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e)
Given an opaque value expression, return its LValue mapping if it exists, otherwise create one.
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
static bool hasScalarEvaluationKind(QualType T)
LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E)
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, QualType IndexType, bool Accessed)
Emit a check that Base points into an array object, which we can access at index Index.
void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, llvm::Value *Dst, QualType DstType, const CGBitFieldInfo &Info, SourceLocation Loc)
Emit a check that an [implicit] conversion of a bitfield.
void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID, bool NoMerge=false)
Create a basic block that will call the trap intrinsic, and emit a conditional branch to it,...
llvm::BlockAddress * GetAddrOfLabel(const LabelDecl *L)
RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, const Twine &Name="tmp")
CreateDefaultAlignedTempAlloca - This creates an alloca with the default ABI alignment of the given L...
VlaSizePair getVLASize(const VariableArrayType *vla)
Returns an LLVM value that corresponds to the size, in non-variably-sized elements,...
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, CFITypeCheckKind TCK, SourceLocation Loc)
Derived is the presumed address of an object of type T after a cast.
llvm::Value * EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored)
llvm::Value * getAsNaturalPointerTo(Address Addr, QualType PointeeType)
void EmitVariablyModifiedType(QualType Ty)
EmitVLASize - Capture all the sizes for the VLA expressions in the given variably-modified type and s...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
const LangOptions & getLangOpts() const
llvm::Value * EmitObjCProtocolExpr(const ObjCProtocolExpr *E)
llvm::Value * EmitObjCStringLiteral(const ObjCStringLiteral *E)
llvm::Constant * EmitCheckTypeDescriptor(QualType T)
Emit a description of a type in a format suitable for passing to a runtime sanitizer handler.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
static bool isInstrumentedCondition(const Expr *C)
isInstrumentedCondition - Determine whether the given condition is an instrumentable condition (i....
llvm::Value * EmitObjCBoxedExpr(const ObjCBoxedExpr *E)
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type,...
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
@ TCK_DowncastPointer
Checking the operand of a static_cast to a derived pointer type.
@ TCK_Store
Checking the destination of a store. Must be suitably sized and aligned.
void SetDivFPAccuracy(llvm::Value *Val)
Set the minimum required accuracy of the given sqrt operation based on CodeGenOpts.
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
llvm::Type * ConvertTypeForMem(QualType T)
llvm::Value * EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E)
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK)
Same as EmitLValue but additionally we generate checking code to guard against undefined behavior.
void markStmtMaybeUsed(const Stmt *S)
llvm::Value * EmitObjCArrayLiteral(const ObjCArrayLiteral *E)
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, llvm::Value **Result=nullptr)
EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints as EmitStoreThroughLValue.
llvm::Value * EmitObjCConsumeObject(QualType T, llvm::Value *Ptr)
ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr)
const TargetInfo & getTarget() const
std::pair< LValue, llvm::Value * > EmitARCStoreAutoreleasing(const BinaryOperator *e)
Address EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitPointerWithAlignment - Given an expression with a pointer type, emit the value and compute our be...
llvm::Value * EmitMatrixIndexExpr(const Expr *E)
std::pair< LValue, llvm::Value * > EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored)
Address EmitArrayToPointerDecay(const Expr *Array, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr)
void maybeResetMCDCCondBitmap(const Expr *E)
Zero-init the MCDC temp value.
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerKind::SanitizerOrdinal > > Checked, SanitizerHandler Check, ArrayRef< llvm::Constant * > StaticArgs, ArrayRef< llvm::Value * > DynamicArgs)
Create a basic block that will either trap or call a handler function in the UBSan runtime with the p...
uint64_t getCurrentProfileCount()
Get the profiler's current count.
SmallVector< const BinaryOperator *, 16 > MCDCLogOpStack
Stack to track the Logical Operator recursion nest for MC/DC.
RValue EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
static bool ShouldNullCheckClassCastValue(const CastExpr *Cast)
llvm::Value * EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified complex type to the specified destination type,...
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
void ErrorUnsupported(const Stmt *S, const char *Type)
ErrorUnsupported - Print out an error that codegen doesn't support the specified stmt yet.
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
llvm::Value * EmitARCReclaimReturnedObject(const Expr *e, bool allowUnsafeClaim)
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, SourceLocation Loc, SourceLocation AssumptionLoc, llvm::Value *Alignment, llvm::Value *OffsetValue=nullptr)
llvm::Value * emitBoolVecConversion(llvm::Value *SrcVec, unsigned NumElementsDst, const llvm::Twine &Name="")
Address GetAddressOfDerivedClass(Address Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue)
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
llvm::Value * EmitToMemory(llvm::Value *Value, QualType Ty)
EmitToMemory - Change a scalar value from its value representation to its in-memory representation.
llvm::Value * authPointerToPointerCast(llvm::Value *ResultPtr, QualType SourceType, QualType DestType)
RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, AggValueSlot Slot=AggValueSlot::ignored())
Generate code to get an argument from the passed in pointer and update it accordingly.
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, AggValueSlot slot=AggValueSlot::ignored())
llvm::Value * EmitObjCSelectorExpr(const ObjCSelectorExpr *E)
llvm::CallInst * EmitNounwindRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
llvm::Value * EmitBuiltinAvailable(const VersionTuple &Version)
llvm::Value * EmitARCStoreStrong(LValue lvalue, llvm::Value *value, bool resultIgnored)
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
llvm::Value * EmitBlockLiteral(const BlockExpr *)
Emit block literal.
void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc)
Given an assignment *LHS = RHS, emit a test that checks if RHS is nonnull, if LHS is marked _Nonnull.
void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val)
Update the MCDC temp value with the condition's evaluated result.
void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint=true)
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels=false)
ConstantFoldsToSimpleInteger - If the specified expression does not fold to a constant,...
ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType)
llvm::Value * EmitPromotedScalarExpr(const Expr *E, QualType PromotionType)
void maybeUpdateMCDCTestVectorBitmap(const Expr *E)
Increment the profiler's counter for the given expression by StepV.
llvm::Type * ConvertType(QualType T)
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, QualType Type, SanitizerSet SkippedChecks=SanitizerSet(), llvm::Value *ArraySize=nullptr)
llvm::Value * EvaluateExprAsBool(const Expr *E)
EvaluateExprAsBool - Perform the usual unary conversions on the specified expression and compare the ...
RValue EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
llvm::Value * EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, llvm::Value **Previous, QualType *SrcType)
Retrieve the implicit cast expression of the rhs in a binary operator expression by passing pointers ...
llvm::Value * EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, ArrayRef< llvm::Value * > IdxList, bool SignedIndices, bool IsSubtraction, SourceLocation Loc, const Twine &Name="")
Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to detect undefined behavior whe...
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
llvm::Value * EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty)
uint64_t getProfileCount(const Stmt *S)
Get the profiler's count for the given statement.
llvm::Value * EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre)
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of 'this'.
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E)
llvm::Value * EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified type to the specified destination type, both of which are LLVM s...
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e)
Given an opaque value expression, return its RValue mapping if it exists, otherwise create one.
llvm::AtomicRMWInst * emitAtomicRMWInst(llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, llvm::AtomicOrdering Order=llvm::AtomicOrdering::SequentiallyConsistent, llvm::SyncScope::ID SSID=llvm::SyncScope::System, const AtomicExpr *AE=nullptr)
Emit an atomicrmw instruction, and applying relevant metadata when applicable.
llvm::Value * emitScalarConstant(const ConstantEmission &Constant, Expr *E)
RValue EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue=ReturnValueSlot(), llvm::CallBase **CallOrInvoke=nullptr)
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go.
llvm::LLVMContext & getLLVMContext()
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler's counter for the given statement by StepV.
llvm::Value * EmitARCRetainScalarExpr(const Expr *expr)
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
llvm::Type * convertTypeForLoadStore(QualType ASTTy, llvm::Type *LLVMTy=nullptr)
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAtomicExpr(AtomicExpr *E)
This class organizes the cross-function state that is used while generating LLVM code.
void EmitExplicitCastExprType(const ExplicitCastExpr *E, CodeGenFunction *CGF=nullptr)
Emit type info if type of an expression is a variably modified type.
Definition: CGExpr.cpp:1267
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
llvm::Constant * getNullPointer(llvm::PointerType *T, QualType QT)
Get target specific null pointer.
const TargetInfo & getTarget() const
llvm::Constant * getMemberPointerConstant(const UnaryOperator *e)
const llvm::DataLayout & getDataLayout() const
CGCXXABI & getCXXABI() const
CGOpenMPRuntime & getOpenMPRuntime()
Return a reference to the configured OpenMP runtime.
const TargetCodeGenInfo & getTargetCodeGenInfo()
const CodeGenOptions & getCodeGenOpts() const
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys={})
llvm::Value * createOpenCLIntToSamplerConversion(const Expr *E, CodeGenFunction &CGF)
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
LangAS GetGlobalConstantAddressSpace() const
Return the AST address space of constant literal, which is used to emit the constant literal as globa...
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
llvm::Constant * emitAbstract(const Expr *E, QualType T)
Emit the result of the given expression as an abstract constant, asserting that it succeeded.
LValue - This represents an lvalue references.
Definition: CGValue.h:182
bool isBitField() const
Definition: CGValue.h:280
bool isVolatileQualified() const
Definition: CGValue.h:285
void setTBAAInfo(TBAAAccessInfo Info)
Definition: CGValue.h:336
Address getAddress() const
Definition: CGValue.h:361
const CGBitFieldInfo & getBitFieldInfo() const
Definition: CGValue.h:424
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:42
static RValue get(llvm::Value *V)
Definition: CGValue.h:98
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:71
An abstract representation of an aligned address.
Definition: Address.h:42
Address performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, Address Addr, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull=false) const
Complex values, per C99 6.2.5p11.
Definition: Type.h:3145
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:4171
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:3477
Represents the specialization of a concept - evaluates to a prvalue of type bool.
Definition: ExprConcepts.h:42
ConstantExpr - An expression that occurs in a constant context and optionally the result of evaluatin...
Definition: Expr.h:1077
Represents a concrete matrix type with constant number of rows and columns.
Definition: Type.h:4232
unsigned getNumRows() const
Returns the number of rows in the matrix.
Definition: Type.h:4250
ConvertVectorExpr - Clang builtin function __builtin_convertvector This AST node provides support for...
Definition: Expr.h:4582
Represents a 'co_yield' expression.
Definition: ExprCXX.h:5272
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2380
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1265
T * getAttr() const
Definition: DeclBase.h:576
Represents a reference to #emded data.
Definition: Expr.h:4916
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:3799
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:3474
This represents one expression.
Definition: Expr.h:110
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects, bool InConstantContext=false) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer,...
bool isGLValue() const
Definition: Expr.h:280
@ SE_AllowSideEffects
Allow any unmodeled side effect.
Definition: Expr.h:671
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Returns the set of floating point options that apply to this expression.
Definition: Expr.cpp:3893
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3093
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
bool isPRValue() const
Definition: Expr.h:278
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsRValue - Return true if this is a constant which we can fold to an rvalue using any crazy t...
bool isIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc=nullptr) const
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3077
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:276
bool refersToBitField() const
Returns true if this expression is a gl-value that potentially refers to a bit-field.
Definition: Expr.h:469
QualType getType() const
Definition: Expr.h:142
An expression trait intrinsic.
Definition: ExprCXX.h:2924
ExtVectorType - Extended vector type.
Definition: Type.h:4126
Represents a member of a struct/union/class.
Definition: Decl.h:3033
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:4716
Represents a C11 generic selection.
Definition: Expr.h:5966
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3724
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:5841
Describes an C or C++ initializer list.
Definition: Expr.h:5088
@ PostDecrInWhile
while (count–)
Definition: LangOptions.h:395
bool isSignedOverflowDefined() const
Definition: LangOptions.h:663
bool isOverflowPatternExcluded(OverflowPatternExclusionKind Kind) const
Definition: LangOptions.h:676
std::string OverflowHandler
The name of the handler function to be called when -ftrapv is specified.
Definition: LangOptions.h:544
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4734
MatrixSubscriptExpr - Matrix subscript expression for the MatrixType extension.
Definition: Expr.h:2796
Represents a matrix type, as defined in the Matrix Types clang extensions.
Definition: Type.h:4196
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:3236
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:3519
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp,...
Definition: ExprObjC.h:191
A runtime availability query.
Definition: ExprObjC.h:1692
ObjCBoolLiteralExpr - Objective-C Boolean Literal.
Definition: ExprObjC.h:87
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:127
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:309
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC 'id' type.
Definition: ExprObjC.h:1487
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:549
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:941
Represents a pointer to an Objective C object.
Definition: Type.h:7585
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:7622
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:505
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:455
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type,...
Definition: Expr.h:2519
Helper class for OffsetOfExpr.
Definition: Expr.h:2413
unsigned getArrayExprIndex() const
For an array element node, returns the index into the array of expressions.
Definition: Expr.h:2471
FieldDecl * getField() const
For a field offsetof node, returns the field.
Definition: Expr.h:2477
@ Array
An index into an array.
Definition: Expr.h:2418
@ Identifier
A field in a dependent type, known only by its name.
Definition: Expr.h:2422
@ Field
A field.
Definition: Expr.h:2420
@ Base
An implicit indirection through a C++ base class, when the field found is in a base class.
Definition: Expr.h:2425
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:2467
CXXBaseSpecifier * getBase() const
For a base class node, returns the base specifier.
Definition: Expr.h:2487
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class.
Definition: Expr.h:1173
This expression type represents an asterisk in an OpenACC Size-Expr, used in the 'tile' and 'gang' cl...
Definition: Expr.h:2078
ParenExpr - This represents a parenthesized expression, e.g.
Definition: Expr.h:2170
const Expr * getSubExpr() const
Definition: Expr.h:2187
DynTypedNodeList getParents(const NodeT &Node)
Returns the parents of the given node (within the traversal scope).
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3198
QualType getPointeeType() const
Definition: Type.h:3208
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:6546
A (possibly-)qualified type.
Definition: Type.h:929
bool mayBeDynamicClass() const
Returns true if it is a class and it might be dynamic.
Definition: Type.cpp:122
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:996
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:7936
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:8062
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1433
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:8139
QualType getCanonicalType() const
Definition: Type.h:7988
bool UseExcessPrecision(const ASTContext &Ctx)
Definition: Type.cpp:1605
bool mayBeNotDynamicClass() const
Returns true if it is not a class or if the class might not be dynamic.
Definition: Type.cpp:127
bool isCanonical() const
Definition: Type.h:7993
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: Type.h:354
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:347
@ OCL_None
There is no lifetime qualification on this type.
Definition: Type.h:343
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:357
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: Type.h:360
Represents a struct/union/class.
Definition: Decl.h:4162
field_iterator field_end() const
Definition: Decl.h:4379
field_iterator field_begin() const
Definition: Decl.cpp:5095
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:6077
C++2a [expr.prim.req]: A requires-expression provides a concise way to express requirements on templa...
Definition: ExprConcepts.h:502
static constexpr SanitizerMask bitPosToMask(const unsigned Pos)
Create a mask with a bit enabled at position Pos.
Definition: Sanitizers.h:59
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:464
ShuffleVectorExpr - clang-specific builtin-in function __builtin_shufflevector.
Definition: Expr.h:4514
Represents an expression that computes the length of a parameter pack.
Definition: ExprCXX.h:4258
Represents a function call to one of __builtin_LINE(), __builtin_COLUMN(), __builtin_FUNCTION(),...
Definition: Expr.h:4810
APValue EvaluateInContext(const ASTContext &Ctx, const Expr *DefaultExpr) const
Return the result of evaluating this SourceLocExpr in the specified (and possibly null) default argum...
Definition: Expr.cpp:2288
SourceLocation getLocation() const
Definition: Expr.h:4854
Encodes a location in the source.
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:4466
RetTy Visit(PTR(Stmt) S, ParamTys... P)
Definition: StmtVisitor.h:44
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:185
Stmt - This represents one statement.
Definition: Stmt.h:84
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:345
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4490
virtual bool useFP16ConversionIntrinsics() const
Check whether llvm intrinsics such as llvm.convert.to.fp16 should be used to convert to and from __fp...
Definition: TargetInfo.h:1002
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled.
Definition: TargetInfo.h:1670
const llvm::fltSemantics & getHalfFormat() const
Definition: TargetInfo.h:774
const llvm::fltSemantics & getBFloat16Format() const
Definition: TargetInfo.h:784
const llvm::fltSemantics & getLongDoubleFormat() const
Definition: TargetInfo.h:795
const llvm::fltSemantics & getFloat128Format() const
Definition: TargetInfo.h:803
const llvm::fltSemantics & getIbm128Format() const
Definition: TargetInfo.h:811
A type trait used in the implementation of various C++11 and Library TR1 trait templates.
Definition: ExprCXX.h:2768
bool isVoidType() const
Definition: Type.h:8515
bool isBooleanType() const
Definition: Type.h:8643
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:2201
bool isUnsignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is unsigned or an enumeration types whose underlying ...
Definition: Type.cpp:2251
bool isArithmeticType() const
Definition: Type.cpp:2315
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:8555
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8805
bool isReferenceType() const
Definition: Type.h:8209
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to.
Definition: Type.cpp:1901
bool isSveVLSBuiltinType() const
Determines if this is a sizeless type supported by the 'arm_sve_vector_bits' type attribute,...
Definition: Type.cpp:2554
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isExtVectorType() const
Definition: Type.h:8307
bool isExtVectorBoolType() const
Definition: Type.h:8311
bool isOCLIntelSubgroupAVCType() const
Definition: Type.h:8439
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition: Type.h:8287
bool isAnyComplexType() const
Definition: Type.h:8299
bool isFixedPointType() const
Return true if this is a fixed point type according to ISO/IEC JTC1 SC22 WG14 N1169.
Definition: Type.h:8568
bool isHalfType() const
Definition: Type.h:8519
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g....
Definition: Type.cpp:2220
bool isQueueT() const
Definition: Type.h:8410
bool isMatrixType() const
Definition: Type.h:8321
bool isEventT() const
Definition: Type.h:8402
bool isFunctionType() const
Definition: Type.h:8187
bool isVectorType() const
Definition: Type.h:8303
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:2300
bool isFloatingType() const
Definition: Type.cpp:2283
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:2230
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8736
bool isNullPtrType() const
Definition: Type.h:8548
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand.
Definition: Expr.h:2622
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2232
Opcode getOpcode() const
Definition: Expr.h:2272
bool canOverflow() const
Returns true if the unary operator can cause an overflow.
Definition: Expr.h:2290
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:4750
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:671
QualType getType() const
Definition: Decl.h:682
QualType getType() const
Definition: Value.cpp:234
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:3808
Represents a GCC generic vector type.
Definition: Type.h:4034
VectorKind getVectorKind() const
Definition: Type.h:4054
QualType getElementType() const
Definition: Type.h:4048
WhileStmt - This represents a 'while' stmt.
Definition: Stmt.h:2611
Defines the clang::TargetInfo interface.
const AstTypeMatcher< PointerType > pointerType
Matches pointer types, but does not match Objective-C object pointer types.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::ArgumentAdaptingMatcherFunc< internal::HasMatcher > has
Matches AST nodes that have child AST nodes that match the provided matcher.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
llvm::APFloat APFloat
Definition: Floating.h:23
llvm::APInt APInt
Definition: FixedPoint.h:19
bool LE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1171
bool Zero(InterpState &S, CodePtr OpPC)
Definition: Interp.h:2353
bool Load(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1693
bool GE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1186
The JSON file list parser is used to communicate input to InstallAPI.
BinaryOperatorKind
@ Result
The result type of a method or function.
CastKind
CastKind - The kind of operation required for a conversion.
const FunctionProtoType * T
@ Generic
not a target-specific vector type
long int64_t
Diagnostic wrappers for TextAPI types for error reporting.
Definition: Dominators.h:30
cl::opt< bool > EnableSingleByteCoverage
#define true
Definition: stdbool.h:25
#define false
Definition: stdbool.h:26
llvm::Value * TotalOffset
llvm::Value * OffsetOverflows
Structure with information about how a bitfield should be accessed.
unsigned Size
The total size of the bit-field, in bits.
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
static TBAAAccessInfo getMayAliasInfo()
Definition: CodeGenTBAA.h:63
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:642
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:644
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:169
bool hasOneOf(SanitizerMask K) const
Check if one or more sanitizers are enabled.
Definition: Sanitizers.h:179