clang 20.0.0git
Expr.cpp
Go to the documentation of this file.
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr class and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Expr.h"
14#include "clang/AST/APValue.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/Attr.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
26#include "clang/AST/Mangle.h"
32#include "clang/Lex/Lexer.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/Format.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cstring>
40#include <optional>
41using namespace clang;
42
44 const Expr *E = this;
45 while (true) {
47
48 // Follow the RHS of a comma operator.
49 if (auto *BO = dyn_cast<BinaryOperator>(E)) {
50 if (BO->getOpcode() == BO_Comma) {
51 E = BO->getRHS();
52 continue;
53 }
54 }
55
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
58 E = MTE->getSubExpr();
59 continue;
60 }
61
62 break;
63 }
64
65 return E;
66}
67
70 QualType DerivedType = E->getType();
71 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72 DerivedType = PTy->getPointeeType();
73
74 if (DerivedType->isDependentType())
75 return nullptr;
76
77 const RecordType *Ty = DerivedType->castAs<RecordType>();
78 Decl *D = Ty->getDecl();
79 return cast<CXXRecordDecl>(D);
80}
81
84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85 const Expr *E = this;
86 while (true) {
87 E = E->IgnoreParens();
88
89 if (const auto *CE = dyn_cast<CastExpr>(E)) {
90 if ((CE->getCastKind() == CK_DerivedToBase ||
91 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92 E->getType()->isRecordType()) {
93 E = CE->getSubExpr();
94 const auto *Derived =
95 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
96 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
97 continue;
98 }
99
100 if (CE->getCastKind() == CK_NoOp) {
101 E = CE->getSubExpr();
102 continue;
103 }
104 } else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
105 if (!ME->isArrow()) {
106 assert(ME->getBase()->getType()->getAsRecordDecl());
107 if (const auto *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109 E = ME->getBase();
110 Adjustments.push_back(SubobjectAdjustment(Field));
111 continue;
112 }
113 }
114 }
115 } else if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
116 if (BO->getOpcode() == BO_PtrMemD) {
117 assert(BO->getRHS()->isPRValue());
118 E = BO->getLHS();
119 const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>();
120 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
121 continue;
122 }
123 if (BO->getOpcode() == BO_Comma) {
124 CommaLHSs.push_back(BO->getLHS());
125 E = BO->getRHS();
126 continue;
127 }
128 }
129
130 // Nothing changed.
131 break;
132 }
133 return E;
134}
135
136bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
137 const Expr *E = IgnoreParens();
138
139 // If this value has _Bool type, it is obvious 0/1.
140 if (E->getType()->isBooleanType()) return true;
141 // If this is a non-scalar-integer type, we don't care enough to try.
142 if (!E->getType()->isIntegralOrEnumerationType()) return false;
143
144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
145 switch (UO->getOpcode()) {
146 case UO_Plus:
147 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
148 case UO_LNot:
149 return true;
150 default:
151 return false;
152 }
153 }
154
155 // Only look through implicit casts. If the user writes
156 // '(int) (a && b)' treat it as an arbitrary int.
157 // FIXME: Should we look through any cast expression in !Semantic mode?
158 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
159 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
160
161 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
162 switch (BO->getOpcode()) {
163 default: return false;
164 case BO_LT: // Relational operators.
165 case BO_GT:
166 case BO_LE:
167 case BO_GE:
168 case BO_EQ: // Equality operators.
169 case BO_NE:
170 case BO_LAnd: // AND operator.
171 case BO_LOr: // Logical OR operator.
172 return true;
173
174 case BO_And: // Bitwise AND operator.
175 case BO_Xor: // Bitwise XOR operator.
176 case BO_Or: // Bitwise OR operator.
177 // Handle things like (x==2)|(y==12).
178 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
179 BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
180
181 case BO_Comma:
182 case BO_Assign:
183 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
184 }
185 }
186
187 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
188 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
189 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
190
191 if (isa<ObjCBoolLiteralExpr>(E))
192 return true;
193
194 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
195 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
196
197 if (const FieldDecl *FD = E->getSourceBitField())
198 if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
199 !FD->getBitWidth()->isValueDependent() && FD->getBitWidthValue() == 1)
200 return true;
201
202 return false;
203}
204
206 ASTContext &Ctx,
207 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
208 bool IgnoreTemplateOrMacroSubstitution) const {
209 const Expr *E = IgnoreParens();
210 const Decl *D = nullptr;
211
212 if (const auto *ME = dyn_cast<MemberExpr>(E))
213 D = ME->getMemberDecl();
214 else if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
215 D = DRE->getDecl();
216 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
217 D = IRE->getDecl();
218
220 StrictFlexArraysLevel,
221 IgnoreTemplateOrMacroSubstitution);
222}
223
224const ValueDecl *
226 Expr::EvalResult Eval;
227
228 if (EvaluateAsConstantExpr(Eval, Context)) {
229 APValue &Value = Eval.Val;
230
231 if (Value.isMemberPointer())
232 return Value.getMemberPointerDecl();
233
234 if (Value.isLValue() && Value.getLValueOffset().isZero())
235 return Value.getLValueBase().dyn_cast<const ValueDecl *>();
236 }
237
238 return nullptr;
239}
240
241// Amusing macro metaprogramming hack: check whether a class provides
242// a more specific implementation of getExprLoc().
243//
244// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
245namespace {
246 /// This implementation is used when a class provides a custom
247 /// implementation of getExprLoc.
248 template <class E, class T>
249 SourceLocation getExprLocImpl(const Expr *expr,
250 SourceLocation (T::*v)() const) {
251 return static_cast<const E*>(expr)->getExprLoc();
252 }
253
254 /// This implementation is used when a class doesn't provide
255 /// a custom implementation of getExprLoc. Overload resolution
256 /// should pick it over the implementation above because it's
257 /// more specialized according to function template partial ordering.
258 template <class E>
259 SourceLocation getExprLocImpl(const Expr *expr,
260 SourceLocation (Expr::*v)() const) {
261 return static_cast<const E *>(expr)->getBeginLoc();
262 }
263}
264
266 if (isa<EnumType>(getType()))
267 return getType();
268 if (const auto *ECD = getEnumConstantDecl()) {
269 const auto *ED = cast<EnumDecl>(ECD->getDeclContext());
270 if (ED->isCompleteDefinition())
271 return Ctx.getTypeDeclType(ED);
272 }
273 return getType();
274}
275
277 switch (getStmtClass()) {
278 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
279#define ABSTRACT_STMT(type)
280#define STMT(type, base) \
281 case Stmt::type##Class: break;
282#define EXPR(type, base) \
283 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
284#include "clang/AST/StmtNodes.inc"
285 }
286 llvm_unreachable("unknown expression kind");
287}
288
289//===----------------------------------------------------------------------===//
290// Primary Expressions.
291//===----------------------------------------------------------------------===//
292
294 assert((Kind == ConstantResultStorageKind::APValue ||
297 "Invalid StorageKind Value");
298 (void)Kind;
299}
300
302 switch (Value.getKind()) {
303 case APValue::None:
306 case APValue::Int:
307 if (!Value.getInt().needsCleanup())
309 [[fallthrough]];
310 default:
312 }
313}
314
317 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
320}
321
322ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind,
323 bool IsImmediateInvocation)
324 : FullExpr(ConstantExprClass, SubExpr) {
325 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind);
326 ConstantExprBits.APValueKind = APValue::None;
327 ConstantExprBits.IsUnsigned = false;
328 ConstantExprBits.BitWidth = 0;
329 ConstantExprBits.HasCleanup = false;
330 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
331
332 if (StorageKind == ConstantResultStorageKind::APValue)
333 ::new (getTrailingObjects<APValue>()) APValue();
334}
335
337 ConstantResultStorageKind StorageKind,
338 bool IsImmediateInvocation) {
339 assert(!isa<ConstantExpr>(E));
340 AssertResultStorageKind(StorageKind);
341
342 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
344 StorageKind == ConstantResultStorageKind::Int64);
345 void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
346 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
347}
348
350 const APValue &Result) {
352 ConstantExpr *Self = Create(Context, E, StorageKind);
353 Self->SetResult(Result, Context);
354 return Self;
355}
356
357ConstantExpr::ConstantExpr(EmptyShell Empty,
358 ConstantResultStorageKind StorageKind)
359 : FullExpr(ConstantExprClass, Empty) {
360 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind);
361
362 if (StorageKind == ConstantResultStorageKind::APValue)
363 ::new (getTrailingObjects<APValue>()) APValue();
364}
365
367 ConstantResultStorageKind StorageKind) {
368 AssertResultStorageKind(StorageKind);
369
370 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
372 StorageKind == ConstantResultStorageKind::Int64);
373 void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
374 return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
375}
376
378 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
379 "Invalid storage for this value kind");
380 ConstantExprBits.APValueKind = Value.getKind();
381 switch (getResultStorageKind()) {
383 return;
385 Int64Result() = *Value.getInt().getRawData();
386 ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
387 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
388 return;
390 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
391 ConstantExprBits.HasCleanup = true;
392 Context.addDestruction(&APValueResult());
393 }
394 APValueResult() = std::move(Value);
395 return;
396 }
397 llvm_unreachable("Invalid ResultKind Bits");
398}
399
401 switch (getResultStorageKind()) {
403 return APValueResult().getInt();
405 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
406 ConstantExprBits.IsUnsigned);
407 default:
408 llvm_unreachable("invalid Accessor");
409 }
410}
411
413
414 switch (getResultStorageKind()) {
416 return APValueResult();
418 return APValue(
419 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
420 ConstantExprBits.IsUnsigned));
422 if (ConstantExprBits.APValueKind == APValue::Indeterminate)
424 return APValue();
425 }
426 llvm_unreachable("invalid ResultKind");
427}
428
429DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
430 bool RefersToEnclosingVariableOrCapture, QualType T,
432 const DeclarationNameLoc &LocInfo,
433 NonOdrUseReason NOUR)
434 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
435 DeclRefExprBits.HasQualifier = false;
436 DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
437 DeclRefExprBits.HasFoundDecl = false;
438 DeclRefExprBits.HadMultipleCandidates = false;
439 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
440 RefersToEnclosingVariableOrCapture;
441 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
442 DeclRefExprBits.NonOdrUseReason = NOUR;
443 DeclRefExprBits.IsImmediateEscalating = false;
444 DeclRefExprBits.Loc = L;
446}
447
448DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
449 NestedNameSpecifierLoc QualifierLoc,
450 SourceLocation TemplateKWLoc, ValueDecl *D,
451 bool RefersToEnclosingVariableOrCapture,
452 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
453 const TemplateArgumentListInfo *TemplateArgs,
455 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
456 DNLoc(NameInfo.getInfo()) {
457 DeclRefExprBits.Loc = NameInfo.getLoc();
458 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
459 if (QualifierLoc)
460 new (getTrailingObjects<NestedNameSpecifierLoc>())
461 NestedNameSpecifierLoc(QualifierLoc);
462 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
463 if (FoundD)
464 *getTrailingObjects<NamedDecl *>() = FoundD;
465 DeclRefExprBits.HasTemplateKWAndArgsInfo
466 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
467 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
468 RefersToEnclosingVariableOrCapture;
469 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
470 DeclRefExprBits.NonOdrUseReason = NOUR;
471 if (TemplateArgs) {
472 auto Deps = TemplateArgumentDependence::None;
473 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
474 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
475 Deps);
476 assert(!(Deps & TemplateArgumentDependence::Dependent) &&
477 "built a DeclRefExpr with dependent template args");
478 } else if (TemplateKWLoc.isValid()) {
479 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
480 TemplateKWLoc);
481 }
482 DeclRefExprBits.IsImmediateEscalating = false;
483 DeclRefExprBits.HadMultipleCandidates = 0;
485}
486
488 NestedNameSpecifierLoc QualifierLoc,
489 SourceLocation TemplateKWLoc, ValueDecl *D,
490 bool RefersToEnclosingVariableOrCapture,
491 SourceLocation NameLoc, QualType T,
492 ExprValueKind VK, NamedDecl *FoundD,
493 const TemplateArgumentListInfo *TemplateArgs,
494 NonOdrUseReason NOUR) {
495 return Create(Context, QualifierLoc, TemplateKWLoc, D,
496 RefersToEnclosingVariableOrCapture,
497 DeclarationNameInfo(D->getDeclName(), NameLoc),
498 T, VK, FoundD, TemplateArgs, NOUR);
499}
500
502 NestedNameSpecifierLoc QualifierLoc,
503 SourceLocation TemplateKWLoc, ValueDecl *D,
504 bool RefersToEnclosingVariableOrCapture,
505 const DeclarationNameInfo &NameInfo,
507 NamedDecl *FoundD,
508 const TemplateArgumentListInfo *TemplateArgs,
509 NonOdrUseReason NOUR) {
510 // Filter out cases where the found Decl is the same as the value refenenced.
511 if (D == FoundD)
512 FoundD = nullptr;
513
514 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
515 std::size_t Size =
516 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
518 QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
519 HasTemplateKWAndArgsInfo ? 1 : 0,
520 TemplateArgs ? TemplateArgs->size() : 0);
521
522 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
523 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
524 RefersToEnclosingVariableOrCapture, NameInfo,
525 FoundD, TemplateArgs, T, VK, NOUR);
526}
527
529 bool HasQualifier,
530 bool HasFoundDecl,
531 bool HasTemplateKWAndArgsInfo,
532 unsigned NumTemplateArgs) {
533 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
534 std::size_t Size =
535 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
537 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
538 NumTemplateArgs);
539 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
540 return new (Mem) DeclRefExpr(EmptyShell());
541}
542
544 D = NewD;
545 if (getType()->isUndeducedType())
546 setType(NewD->getType());
548}
549
551 if (hasQualifier())
552 return getQualifierLoc().getBeginLoc();
553 return getNameInfo().getBeginLoc();
554}
557 return getRAngleLoc();
558 return getNameInfo().getEndLoc();
559}
560
561SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
562 SourceLocation LParen,
563 SourceLocation RParen,
564 QualType ResultTy,
565 TypeSourceInfo *TSI)
566 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
567 OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
568 setTypeSourceInfo(TSI);
570}
571
572SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
573 QualType ResultTy)
574 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
575
578 SourceLocation LParen, SourceLocation RParen,
579 TypeSourceInfo *TSI) {
580 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
581 return new (Ctx)
582 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
583}
584
587 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
588 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
589}
590
594}
595
597 QualType Ty) {
598 auto MangleCallback = [](ASTContext &Ctx,
599 const NamedDecl *ND) -> std::optional<unsigned> {
600 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
601 return RD->getDeviceLambdaManglingNumber();
602 return std::nullopt;
603 };
604
605 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
606 Context, Context.getDiagnostics(), MangleCallback)};
607
608 std::string Buffer;
609 Buffer.reserve(128);
610 llvm::raw_string_ostream Out(Buffer);
611 Ctx->mangleCanonicalTypeName(Ty, Out);
612
613 return Buffer;
614}
615
616PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy,
617 PredefinedIdentKind IK, bool IsTransparent,
618 StringLiteral *SL)
619 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
620 PredefinedExprBits.Kind = llvm::to_underlying(IK);
621 assert((getIdentKind() == IK) &&
622 "IdentKind do not fit in PredefinedExprBitfields!");
623 bool HasFunctionName = SL != nullptr;
624 PredefinedExprBits.HasFunctionName = HasFunctionName;
625 PredefinedExprBits.IsTransparent = IsTransparent;
626 PredefinedExprBits.Loc = L;
627 if (HasFunctionName)
628 setFunctionName(SL);
630}
631
632PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
633 : Expr(PredefinedExprClass, Empty) {
634 PredefinedExprBits.HasFunctionName = HasFunctionName;
635}
636
639 bool IsTransparent, StringLiteral *SL) {
640 bool HasFunctionName = SL != nullptr;
641 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
642 alignof(PredefinedExpr));
643 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL);
644}
645
647 bool HasFunctionName) {
648 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
649 alignof(PredefinedExpr));
650 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
651}
652
654 switch (IK) {
656 return "__func__";
658 return "__FUNCTION__";
660 return "__FUNCDNAME__";
662 return "L__FUNCTION__";
664 return "__PRETTY_FUNCTION__";
666 return "__FUNCSIG__";
668 return "L__FUNCSIG__";
670 break;
671 }
672 llvm_unreachable("Unknown ident kind for PredefinedExpr");
673}
674
675// FIXME: Maybe this should use DeclPrinter with a special "print predefined
676// expr" policy instead.
678 const Decl *CurrentDecl,
679 bool ForceElaboratedPrinting) {
680 ASTContext &Context = CurrentDecl->getASTContext();
681
683 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
684 std::unique_ptr<MangleContext> MC;
685 MC.reset(Context.createMangleContext());
686
687 if (MC->shouldMangleDeclName(ND)) {
688 SmallString<256> Buffer;
689 llvm::raw_svector_ostream Out(Buffer);
690 GlobalDecl GD;
691 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
692 GD = GlobalDecl(CD, Ctor_Base);
693 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
694 GD = GlobalDecl(DD, Dtor_Base);
695 else if (ND->hasAttr<CUDAGlobalAttr>())
696 GD = GlobalDecl(cast<FunctionDecl>(ND));
697 else
698 GD = GlobalDecl(ND);
699 MC->mangleName(GD, Out);
700
701 if (!Buffer.empty() && Buffer.front() == '\01')
702 return std::string(Buffer.substr(1));
703 return std::string(Buffer);
704 }
705 return std::string(ND->getIdentifier()->getName());
706 }
707 return "";
708 }
709 if (isa<BlockDecl>(CurrentDecl)) {
710 // For blocks we only emit something if it is enclosed in a function
711 // For top-level block we'd like to include the name of variable, but we
712 // don't have it at this point.
713 auto DC = CurrentDecl->getDeclContext();
714 if (DC->isFileContext())
715 return "";
716
717 SmallString<256> Buffer;
718 llvm::raw_svector_ostream Out(Buffer);
719 if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
720 // For nested blocks, propagate up to the parent.
721 Out << ComputeName(IK, DCBlock);
722 else if (auto *DCDecl = dyn_cast<Decl>(DC))
723 Out << ComputeName(IK, DCDecl) << "_block_invoke";
724 return std::string(Out.str());
725 }
726 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
727 const auto &LO = Context.getLangOpts();
728 bool IsFuncOrFunctionInNonMSVCCompatEnv =
730 IK == PredefinedIdentKind ::Function) &&
731 !LO.MSVCCompat);
732 bool IsLFunctionInMSVCCommpatEnv =
733 IK == PredefinedIdentKind::LFunction && LO.MSVCCompat;
734 bool IsFuncOrFunctionOrLFunctionOrFuncDName =
739 if ((ForceElaboratedPrinting &&
740 (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) ||
741 (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName))
742 return FD->getNameAsString();
743
744 SmallString<256> Name;
745 llvm::raw_svector_ostream Out(Name);
746
747 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
748 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual)
749 Out << "virtual ";
750 if (MD->isStatic())
751 Out << "static ";
752 }
753
754 class PrettyCallbacks final : public PrintingCallbacks {
755 public:
756 PrettyCallbacks(const LangOptions &LO) : LO(LO) {}
757 std::string remapPath(StringRef Path) const override {
759 LO.remapPathPrefix(p);
760 return std::string(p);
761 }
762
763 private:
764 const LangOptions &LO;
765 };
766 PrintingPolicy Policy(Context.getLangOpts());
767 PrettyCallbacks PrettyCB(Context.getLangOpts());
768 Policy.Callbacks = &PrettyCB;
769 if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting)
770 Policy.SuppressTagKeyword = !LO.MSVCCompat;
771 std::string Proto;
772 llvm::raw_string_ostream POut(Proto);
773
774 const FunctionDecl *Decl = FD;
775 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
776 Decl = Pattern;
777
778 // Bail out if the type of the function has not been set yet.
779 // This can notably happen in the trailing return type of a lambda
780 // expression.
781 const Type *Ty = Decl->getType().getTypePtrOrNull();
782 if (!Ty)
783 return "";
784
785 const FunctionType *AFT = Ty->getAs<FunctionType>();
786 const FunctionProtoType *FT = nullptr;
787 if (FD->hasWrittenPrototype())
788 FT = dyn_cast<FunctionProtoType>(AFT);
789
792 switch (AFT->getCallConv()) {
793 case CC_C: POut << "__cdecl "; break;
794 case CC_X86StdCall: POut << "__stdcall "; break;
795 case CC_X86FastCall: POut << "__fastcall "; break;
796 case CC_X86ThisCall: POut << "__thiscall "; break;
797 case CC_X86VectorCall: POut << "__vectorcall "; break;
798 case CC_X86RegCall: POut << "__regcall "; break;
799 // Only bother printing the conventions that MSVC knows about.
800 default: break;
801 }
802 }
803
804 FD->printQualifiedName(POut, Policy);
805
807 Out << Proto;
808 return std::string(Name);
809 }
810
811 POut << "(";
812 if (FT) {
813 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
814 if (i) POut << ", ";
815 POut << Decl->getParamDecl(i)->getType().stream(Policy);
816 }
817
818 if (FT->isVariadic()) {
819 if (FD->getNumParams()) POut << ", ";
820 POut << "...";
821 } else if ((IK == PredefinedIdentKind::FuncSig ||
823 !Context.getLangOpts().CPlusPlus) &&
824 !Decl->getNumParams()) {
825 POut << "void";
826 }
827 }
828 POut << ")";
829
830 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
831 assert(FT && "We must have a written prototype in this case.");
832 if (FT->isConst())
833 POut << " const";
834 if (FT->isVolatile())
835 POut << " volatile";
836 RefQualifierKind Ref = MD->getRefQualifier();
837 if (Ref == RQ_LValue)
838 POut << " &";
839 else if (Ref == RQ_RValue)
840 POut << " &&";
841 }
842
844 SpecsTy Specs;
845 const DeclContext *Ctx = FD->getDeclContext();
846 while (isa_and_nonnull<NamedDecl>(Ctx)) {
848 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
849 if (Spec && !Spec->isExplicitSpecialization())
850 Specs.push_back(Spec);
851 Ctx = Ctx->getParent();
852 }
853
854 std::string TemplateParams;
855 llvm::raw_string_ostream TOut(TemplateParams);
856 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
857 const TemplateParameterList *Params =
858 D->getSpecializedTemplate()->getTemplateParameters();
859 const TemplateArgumentList &Args = D->getTemplateArgs();
860 assert(Params->size() == Args.size());
861 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
862 StringRef Param = Params->getParam(i)->getName();
863 if (Param.empty()) continue;
864 TOut << Param << " = ";
865 Args.get(i).print(Policy, TOut,
867 Policy, Params, i));
868 TOut << ", ";
869 }
870 }
871
873 = FD->getTemplateSpecializationInfo();
874 if (FSI && !FSI->isExplicitSpecialization()) {
875 const TemplateParameterList* Params
877 const TemplateArgumentList* Args = FSI->TemplateArguments;
878 assert(Params->size() == Args->size());
879 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
880 StringRef Param = Params->getParam(i)->getName();
881 if (Param.empty()) continue;
882 TOut << Param << " = ";
883 Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
884 TOut << ", ";
885 }
886 }
887
888 if (!TemplateParams.empty()) {
889 // remove the trailing comma and space
890 TemplateParams.resize(TemplateParams.size() - 2);
891 POut << " [" << TemplateParams << "]";
892 }
893
894 // Print "auto" for all deduced return types. This includes C++1y return
895 // type deduction and lambdas. For trailing return types resolve the
896 // decltype expression. Otherwise print the real type when this is
897 // not a constructor or destructor.
898 if (isa<CXXMethodDecl>(FD) &&
899 cast<CXXMethodDecl>(FD)->getParent()->isLambda())
900 Proto = "auto " + Proto;
901 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
902 FT->getReturnType()
903 ->getAs<DecltypeType>()
905 .getAsStringInternal(Proto, Policy);
906 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
907 AFT->getReturnType().getAsStringInternal(Proto, Policy);
908
909 Out << Proto;
910
911 return std::string(Name);
912 }
913 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
914 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
915 // Skip to its enclosing function or method, but not its enclosing
916 // CapturedDecl.
917 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
918 const Decl *D = Decl::castFromDeclContext(DC);
919 return ComputeName(IK, D);
920 }
921 llvm_unreachable("CapturedDecl not inside a function or method");
922 }
923 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
924 SmallString<256> Name;
925 llvm::raw_svector_ostream Out(Name);
926 Out << (MD->isInstanceMethod() ? '-' : '+');
927 Out << '[';
928
929 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
930 // a null check to avoid a crash.
931 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
932 Out << *ID;
933
934 if (const ObjCCategoryImplDecl *CID =
935 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
936 Out << '(' << *CID << ')';
937
938 Out << ' ';
939 MD->getSelector().print(Out);
940 Out << ']';
941
942 return std::string(Name);
943 }
944 if (isa<TranslationUnitDecl>(CurrentDecl) &&
946 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
947 return "top level";
948 }
949 return "";
950}
951
953 const llvm::APInt &Val) {
954 if (hasAllocation())
955 C.Deallocate(pVal);
956
957 BitWidth = Val.getBitWidth();
958 unsigned NumWords = Val.getNumWords();
959 const uint64_t* Words = Val.getRawData();
960 if (NumWords > 1) {
961 pVal = new (C) uint64_t[NumWords];
962 std::copy(Words, Words + NumWords, pVal);
963 } else if (NumWords == 1)
964 VAL = Words[0];
965 else
966 VAL = 0;
967}
968
969IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
971 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
972 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
973 assert(V.getBitWidth() == C.getIntWidth(type) &&
974 "Integer type is not the correct size for constant.");
975 setValue(C, V);
976 setDependence(ExprDependence::None);
977}
978
980IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
982 return new (C) IntegerLiteral(C, V, type, l);
983}
984
987 return new (C) IntegerLiteral(Empty);
988}
989
990FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
992 unsigned Scale)
993 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
994 Scale(Scale) {
995 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
996 assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
997 "Fixed point type is not the correct size for constant.");
998 setValue(C, V);
999 setDependence(ExprDependence::None);
1000}
1001
1003 const llvm::APInt &V,
1004 QualType type,
1006 unsigned Scale) {
1007 return new (C) FixedPointLiteral(C, V, type, l, Scale);
1008}
1009
1011 EmptyShell Empty) {
1012 return new (C) FixedPointLiteral(Empty);
1013}
1014
1015std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1016 // Currently the longest decimal number that can be printed is the max for an
1017 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1018 // which is 43 characters.
1021 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
1022 return std::string(S);
1023}
1024
1026 raw_ostream &OS) {
1027 switch (Kind) {
1029 break; // no prefix.
1031 OS << 'L';
1032 break;
1034 OS << "u8";
1035 break;
1037 OS << 'u';
1038 break;
1040 OS << 'U';
1041 break;
1042 }
1043
1044 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
1045 if (!Escaped.empty()) {
1046 OS << "'" << Escaped << "'";
1047 } else {
1048 // A character literal might be sign-extended, which
1049 // would result in an invalid \U escape sequence.
1050 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1051 // are not correctly handled.
1052 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii)
1053 Val &= 0xFFu;
1054 if (Val < 256 && isPrintable((unsigned char)Val))
1055 OS << "'" << (char)Val << "'";
1056 else if (Val < 256)
1057 OS << "'\\x" << llvm::format("%02x", Val) << "'";
1058 else if (Val <= 0xFFFF)
1059 OS << "'\\u" << llvm::format("%04x", Val) << "'";
1060 else
1061 OS << "'\\U" << llvm::format("%08x", Val) << "'";
1062 }
1063}
1064
1065FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1066 bool isexact, QualType Type, SourceLocation L)
1067 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1068 setSemantics(V.getSemantics());
1069 FloatingLiteralBits.IsExact = isexact;
1070 setValue(C, V);
1071 setDependence(ExprDependence::None);
1072}
1073
1074FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1075 : Expr(FloatingLiteralClass, Empty) {
1076 setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1077 FloatingLiteralBits.IsExact = false;
1078}
1079
1081FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1082 bool isexact, QualType Type, SourceLocation L) {
1083 return new (C) FloatingLiteral(C, V, isexact, Type, L);
1084}
1085
1088 return new (C) FloatingLiteral(C, Empty);
1089}
1090
1091/// getValueAsApproximateDouble - This returns the value as an inaccurate
1092/// double. Note that this may cause loss of precision, but is useful for
1093/// debugging dumps, etc.
1095 llvm::APFloat V = getValue();
1096 bool ignored;
1097 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1098 &ignored);
1099 return V.convertToDouble();
1100}
1101
1102unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1103 StringLiteralKind SK) {
1104 unsigned CharByteWidth = 0;
1105 switch (SK) {
1108 CharByteWidth = Target.getCharWidth();
1109 break;
1111 CharByteWidth = Target.getWCharWidth();
1112 break;
1114 CharByteWidth = Target.getChar16Width();
1115 break;
1117 CharByteWidth = Target.getChar32Width();
1118 break;
1120 return sizeof(char); // Host;
1121 }
1122 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1123 CharByteWidth /= 8;
1124 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1125 "The only supported character byte widths are 1,2 and 4!");
1126 return CharByteWidth;
1127}
1128
1129StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1130 StringLiteralKind Kind, bool Pascal, QualType Ty,
1131 const SourceLocation *Loc,
1132 unsigned NumConcatenated)
1133 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1134
1135 unsigned Length = Str.size();
1136
1137 StringLiteralBits.Kind = llvm::to_underlying(Kind);
1138 StringLiteralBits.NumConcatenated = NumConcatenated;
1139
1140 if (Kind != StringLiteralKind::Unevaluated) {
1141 assert(Ctx.getAsConstantArrayType(Ty) &&
1142 "StringLiteral must be of constant array type!");
1143 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1144 unsigned ByteLength = Str.size();
1145 assert((ByteLength % CharByteWidth == 0) &&
1146 "The size of the data must be a multiple of CharByteWidth!");
1147
1148 // Avoid the expensive division. The compiler should be able to figure it
1149 // out by itself. However as of clang 7, even with the appropriate
1150 // llvm_unreachable added just here, it is not able to do so.
1151 switch (CharByteWidth) {
1152 case 1:
1153 Length = ByteLength;
1154 break;
1155 case 2:
1156 Length = ByteLength / 2;
1157 break;
1158 case 4:
1159 Length = ByteLength / 4;
1160 break;
1161 default:
1162 llvm_unreachable("Unsupported character width!");
1163 }
1164
1165 StringLiteralBits.CharByteWidth = CharByteWidth;
1166 StringLiteralBits.IsPascal = Pascal;
1167 } else {
1168 assert(!Pascal && "Can't make an unevaluated Pascal string");
1169 StringLiteralBits.CharByteWidth = 1;
1170 StringLiteralBits.IsPascal = false;
1171 }
1172
1173 *getTrailingObjects<unsigned>() = Length;
1174
1175 // Initialize the trailing array of SourceLocation.
1176 // This is safe since SourceLocation is POD-like.
1177 std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1178 NumConcatenated * sizeof(SourceLocation));
1179
1180 // Initialize the trailing array of char holding the string data.
1181 std::memcpy(getTrailingObjects<char>(), Str.data(), Str.size());
1182
1183 setDependence(ExprDependence::None);
1184}
1185
1186StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1187 unsigned Length, unsigned CharByteWidth)
1188 : Expr(StringLiteralClass, Empty) {
1189 StringLiteralBits.CharByteWidth = CharByteWidth;
1190 StringLiteralBits.NumConcatenated = NumConcatenated;
1191 *getTrailingObjects<unsigned>() = Length;
1192}
1193
1195 StringLiteralKind Kind, bool Pascal,
1196 QualType Ty, const SourceLocation *Loc,
1197 unsigned NumConcatenated) {
1198 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1199 1, NumConcatenated, Str.size()),
1200 alignof(StringLiteral));
1201 return new (Mem)
1202 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1203}
1204
1206 unsigned NumConcatenated,
1207 unsigned Length,
1208 unsigned CharByteWidth) {
1209 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1210 1, NumConcatenated, Length * CharByteWidth),
1211 alignof(StringLiteral));
1212 return new (Mem)
1213 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1214}
1215
1216void StringLiteral::outputString(raw_ostream &OS) const {
1217 switch (getKind()) {
1220 break; // no prefix.
1222 OS << 'L';
1223 break;
1225 OS << "u8";
1226 break;
1228 OS << 'u';
1229 break;
1231 OS << 'U';
1232 break;
1233 }
1234 OS << '"';
1235 static const char Hex[] = "0123456789ABCDEF";
1236
1237 unsigned LastSlashX = getLength();
1238 for (unsigned I = 0, N = getLength(); I != N; ++I) {
1239 uint32_t Char = getCodeUnit(I);
1240 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1241 if (Escaped.empty()) {
1242 // FIXME: Convert UTF-8 back to codepoints before rendering.
1243
1244 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1245 // Leave invalid surrogates alone; we'll use \x for those.
1246 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 &&
1247 Char >= 0xd800 && Char <= 0xdbff) {
1248 uint32_t Trail = getCodeUnit(I + 1);
1249 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1250 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1251 ++I;
1252 }
1253 }
1254
1255 if (Char > 0xff) {
1256 // If this is a wide string, output characters over 0xff using \x
1257 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1258 // codepoint: use \x escapes for invalid codepoints.
1260 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1261 // FIXME: Is this the best way to print wchar_t?
1262 OS << "\\x";
1263 int Shift = 28;
1264 while ((Char >> Shift) == 0)
1265 Shift -= 4;
1266 for (/**/; Shift >= 0; Shift -= 4)
1267 OS << Hex[(Char >> Shift) & 15];
1268 LastSlashX = I;
1269 continue;
1270 }
1271
1272 if (Char > 0xffff)
1273 OS << "\\U00"
1274 << Hex[(Char >> 20) & 15]
1275 << Hex[(Char >> 16) & 15];
1276 else
1277 OS << "\\u";
1278 OS << Hex[(Char >> 12) & 15]
1279 << Hex[(Char >> 8) & 15]
1280 << Hex[(Char >> 4) & 15]
1281 << Hex[(Char >> 0) & 15];
1282 continue;
1283 }
1284
1285 // If we used \x... for the previous character, and this character is a
1286 // hexadecimal digit, prevent it being slurped as part of the \x.
1287 if (LastSlashX + 1 == I) {
1288 switch (Char) {
1289 case '0': case '1': case '2': case '3': case '4':
1290 case '5': case '6': case '7': case '8': case '9':
1291 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1292 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1293 OS << "\"\"";
1294 }
1295 }
1296
1297 assert(Char <= 0xff &&
1298 "Characters above 0xff should already have been handled.");
1299
1300 if (isPrintable(Char))
1301 OS << (char)Char;
1302 else // Output anything hard as an octal escape.
1303 OS << '\\'
1304 << (char)('0' + ((Char >> 6) & 7))
1305 << (char)('0' + ((Char >> 3) & 7))
1306 << (char)('0' + ((Char >> 0) & 7));
1307 } else {
1308 // Handle some common non-printable cases to make dumps prettier.
1309 OS << Escaped;
1310 }
1311 }
1312 OS << '"';
1313}
1314
1315/// getLocationOfByte - Return a source location that points to the specified
1316/// byte of this string literal.
1317///
1318/// Strings are amazingly complex. They can be formed from multiple tokens and
1319/// can have escape sequences in them in addition to the usual trigraph and
1320/// escaped newline business. This routine handles this complexity.
1321///
1322/// The *StartToken sets the first token to be searched in this function and
1323/// the *StartTokenByteOffset is the byte offset of the first token. Before
1324/// returning, it updates the *StartToken to the TokNo of the token being found
1325/// and sets *StartTokenByteOffset to the byte offset of the token in the
1326/// string.
1327/// Using these two parameters can reduce the time complexity from O(n^2) to
1328/// O(n) if one wants to get the location of byte for all the tokens in a
1329/// string.
1330///
1333 const LangOptions &Features,
1334 const TargetInfo &Target, unsigned *StartToken,
1335 unsigned *StartTokenByteOffset) const {
1336 assert((getKind() == StringLiteralKind::Ordinary ||
1339 "Only narrow string literals are currently supported");
1340
1341 // Loop over all of the tokens in this string until we find the one that
1342 // contains the byte we're looking for.
1343 unsigned TokNo = 0;
1344 unsigned StringOffset = 0;
1345 if (StartToken)
1346 TokNo = *StartToken;
1347 if (StartTokenByteOffset) {
1348 StringOffset = *StartTokenByteOffset;
1349 ByteNo -= StringOffset;
1350 }
1351 while (true) {
1352 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1353 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1354
1355 // Get the spelling of the string so that we can get the data that makes up
1356 // the string literal, not the identifier for the macro it is potentially
1357 // expanded through.
1358 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1359
1360 // Re-lex the token to get its length and original spelling.
1361 std::pair<FileID, unsigned> LocInfo =
1362 SM.getDecomposedLoc(StrTokSpellingLoc);
1363 bool Invalid = false;
1364 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1365 if (Invalid) {
1366 if (StartTokenByteOffset != nullptr)
1367 *StartTokenByteOffset = StringOffset;
1368 if (StartToken != nullptr)
1369 *StartToken = TokNo;
1370 return StrTokSpellingLoc;
1371 }
1372
1373 const char *StrData = Buffer.data()+LocInfo.second;
1374
1375 // Create a lexer starting at the beginning of this token.
1376 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1377 Buffer.begin(), StrData, Buffer.end());
1378 Token TheTok;
1379 TheLexer.LexFromRawLexer(TheTok);
1380
1381 // Use the StringLiteralParser to compute the length of the string in bytes.
1382 StringLiteralParser SLP(TheTok, SM, Features, Target);
1383 unsigned TokNumBytes = SLP.GetStringLength();
1384
1385 // If the byte is in this token, return the location of the byte.
1386 if (ByteNo < TokNumBytes ||
1387 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1388 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1389
1390 // Now that we know the offset of the token in the spelling, use the
1391 // preprocessor to get the offset in the original source.
1392 if (StartTokenByteOffset != nullptr)
1393 *StartTokenByteOffset = StringOffset;
1394 if (StartToken != nullptr)
1395 *StartToken = TokNo;
1396 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1397 }
1398
1399 // Move to the next string token.
1400 StringOffset += TokNumBytes;
1401 ++TokNo;
1402 ByteNo -= TokNumBytes;
1403 }
1404}
1405
1406/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1407/// corresponds to, e.g. "sizeof" or "[pre]++".
1409 switch (Op) {
1410#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1411#include "clang/AST/OperationKinds.def"
1412 }
1413 llvm_unreachable("Unknown unary operator");
1414}
1415
1418 switch (OO) {
1419 default: llvm_unreachable("No unary operator for overloaded function");
1420 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1421 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1422 case OO_Amp: return UO_AddrOf;
1423 case OO_Star: return UO_Deref;
1424 case OO_Plus: return UO_Plus;
1425 case OO_Minus: return UO_Minus;
1426 case OO_Tilde: return UO_Not;
1427 case OO_Exclaim: return UO_LNot;
1428 case OO_Coawait: return UO_Coawait;
1429 }
1430}
1431
1433 switch (Opc) {
1434 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1435 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1436 case UO_AddrOf: return OO_Amp;
1437 case UO_Deref: return OO_Star;
1438 case UO_Plus: return OO_Plus;
1439 case UO_Minus: return OO_Minus;
1440 case UO_Not: return OO_Tilde;
1441 case UO_LNot: return OO_Exclaim;
1442 case UO_Coawait: return OO_Coawait;
1443 default: return OO_None;
1444 }
1445}
1446
1447
1448//===----------------------------------------------------------------------===//
1449// Postfix Operators.
1450//===----------------------------------------------------------------------===//
1451
1454 SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1455 unsigned MinNumArgs, ADLCallKind UsesADL)
1456 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1457 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1458 unsigned NumPreArgs = PreArgs.size();
1459 CallExprBits.NumPreArgs = NumPreArgs;
1460 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1461
1462 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1463 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1464 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1465 "OffsetToTrailingObjects overflow!");
1466
1467 CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1468
1469 setCallee(Fn);
1470 for (unsigned I = 0; I != NumPreArgs; ++I)
1471 setPreArg(I, PreArgs[I]);
1472 for (unsigned I = 0; I != Args.size(); ++I)
1473 setArg(I, Args[I]);
1474 for (unsigned I = Args.size(); I != NumArgs; ++I)
1475 setArg(I, nullptr);
1476
1477 this->computeDependence();
1478
1479 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1480 CallExprBits.IsCoroElideSafe = false;
1481 if (hasStoredFPFeatures())
1482 setStoredFPFeatures(FPFeatures);
1483}
1484
1485CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1486 bool HasFPFeatures, EmptyShell Empty)
1487 : Expr(SC, Empty), NumArgs(NumArgs) {
1488 CallExprBits.NumPreArgs = NumPreArgs;
1489 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1490
1491 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1492 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1493 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1494 "OffsetToTrailingObjects overflow!");
1495 CallExprBits.HasFPFeatures = HasFPFeatures;
1496 CallExprBits.IsCoroElideSafe = false;
1497}
1498
1501 SourceLocation RParenLoc,
1502 FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1503 ADLCallKind UsesADL) {
1504 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1505 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1506 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1507 void *Mem =
1508 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1509 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1510 RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1511}
1512
1514 ExprValueKind VK, SourceLocation RParenLoc,
1515 ADLCallKind UsesADL) {
1516 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1517 "Misaligned memory in CallExpr::CreateTemporary!");
1518 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1519 VK, RParenLoc, FPOptionsOverride(),
1520 /*MinNumArgs=*/0, UsesADL);
1521}
1522
1523CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1524 bool HasFPFeatures, EmptyShell Empty) {
1525 unsigned SizeOfTrailingObjects =
1526 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1527 void *Mem =
1528 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1529 return new (Mem)
1530 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1531}
1532
1533unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1534 switch (SC) {
1535 case CallExprClass:
1536 return sizeof(CallExpr);
1537 case CXXOperatorCallExprClass:
1538 return sizeof(CXXOperatorCallExpr);
1539 case CXXMemberCallExprClass:
1540 return sizeof(CXXMemberCallExpr);
1541 case UserDefinedLiteralClass:
1542 return sizeof(UserDefinedLiteral);
1543 case CUDAKernelCallExprClass:
1544 return sizeof(CUDAKernelCallExpr);
1545 default:
1546 llvm_unreachable("unexpected class deriving from CallExpr!");
1547 }
1548}
1549
1551 Expr *CEE = IgnoreParenImpCasts();
1552
1553 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE))
1554 CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1555
1556 // If we're calling a dereference, look at the pointer instead.
1557 while (true) {
1558 if (auto *BO = dyn_cast<BinaryOperator>(CEE)) {
1559 if (BO->isPtrMemOp()) {
1560 CEE = BO->getRHS()->IgnoreParenImpCasts();
1561 continue;
1562 }
1563 } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) {
1564 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1565 UO->getOpcode() == UO_Plus) {
1566 CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1567 continue;
1568 }
1569 }
1570 break;
1571 }
1572
1573 if (auto *DRE = dyn_cast<DeclRefExpr>(CEE))
1574 return DRE->getDecl();
1575 if (auto *ME = dyn_cast<MemberExpr>(CEE))
1576 return ME->getMemberDecl();
1577 if (auto *BE = dyn_cast<BlockExpr>(CEE))
1578 return BE->getBlockDecl();
1579
1580 return nullptr;
1581}
1582
1583/// If this is a call to a builtin, return the builtin ID. If not, return 0.
1585 const auto *FDecl = getDirectCallee();
1586 return FDecl ? FDecl->getBuiltinID() : 0;
1587}
1588
1590 if (unsigned BI = getBuiltinCallee())
1591 return Ctx.BuiltinInfo.isUnevaluated(BI);
1592 return false;
1593}
1594
1596 const Expr *Callee = getCallee();
1597 QualType CalleeType = Callee->getType();
1598 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1599 CalleeType = FnTypePtr->getPointeeType();
1600 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1601 CalleeType = BPT->getPointeeType();
1602 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1603 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1604 return Ctx.VoidTy;
1605
1606 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1607 return Ctx.DependentTy;
1608
1609 // This should never be overloaded and so should never return null.
1610 CalleeType = Expr::findBoundMemberType(Callee);
1611 assert(!CalleeType.isNull());
1612 } else if (CalleeType->isRecordType()) {
1613 // If the Callee is a record type, then it is a not-yet-resolved
1614 // dependent call to the call operator of that type.
1615 return Ctx.DependentTy;
1616 } else if (CalleeType->isDependentType() ||
1617 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1618 return Ctx.DependentTy;
1619 }
1620
1621 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1622 return FnType->getReturnType();
1623}
1624
1625std::pair<const NamedDecl *, const Attr *>
1627 // If the callee is marked nodiscard, return that attribute
1628 if (const Decl *D = getCalleeDecl())
1629 if (const auto *A = D->getAttr<WarnUnusedResultAttr>())
1630 return {nullptr, A};
1631
1632 // If the return type is a struct, union, or enum that is marked nodiscard,
1633 // then return the return type attribute.
1634 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1635 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1636 return {TD, A};
1637
1638 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1639 TD = TD->desugar()->getAs<TypedefType>())
1640 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1641 return {TD->getDecl(), A};
1642 return {nullptr, nullptr};
1643}
1644
1646 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1647 return OCE->getBeginLoc();
1648
1649 if (const auto *Method =
1650 dyn_cast_if_present<const CXXMethodDecl>(getCalleeDecl());
1651 Method && Method->isExplicitObjectMemberFunction()) {
1652 assert(getNumArgs() > 0 && getArg(0));
1653 return getArg(0)->getBeginLoc();
1654 }
1655
1657 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1658 begin = getArg(0)->getBeginLoc();
1659 return begin;
1660}
1661
1663 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1664 return OCE->getEndLoc();
1665
1667 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1668 end = getArg(getNumArgs() - 1)->getEndLoc();
1669 return end;
1670}
1671
1673 SourceLocation OperatorLoc,
1674 TypeSourceInfo *tsi,
1676 ArrayRef<Expr*> exprs,
1677 SourceLocation RParenLoc) {
1678 void *Mem = C.Allocate(
1679 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1680
1681 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1682 RParenLoc);
1683}
1684
1686 unsigned numComps, unsigned numExprs) {
1687 void *Mem =
1688 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1689 return new (Mem) OffsetOfExpr(numComps, numExprs);
1690}
1691
1692OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1693 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1695 SourceLocation RParenLoc)
1696 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1697 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1698 NumComps(comps.size()), NumExprs(exprs.size()) {
1699 for (unsigned i = 0; i != comps.size(); ++i)
1700 setComponent(i, comps[i]);
1701 for (unsigned i = 0; i != exprs.size(); ++i)
1702 setIndexExpr(i, exprs[i]);
1703
1705}
1706
1708 assert(getKind() == Field || getKind() == Identifier);
1709 if (getKind() == Field)
1710 return getField()->getIdentifier();
1711
1712 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1713}
1714
1716 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1718 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1719 OpLoc(op), RParenLoc(rp) {
1720 assert(ExprKind <= UETT_Last && "invalid enum value!");
1721 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1722 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1723 "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1724 UnaryExprOrTypeTraitExprBits.IsType = false;
1725 Argument.Ex = E;
1727}
1728
1729MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1730 NestedNameSpecifierLoc QualifierLoc,
1731 SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
1732 DeclAccessPair FoundDecl,
1733 const DeclarationNameInfo &NameInfo,
1734 const TemplateArgumentListInfo *TemplateArgs, QualType T,
1736 NonOdrUseReason NOUR)
1737 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1738 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1739 assert(!NameInfo.getName() ||
1740 MemberDecl->getDeclName() == NameInfo.getName());
1741 MemberExprBits.IsArrow = IsArrow;
1742 MemberExprBits.HasQualifier = QualifierLoc.hasQualifier();
1743 MemberExprBits.HasFoundDecl =
1744 FoundDecl.getDecl() != MemberDecl ||
1745 FoundDecl.getAccess() != MemberDecl->getAccess();
1746 MemberExprBits.HasTemplateKWAndArgsInfo =
1747 TemplateArgs || TemplateKWLoc.isValid();
1748 MemberExprBits.HadMultipleCandidates = false;
1749 MemberExprBits.NonOdrUseReason = NOUR;
1750 MemberExprBits.OperatorLoc = OperatorLoc;
1751
1752 if (hasQualifier())
1753 new (getTrailingObjects<NestedNameSpecifierLoc>())
1754 NestedNameSpecifierLoc(QualifierLoc);
1755 if (hasFoundDecl())
1756 *getTrailingObjects<DeclAccessPair>() = FoundDecl;
1757 if (TemplateArgs) {
1758 auto Deps = TemplateArgumentDependence::None;
1759 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1760 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
1761 Deps);
1762 } else if (TemplateKWLoc.isValid()) {
1763 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1764 TemplateKWLoc);
1765 }
1767}
1768
1770 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1771 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1772 ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1773 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1775 bool HasQualifier = QualifierLoc.hasQualifier();
1776 bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl ||
1777 FoundDecl.getAccess() != MemberDecl->getAccess();
1778 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1779 std::size_t Size =
1780 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1782 HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo,
1783 TemplateArgs ? TemplateArgs->size() : 0);
1784
1785 void *Mem = C.Allocate(Size, alignof(MemberExpr));
1786 return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc,
1787 TemplateKWLoc, MemberDecl, FoundDecl, NameInfo,
1788 TemplateArgs, T, VK, OK, NOUR);
1789}
1790
1792 bool HasQualifier, bool HasFoundDecl,
1793 bool HasTemplateKWAndArgsInfo,
1794 unsigned NumTemplateArgs) {
1795 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1796 "template args but no template arg info?");
1797 std::size_t Size =
1798 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1800 HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo,
1801 NumTemplateArgs);
1802 void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1803 return new (Mem) MemberExpr(EmptyShell());
1804}
1805
1807 MemberDecl = NewD;
1808 if (getType()->isUndeducedType())
1809 setType(NewD->getType());
1811}
1812
1814 if (isImplicitAccess()) {
1815 if (hasQualifier())
1816 return getQualifierLoc().getBeginLoc();
1817 return MemberLoc;
1818 }
1819
1820 // FIXME: We don't want this to happen. Rather, we should be able to
1821 // detect all kinds of implicit accesses more cleanly.
1822 SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1823 if (BaseStartLoc.isValid())
1824 return BaseStartLoc;
1825 return MemberLoc;
1826}
1830 EndLoc = getRAngleLoc();
1831 else if (EndLoc.isInvalid())
1832 EndLoc = getBase()->getEndLoc();
1833 return EndLoc;
1834}
1835
1836bool CastExpr::CastConsistency() const {
1837 switch (getCastKind()) {
1838 case CK_DerivedToBase:
1839 case CK_UncheckedDerivedToBase:
1840 case CK_DerivedToBaseMemberPointer:
1841 case CK_BaseToDerived:
1842 case CK_BaseToDerivedMemberPointer:
1843 assert(!path_empty() && "Cast kind should have a base path!");
1844 break;
1845
1846 case CK_CPointerToObjCPointerCast:
1847 assert(getType()->isObjCObjectPointerType());
1848 assert(getSubExpr()->getType()->isPointerType());
1849 goto CheckNoBasePath;
1850
1851 case CK_BlockPointerToObjCPointerCast:
1852 assert(getType()->isObjCObjectPointerType());
1853 assert(getSubExpr()->getType()->isBlockPointerType());
1854 goto CheckNoBasePath;
1855
1856 case CK_ReinterpretMemberPointer:
1857 assert(getType()->isMemberPointerType());
1858 assert(getSubExpr()->getType()->isMemberPointerType());
1859 goto CheckNoBasePath;
1860
1861 case CK_BitCast:
1862 // Arbitrary casts to C pointer types count as bitcasts.
1863 // Otherwise, we should only have block and ObjC pointer casts
1864 // here if they stay within the type kind.
1865 if (!getType()->isPointerType()) {
1866 assert(getType()->isObjCObjectPointerType() ==
1867 getSubExpr()->getType()->isObjCObjectPointerType());
1868 assert(getType()->isBlockPointerType() ==
1869 getSubExpr()->getType()->isBlockPointerType());
1870 }
1871 goto CheckNoBasePath;
1872
1873 case CK_AnyPointerToBlockPointerCast:
1874 assert(getType()->isBlockPointerType());
1875 assert(getSubExpr()->getType()->isAnyPointerType() &&
1876 !getSubExpr()->getType()->isBlockPointerType());
1877 goto CheckNoBasePath;
1878
1879 case CK_CopyAndAutoreleaseBlockObject:
1880 assert(getType()->isBlockPointerType());
1881 assert(getSubExpr()->getType()->isBlockPointerType());
1882 goto CheckNoBasePath;
1883
1884 case CK_FunctionToPointerDecay:
1885 assert(getType()->isPointerType());
1886 assert(getSubExpr()->getType()->isFunctionType());
1887 goto CheckNoBasePath;
1888
1889 case CK_AddressSpaceConversion: {
1890 auto Ty = getType();
1891 auto SETy = getSubExpr()->getType();
1893 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1894 Ty = Ty->getPointeeType();
1895 SETy = SETy->getPointeeType();
1896 }
1897 assert((Ty->isDependentType() || SETy->isDependentType()) ||
1898 (!Ty.isNull() && !SETy.isNull() &&
1899 Ty.getAddressSpace() != SETy.getAddressSpace()));
1900 goto CheckNoBasePath;
1901 }
1902 // These should not have an inheritance path.
1903 case CK_Dynamic:
1904 case CK_ToUnion:
1905 case CK_ArrayToPointerDecay:
1906 case CK_NullToMemberPointer:
1907 case CK_NullToPointer:
1908 case CK_ConstructorConversion:
1909 case CK_IntegralToPointer:
1910 case CK_PointerToIntegral:
1911 case CK_ToVoid:
1912 case CK_VectorSplat:
1913 case CK_IntegralCast:
1914 case CK_BooleanToSignedIntegral:
1915 case CK_IntegralToFloating:
1916 case CK_FloatingToIntegral:
1917 case CK_FloatingCast:
1918 case CK_ObjCObjectLValueCast:
1919 case CK_FloatingRealToComplex:
1920 case CK_FloatingComplexToReal:
1921 case CK_FloatingComplexCast:
1922 case CK_FloatingComplexToIntegralComplex:
1923 case CK_IntegralRealToComplex:
1924 case CK_IntegralComplexToReal:
1925 case CK_IntegralComplexCast:
1926 case CK_IntegralComplexToFloatingComplex:
1927 case CK_ARCProduceObject:
1928 case CK_ARCConsumeObject:
1929 case CK_ARCReclaimReturnedObject:
1930 case CK_ARCExtendBlockObject:
1931 case CK_ZeroToOCLOpaqueType:
1932 case CK_IntToOCLSampler:
1933 case CK_FloatingToFixedPoint:
1934 case CK_FixedPointToFloating:
1935 case CK_FixedPointCast:
1936 case CK_FixedPointToIntegral:
1937 case CK_IntegralToFixedPoint:
1938 case CK_MatrixCast:
1939 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1940 goto CheckNoBasePath;
1941
1942 case CK_Dependent:
1943 case CK_LValueToRValue:
1944 case CK_NoOp:
1945 case CK_AtomicToNonAtomic:
1946 case CK_NonAtomicToAtomic:
1947 case CK_PointerToBoolean:
1948 case CK_IntegralToBoolean:
1949 case CK_FloatingToBoolean:
1950 case CK_MemberPointerToBoolean:
1951 case CK_FloatingComplexToBoolean:
1952 case CK_IntegralComplexToBoolean:
1953 case CK_LValueBitCast: // -> bool&
1954 case CK_LValueToRValueBitCast:
1955 case CK_UserDefinedConversion: // operator bool()
1956 case CK_BuiltinFnToFnPtr:
1957 case CK_FixedPointToBoolean:
1958 case CK_HLSLArrayRValue:
1959 case CK_HLSLVectorTruncation:
1960 CheckNoBasePath:
1961 assert(path_empty() && "Cast kind should not have a base path!");
1962 break;
1963 }
1964 return true;
1965}
1966
1968 switch (CK) {
1969#define CAST_OPERATION(Name) case CK_##Name: return #Name;
1970#include "clang/AST/OperationKinds.def"
1971 }
1972 llvm_unreachable("Unhandled cast kind!");
1973}
1974
1975namespace {
1976// Skip over implicit nodes produced as part of semantic analysis.
1977// Designed for use with IgnoreExprNodes.
1978static Expr *ignoreImplicitSemaNodes(Expr *E) {
1979 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1980 return Materialize->getSubExpr();
1981
1982 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1983 return Binder->getSubExpr();
1984
1985 if (auto *Full = dyn_cast<FullExpr>(E))
1986 return Full->getSubExpr();
1987
1988 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E);
1989 CPLIE && CPLIE->getInitExprs().size() == 1)
1990 return CPLIE->getInitExprs()[0];
1991
1992 return E;
1993}
1994} // namespace
1995
1997 const Expr *SubExpr = nullptr;
1998
1999 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
2000 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
2001
2002 // Conversions by constructor and conversion functions have a
2003 // subexpression describing the call; strip it off.
2004 if (E->getCastKind() == CK_ConstructorConversion) {
2005 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
2006 ignoreImplicitSemaNodes);
2007 } else if (E->getCastKind() == CK_UserDefinedConversion) {
2008 assert((isa<CallExpr, BlockExpr>(SubExpr)) &&
2009 "Unexpected SubExpr for CK_UserDefinedConversion.");
2010 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2011 SubExpr = MCE->getImplicitObjectArgument();
2012 }
2013 }
2014
2015 return const_cast<Expr *>(SubExpr);
2016}
2017
2019 const Expr *SubExpr = nullptr;
2020
2021 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
2022 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
2023
2024 if (E->getCastKind() == CK_ConstructorConversion)
2025 return cast<CXXConstructExpr>(SubExpr)->getConstructor();
2026
2027 if (E->getCastKind() == CK_UserDefinedConversion) {
2028 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2029 return MCE->getMethodDecl();
2030 }
2031 }
2032
2033 return nullptr;
2034}
2035
2036CXXBaseSpecifier **CastExpr::path_buffer() {
2037 switch (getStmtClass()) {
2038#define ABSTRACT_STMT(x)
2039#define CASTEXPR(Type, Base) \
2040 case Stmt::Type##Class: \
2041 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2042#define STMT(Type, Base)
2043#include "clang/AST/StmtNodes.inc"
2044 default:
2045 llvm_unreachable("non-cast expressions not possible here");
2046 }
2047}
2048
2050 QualType opType) {
2051 auto RD = unionType->castAs<RecordType>()->getDecl();
2052 return getTargetFieldForToUnionCast(RD, opType);
2053}
2054
2056 QualType OpType) {
2057 auto &Ctx = RD->getASTContext();
2058 RecordDecl::field_iterator Field, FieldEnd;
2059 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2060 Field != FieldEnd; ++Field) {
2061 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2062 !Field->isUnnamedBitField()) {
2063 return *Field;
2064 }
2065 }
2066 return nullptr;
2067}
2068
2070 assert(hasStoredFPFeatures());
2071 switch (getStmtClass()) {
2072 case ImplicitCastExprClass:
2073 return static_cast<ImplicitCastExpr *>(this)
2074 ->getTrailingObjects<FPOptionsOverride>();
2075 case CStyleCastExprClass:
2076 return static_cast<CStyleCastExpr *>(this)
2077 ->getTrailingObjects<FPOptionsOverride>();
2078 case CXXFunctionalCastExprClass:
2079 return static_cast<CXXFunctionalCastExpr *>(this)
2080 ->getTrailingObjects<FPOptionsOverride>();
2081 case CXXStaticCastExprClass:
2082 return static_cast<CXXStaticCastExpr *>(this)
2083 ->getTrailingObjects<FPOptionsOverride>();
2084 default:
2085 llvm_unreachable("Cast does not have FPFeatures");
2086 }
2087}
2088
2090 CastKind Kind, Expr *Operand,
2091 const CXXCastPath *BasePath,
2092 ExprValueKind VK,
2093 FPOptionsOverride FPO) {
2094 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2095 void *Buffer =
2096 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2097 PathSize, FPO.requiresTrailingStorage()));
2098 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2099 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2100 assert((Kind != CK_LValueToRValue ||
2101 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2102 "invalid type for lvalue-to-rvalue conversion");
2104 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2105 if (PathSize)
2106 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2107 E->getTrailingObjects<CXXBaseSpecifier *>());
2108 return E;
2109}
2110
2112 unsigned PathSize,
2113 bool HasFPFeatures) {
2114 void *Buffer =
2115 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2116 PathSize, HasFPFeatures));
2117 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2118}
2119
2121 ExprValueKind VK, CastKind K, Expr *Op,
2122 const CXXCastPath *BasePath,
2124 TypeSourceInfo *WrittenTy,
2126 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2127 void *Buffer =
2128 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2129 PathSize, FPO.requiresTrailingStorage()));
2130 CStyleCastExpr *E =
2131 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2132 if (PathSize)
2133 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2134 E->getTrailingObjects<CXXBaseSpecifier *>());
2135 return E;
2136}
2137
2139 unsigned PathSize,
2140 bool HasFPFeatures) {
2141 void *Buffer =
2142 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2143 PathSize, HasFPFeatures));
2144 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2145}
2146
2147/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2148/// corresponds to, e.g. "<<=".
2150 switch (Op) {
2151#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2152#include "clang/AST/OperationKinds.def"
2153 }
2154 llvm_unreachable("Invalid OpCode!");
2155}
2156
2159 switch (OO) {
2160 default: llvm_unreachable("Not an overloadable binary operator");
2161 case OO_Plus: return BO_Add;
2162 case OO_Minus: return BO_Sub;
2163 case OO_Star: return BO_Mul;
2164 case OO_Slash: return BO_Div;
2165 case OO_Percent: return BO_Rem;
2166 case OO_Caret: return BO_Xor;
2167 case OO_Amp: return BO_And;
2168 case OO_Pipe: return BO_Or;
2169 case OO_Equal: return BO_Assign;
2170 case OO_Spaceship: return BO_Cmp;
2171 case OO_Less: return BO_LT;
2172 case OO_Greater: return BO_GT;
2173 case OO_PlusEqual: return BO_AddAssign;
2174 case OO_MinusEqual: return BO_SubAssign;
2175 case OO_StarEqual: return BO_MulAssign;
2176 case OO_SlashEqual: return BO_DivAssign;
2177 case OO_PercentEqual: return BO_RemAssign;
2178 case OO_CaretEqual: return BO_XorAssign;
2179 case OO_AmpEqual: return BO_AndAssign;
2180 case OO_PipeEqual: return BO_OrAssign;
2181 case OO_LessLess: return BO_Shl;
2182 case OO_GreaterGreater: return BO_Shr;
2183 case OO_LessLessEqual: return BO_ShlAssign;
2184 case OO_GreaterGreaterEqual: return BO_ShrAssign;
2185 case OO_EqualEqual: return BO_EQ;
2186 case OO_ExclaimEqual: return BO_NE;
2187 case OO_LessEqual: return BO_LE;
2188 case OO_GreaterEqual: return BO_GE;
2189 case OO_AmpAmp: return BO_LAnd;
2190 case OO_PipePipe: return BO_LOr;
2191 case OO_Comma: return BO_Comma;
2192 case OO_ArrowStar: return BO_PtrMemI;
2193 }
2194}
2195
2197 static const OverloadedOperatorKind OverOps[] = {
2198 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2199 OO_Star, OO_Slash, OO_Percent,
2200 OO_Plus, OO_Minus,
2201 OO_LessLess, OO_GreaterGreater,
2202 OO_Spaceship,
2203 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2204 OO_EqualEqual, OO_ExclaimEqual,
2205 OO_Amp,
2206 OO_Caret,
2207 OO_Pipe,
2208 OO_AmpAmp,
2209 OO_PipePipe,
2210 OO_Equal, OO_StarEqual,
2211 OO_SlashEqual, OO_PercentEqual,
2212 OO_PlusEqual, OO_MinusEqual,
2213 OO_LessLessEqual, OO_GreaterGreaterEqual,
2214 OO_AmpEqual, OO_CaretEqual,
2215 OO_PipeEqual,
2216 OO_Comma
2217 };
2218 return OverOps[Opc];
2219}
2220
2222 Opcode Opc,
2223 const Expr *LHS,
2224 const Expr *RHS) {
2225 if (Opc != BO_Add)
2226 return false;
2227
2228 // Check that we have one pointer and one integer operand.
2229 const Expr *PExp;
2230 if (LHS->getType()->isPointerType()) {
2231 if (!RHS->getType()->isIntegerType())
2232 return false;
2233 PExp = LHS;
2234 } else if (RHS->getType()->isPointerType()) {
2235 if (!LHS->getType()->isIntegerType())
2236 return false;
2237 PExp = RHS;
2238 } else {
2239 return false;
2240 }
2241
2242 // Check that the pointer is a nullptr.
2243 if (!PExp->IgnoreParenCasts()
2245 return false;
2246
2247 // Check that the pointee type is char-sized.
2248 const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2249 if (!PTy || !PTy->getPointeeType()->isCharType())
2250 return false;
2251
2252 return true;
2253}
2254
2256 QualType ResultTy, SourceLocation BLoc,
2257 SourceLocation RParenLoc,
2258 DeclContext *ParentContext)
2259 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2260 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2261 SourceLocExprBits.Kind = llvm::to_underlying(Kind);
2262 // In dependent contexts, function names may change.
2263 setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext()
2264 ? ExprDependence::Value
2265 : ExprDependence::None);
2266}
2267
2269 switch (getIdentKind()) {
2271 return "__builtin_FILE";
2273 return "__builtin_FILE_NAME";
2275 return "__builtin_FUNCTION";
2277 return "__builtin_FUNCSIG";
2279 return "__builtin_LINE";
2281 return "__builtin_COLUMN";
2283 return "__builtin_source_location";
2284 }
2285 llvm_unreachable("unexpected IdentKind!");
2286}
2287
2289 const Expr *DefaultExpr) const {
2291 const DeclContext *Context;
2292
2293 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) {
2294 Loc = DIE->getUsedLocation();
2295 Context = DIE->getUsedContext();
2296 } else if (const auto *DAE =
2297 dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) {
2298 Loc = DAE->getUsedLocation();
2299 Context = DAE->getUsedContext();
2300 } else {
2301 Loc = getLocation();
2302 Context = getParentContext();
2303 }
2304
2305 // If we are currently parsing a lambda declarator, we might not have a fully
2306 // formed call operator declaration yet, and we could not form a function name
2307 // for it. Because we do not have access to Sema/function scopes here, we
2308 // detect this case by relying on the fact such method doesn't yet have a
2309 // type.
2310 if (const auto *D = dyn_cast<CXXMethodDecl>(Context);
2311 D && D->getFunctionTypeLoc().isNull() && isLambdaCallOperator(D))
2312 Context = D->getParent()->getParent();
2313
2316
2317 auto MakeStringLiteral = [&](StringRef Tmp) {
2318 using LValuePathEntry = APValue::LValuePathEntry;
2320 // Decay the string to a pointer to the first character.
2321 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2322 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2323 };
2324
2325 switch (getIdentKind()) {
2327 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2328 // the last part of __builtin_FILE().
2331 FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo());
2332 return MakeStringLiteral(FileName);
2333 }
2337 Ctx.getTargetInfo());
2338 return MakeStringLiteral(Path);
2339 }
2342 const auto *CurDecl = dyn_cast<Decl>(Context);
2343 const auto Kind = getIdentKind() == SourceLocIdentKind::Function
2346 return MakeStringLiteral(
2347 CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string(""));
2348 }
2350 return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy));
2352 return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy));
2354 // Fill in a std::source_location::__impl structure, by creating an
2355 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2356 // that.
2357 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2358 assert(ImplDecl);
2359
2360 // Construct an APValue for the __impl struct, and get or create a Decl
2361 // corresponding to that. Note that we've already verified that the shape of
2362 // the ImplDecl type is as expected.
2363
2365 for (const FieldDecl *F : ImplDecl->fields()) {
2366 StringRef Name = F->getName();
2367 if (Name == "_M_file_name") {
2370 Ctx.getTargetInfo());
2371 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2372 } else if (Name == "_M_function_name") {
2373 // Note: this emits the PrettyFunction name -- different than what
2374 // __builtin_FUNCTION() above returns!
2375 const auto *CurDecl = dyn_cast<Decl>(Context);
2376 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2377 CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2378 ? StringRef(PredefinedExpr::ComputeName(
2380 : "");
2381 } else if (Name == "_M_line") {
2382 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType());
2383 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2384 } else if (Name == "_M_column") {
2385 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType());
2386 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2387 }
2388 }
2389
2392
2394 false);
2395 }
2396 }
2397 llvm_unreachable("unhandled case");
2398}
2399
2401 EmbedDataStorage *Data, unsigned Begin,
2402 unsigned NumOfElements)
2403 : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary),
2404 EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin),
2405 NumOfElements(NumOfElements) {
2406 setDependence(ExprDependence::None);
2407 FakeChildNode = IntegerLiteral::Create(
2408 Ctx, llvm::APInt::getZero(Ctx.getTypeSize(getType())), getType(), Loc);
2409}
2410
2412 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2413 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2414 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2415 RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2417 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2418
2420}
2421
2422void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2423 if (NumInits > InitExprs.size())
2424 InitExprs.reserve(C, NumInits);
2425}
2426
2427void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2428 InitExprs.resize(C, NumInits, nullptr);
2429}
2430
2432 if (Init >= InitExprs.size()) {
2433 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2434 setInit(Init, expr);
2435 return nullptr;
2436 }
2437
2438 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2439 setInit(Init, expr);
2440 return Result;
2441}
2442
2444 assert(!hasArrayFiller() && "Filler already set!");
2445 ArrayFillerOrUnionFieldInit = filler;
2446 // Fill out any "holes" in the array due to designated initializers.
2447 Expr **inits = getInits();
2448 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2449 if (inits[i] == nullptr)
2450 inits[i] = filler;
2451}
2452
2454 if (getNumInits() != 1)
2455 return false;
2456 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2457 if (!AT || !AT->getElementType()->isIntegerType())
2458 return false;
2459 // It is possible for getInit() to return null.
2460 const Expr *Init = getInit(0);
2461 if (!Init)
2462 return false;
2463 Init = Init->IgnoreParenImpCasts();
2464 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2465}
2466
2468 assert(isSemanticForm() && "syntactic form never semantically transparent");
2469
2470 // A glvalue InitListExpr is always just sugar.
2471 if (isGLValue()) {
2472 assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2473 return true;
2474 }
2475
2476 // Otherwise, we're sugar if and only if we have exactly one initializer that
2477 // is of the same type.
2478 if (getNumInits() != 1 || !getInit(0))
2479 return false;
2480
2481 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2482 // transparent struct copy.
2483 if (!getInit(0)->isPRValue() && getType()->isRecordType())
2484 return false;
2485
2486 return getType().getCanonicalType() ==
2488}
2489
2491 assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2492
2493 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2494 return false;
2495 }
2496
2497 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2498 return Lit && Lit->getValue() == 0;
2499}
2500
2502 if (InitListExpr *SyntacticForm = getSyntacticForm())
2503 return SyntacticForm->getBeginLoc();
2504 SourceLocation Beg = LBraceLoc;
2505 if (Beg.isInvalid()) {
2506 // Find the first non-null initializer.
2507 for (InitExprsTy::const_iterator I = InitExprs.begin(),
2508 E = InitExprs.end();
2509 I != E; ++I) {
2510 if (Stmt *S = *I) {
2511 Beg = S->getBeginLoc();
2512 break;
2513 }
2514 }
2515 }
2516 return Beg;
2517}
2518
2520 if (InitListExpr *SyntacticForm = getSyntacticForm())
2521 return SyntacticForm->getEndLoc();
2522 SourceLocation End = RBraceLoc;
2523 if (End.isInvalid()) {
2524 // Find the first non-null initializer from the end.
2525 for (Stmt *S : llvm::reverse(InitExprs)) {
2526 if (S) {
2527 End = S->getEndLoc();
2528 break;
2529 }
2530 }
2531 }
2532 return End;
2533}
2534
2535/// getFunctionType - Return the underlying function type for this block.
2536///
2538 // The block pointer is never sugared, but the function type might be.
2539 return cast<BlockPointerType>(getType())
2541}
2542
2544 return TheBlock->getCaretLocation();
2545}
2546const Stmt *BlockExpr::getBody() const {
2547 return TheBlock->getBody();
2548}
2550 return TheBlock->getBody();
2551}
2552
2553
2554//===----------------------------------------------------------------------===//
2555// Generic Expression Routines
2556//===----------------------------------------------------------------------===//
2557
2559 // In C++11, discarded-value expressions of a certain form are special,
2560 // according to [expr]p10:
2561 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2562 // expression is a glvalue of volatile-qualified type and it has
2563 // one of the following forms:
2564 if (!isGLValue() || !getType().isVolatileQualified())
2565 return false;
2566
2567 const Expr *E = IgnoreParens();
2568
2569 // - id-expression (5.1.1),
2570 if (isa<DeclRefExpr>(E))
2571 return true;
2572
2573 // - subscripting (5.2.1),
2574 if (isa<ArraySubscriptExpr>(E))
2575 return true;
2576
2577 // - class member access (5.2.5),
2578 if (isa<MemberExpr>(E))
2579 return true;
2580
2581 // - indirection (5.3.1),
2582 if (auto *UO = dyn_cast<UnaryOperator>(E))
2583 if (UO->getOpcode() == UO_Deref)
2584 return true;
2585
2586 if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2587 // - pointer-to-member operation (5.5),
2588 if (BO->isPtrMemOp())
2589 return true;
2590
2591 // - comma expression (5.18) where the right operand is one of the above.
2592 if (BO->getOpcode() == BO_Comma)
2593 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2594 }
2595
2596 // - conditional expression (5.16) where both the second and the third
2597 // operands are one of the above, or
2598 if (auto *CO = dyn_cast<ConditionalOperator>(E))
2599 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2600 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2601 // The related edge case of "*x ?: *x".
2602 if (auto *BCO =
2603 dyn_cast<BinaryConditionalOperator>(E)) {
2604 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2605 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2606 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2607 }
2608
2609 // Objective-C++ extensions to the rule.
2610 if (isa<ObjCIvarRefExpr>(E))
2611 return true;
2612 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2613 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2614 return true;
2615 }
2616
2617 return false;
2618}
2619
2620/// isUnusedResultAWarning - Return true if this immediate expression should
2621/// be warned about if the result is unused. If so, fill in Loc and Ranges
2622/// with location to warn on and the source range[s] to report with the
2623/// warning.
2625 SourceRange &R1, SourceRange &R2,
2626 ASTContext &Ctx) const {
2627 // Don't warn if the expr is type dependent. The type could end up
2628 // instantiating to void.
2629 if (isTypeDependent())
2630 return false;
2631
2632 switch (getStmtClass()) {
2633 default:
2634 if (getType()->isVoidType())
2635 return false;
2636 WarnE = this;
2637 Loc = getExprLoc();
2638 R1 = getSourceRange();
2639 return true;
2640 case ParenExprClass:
2641 return cast<ParenExpr>(this)->getSubExpr()->
2642 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2643 case GenericSelectionExprClass:
2644 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2645 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2646 case CoawaitExprClass:
2647 case CoyieldExprClass:
2648 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2649 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2650 case ChooseExprClass:
2651 return cast<ChooseExpr>(this)->getChosenSubExpr()->
2652 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2653 case UnaryOperatorClass: {
2654 const UnaryOperator *UO = cast<UnaryOperator>(this);
2655
2656 switch (UO->getOpcode()) {
2657 case UO_Plus:
2658 case UO_Minus:
2659 case UO_AddrOf:
2660 case UO_Not:
2661 case UO_LNot:
2662 case UO_Deref:
2663 break;
2664 case UO_Coawait:
2665 // This is just the 'operator co_await' call inside the guts of a
2666 // dependent co_await call.
2667 case UO_PostInc:
2668 case UO_PostDec:
2669 case UO_PreInc:
2670 case UO_PreDec: // ++/--
2671 return false; // Not a warning.
2672 case UO_Real:
2673 case UO_Imag:
2674 // accessing a piece of a volatile complex is a side-effect.
2675 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2677 return false;
2678 break;
2679 case UO_Extension:
2680 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2681 }
2682 WarnE = this;
2683 Loc = UO->getOperatorLoc();
2684 R1 = UO->getSubExpr()->getSourceRange();
2685 return true;
2686 }
2687 case BinaryOperatorClass: {
2688 const BinaryOperator *BO = cast<BinaryOperator>(this);
2689 switch (BO->getOpcode()) {
2690 default:
2691 break;
2692 // Consider the RHS of comma for side effects. LHS was checked by
2693 // Sema::CheckCommaOperands.
2694 case BO_Comma:
2695 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2696 // lvalue-ness) of an assignment written in a macro.
2697 if (IntegerLiteral *IE =
2698 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2699 if (IE->getValue() == 0)
2700 return false;
2701 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2702 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2703 case BO_LAnd:
2704 case BO_LOr:
2705 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2706 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2707 return false;
2708 break;
2709 }
2710 if (BO->isAssignmentOp())
2711 return false;
2712 WarnE = this;
2713 Loc = BO->getOperatorLoc();
2714 R1 = BO->getLHS()->getSourceRange();
2715 R2 = BO->getRHS()->getSourceRange();
2716 return true;
2717 }
2718 case CompoundAssignOperatorClass:
2719 case VAArgExprClass:
2720 case AtomicExprClass:
2721 return false;
2722
2723 case ConditionalOperatorClass: {
2724 // If only one of the LHS or RHS is a warning, the operator might
2725 // be being used for control flow. Only warn if both the LHS and
2726 // RHS are warnings.
2727 const auto *Exp = cast<ConditionalOperator>(this);
2728 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2729 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2730 }
2731 case BinaryConditionalOperatorClass: {
2732 const auto *Exp = cast<BinaryConditionalOperator>(this);
2733 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2734 }
2735
2736 case MemberExprClass:
2737 WarnE = this;
2738 Loc = cast<MemberExpr>(this)->getMemberLoc();
2739 R1 = SourceRange(Loc, Loc);
2740 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2741 return true;
2742
2743 case ArraySubscriptExprClass:
2744 WarnE = this;
2745 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2746 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2747 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2748 return true;
2749
2750 case CXXOperatorCallExprClass: {
2751 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2752 // overloads as there is no reasonable way to define these such that they
2753 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2754 // warning: operators == and != are commonly typo'ed, and so warning on them
2755 // provides additional value as well. If this list is updated,
2756 // DiagnoseUnusedComparison should be as well.
2757 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2758 switch (Op->getOperator()) {
2759 default:
2760 break;
2761 case OO_EqualEqual:
2762 case OO_ExclaimEqual:
2763 case OO_Less:
2764 case OO_Greater:
2765 case OO_GreaterEqual:
2766 case OO_LessEqual:
2767 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2768 Op->getCallReturnType(Ctx)->isVoidType())
2769 break;
2770 WarnE = this;
2771 Loc = Op->getOperatorLoc();
2772 R1 = Op->getSourceRange();
2773 return true;
2774 }
2775
2776 // Fallthrough for generic call handling.
2777 [[fallthrough]];
2778 }
2779 case CallExprClass:
2780 case CXXMemberCallExprClass:
2781 case UserDefinedLiteralClass: {
2782 // If this is a direct call, get the callee.
2783 const CallExpr *CE = cast<CallExpr>(this);
2784 if (const Decl *FD = CE->getCalleeDecl()) {
2785 // If the callee has attribute pure, const, or warn_unused_result, warn
2786 // about it. void foo() { strlen("bar"); } should warn.
2787 //
2788 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2789 // updated to match for QoI.
2790 if (CE->hasUnusedResultAttr(Ctx) ||
2791 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2792 WarnE = this;
2793 Loc = CE->getCallee()->getBeginLoc();
2794 R1 = CE->getCallee()->getSourceRange();
2795
2796 if (unsigned NumArgs = CE->getNumArgs())
2797 R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2798 CE->getArg(NumArgs - 1)->getEndLoc());
2799 return true;
2800 }
2801 }
2802 return false;
2803 }
2804
2805 // If we don't know precisely what we're looking at, let's not warn.
2806 case UnresolvedLookupExprClass:
2807 case CXXUnresolvedConstructExprClass:
2808 case RecoveryExprClass:
2809 return false;
2810
2811 case CXXTemporaryObjectExprClass:
2812 case CXXConstructExprClass: {
2813 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2814 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2815 if (Type->hasAttr<WarnUnusedAttr>() ||
2816 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2817 WarnE = this;
2818 Loc = getBeginLoc();
2819 R1 = getSourceRange();
2820 return true;
2821 }
2822 }
2823
2824 const auto *CE = cast<CXXConstructExpr>(this);
2825 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2826 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2827 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2828 WarnE = this;
2829 Loc = getBeginLoc();
2830 R1 = getSourceRange();
2831
2832 if (unsigned NumArgs = CE->getNumArgs())
2833 R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2834 CE->getArg(NumArgs - 1)->getEndLoc());
2835 return true;
2836 }
2837 }
2838
2839 return false;
2840 }
2841
2842 case ObjCMessageExprClass: {
2843 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2844 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2845 ME->isInstanceMessage() &&
2846 !ME->getType()->isVoidType() &&
2847 ME->getMethodFamily() == OMF_init) {
2848 WarnE = this;
2849 Loc = getExprLoc();
2850 R1 = ME->getSourceRange();
2851 return true;
2852 }
2853
2854 if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2855 if (MD->hasAttr<WarnUnusedResultAttr>()) {
2856 WarnE = this;
2857 Loc = getExprLoc();
2858 return true;
2859 }
2860
2861 return false;
2862 }
2863
2864 case ObjCPropertyRefExprClass:
2865 case ObjCSubscriptRefExprClass:
2866 WarnE = this;
2867 Loc = getExprLoc();
2868 R1 = getSourceRange();
2869 return true;
2870
2871 case PseudoObjectExprClass: {
2872 const auto *POE = cast<PseudoObjectExpr>(this);
2873
2874 // For some syntactic forms, we should always warn.
2875 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2876 POE->getSyntacticForm())) {
2877 WarnE = this;
2878 Loc = getExprLoc();
2879 R1 = getSourceRange();
2880 return true;
2881 }
2882
2883 // For others, we should never warn.
2884 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2885 if (BO->isAssignmentOp())
2886 return false;
2887 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2888 if (UO->isIncrementDecrementOp())
2889 return false;
2890
2891 // Otherwise, warn if the result expression would warn.
2892 const Expr *Result = POE->getResultExpr();
2893 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2894 }
2895
2896 case StmtExprClass: {
2897 // Statement exprs don't logically have side effects themselves, but are
2898 // sometimes used in macros in ways that give them a type that is unused.
2899 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2900 // however, if the result of the stmt expr is dead, we don't want to emit a
2901 // warning.
2902 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2903 if (!CS->body_empty()) {
2904 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2905 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2906 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2907 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2908 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2909 }
2910
2911 if (getType()->isVoidType())
2912 return false;
2913 WarnE = this;
2914 Loc = cast<StmtExpr>(this)->getLParenLoc();
2915 R1 = getSourceRange();
2916 return true;
2917 }
2918 case CXXFunctionalCastExprClass:
2919 case CStyleCastExprClass: {
2920 // Ignore an explicit cast to void, except in C++98 if the operand is a
2921 // volatile glvalue for which we would trigger an implicit read in any
2922 // other language mode. (Such an implicit read always happens as part of
2923 // the lvalue conversion in C, and happens in C++ for expressions of all
2924 // forms where it seems likely the user intended to trigger a volatile
2925 // load.)
2926 const CastExpr *CE = cast<CastExpr>(this);
2927 const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2928 if (CE->getCastKind() == CK_ToVoid) {
2929 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2931 // Suppress the "unused value" warning for idiomatic usage of
2932 // '(void)var;' used to suppress "unused variable" warnings.
2933 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2934 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2935 if (!VD->isExternallyVisible())
2936 return false;
2937
2938 // The lvalue-to-rvalue conversion would have no effect for an array.
2939 // It's implausible that the programmer expected this to result in a
2940 // volatile array load, so don't warn.
2941 if (SubE->getType()->isArrayType())
2942 return false;
2943
2944 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2945 }
2946 return false;
2947 }
2948
2949 // If this is a cast to a constructor conversion, check the operand.
2950 // Otherwise, the result of the cast is unused.
2951 if (CE->getCastKind() == CK_ConstructorConversion)
2952 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2953 if (CE->getCastKind() == CK_Dependent)
2954 return false;
2955
2956 WarnE = this;
2957 if (const CXXFunctionalCastExpr *CXXCE =
2958 dyn_cast<CXXFunctionalCastExpr>(this)) {
2959 Loc = CXXCE->getBeginLoc();
2960 R1 = CXXCE->getSubExpr()->getSourceRange();
2961 } else {
2962 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2963 Loc = CStyleCE->getLParenLoc();
2964 R1 = CStyleCE->getSubExpr()->getSourceRange();
2965 }
2966 return true;
2967 }
2968 case ImplicitCastExprClass: {
2969 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2970
2971 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2972 if (ICE->getCastKind() == CK_LValueToRValue &&
2974 return false;
2975
2976 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2977 }
2978 case CXXDefaultArgExprClass:
2979 return (cast<CXXDefaultArgExpr>(this)
2980 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2981 case CXXDefaultInitExprClass:
2982 return (cast<CXXDefaultInitExpr>(this)
2983 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2984
2985 case CXXNewExprClass:
2986 // FIXME: In theory, there might be new expressions that don't have side
2987 // effects (e.g. a placement new with an uninitialized POD).
2988 case CXXDeleteExprClass:
2989 return false;
2990 case MaterializeTemporaryExprClass:
2991 return cast<MaterializeTemporaryExpr>(this)
2992 ->getSubExpr()
2993 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2994 case CXXBindTemporaryExprClass:
2995 return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2996 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2997 case ExprWithCleanupsClass:
2998 return cast<ExprWithCleanups>(this)->getSubExpr()
2999 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
3000 case OpaqueValueExprClass:
3001 return cast<OpaqueValueExpr>(this)->getSourceExpr()->isUnusedResultAWarning(
3002 WarnE, Loc, R1, R2, Ctx);
3003 }
3004}
3005
3006/// isOBJCGCCandidate - Check if an expression is objc gc'able.
3007/// returns true, if it is; false otherwise.
3009 const Expr *E = IgnoreParens();
3010 switch (E->getStmtClass()) {
3011 default:
3012 return false;
3013 case ObjCIvarRefExprClass:
3014 return true;
3015 case Expr::UnaryOperatorClass:
3016 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3017 case ImplicitCastExprClass:
3018 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3019 case MaterializeTemporaryExprClass:
3020 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
3021 Ctx);
3022 case CStyleCastExprClass:
3023 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3024 case DeclRefExprClass: {
3025 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
3026
3027 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3028 if (VD->hasGlobalStorage())
3029 return true;
3030 QualType T = VD->getType();
3031 // dereferencing to a pointer is always a gc'able candidate,
3032 // unless it is __weak.
3033 return T->isPointerType() &&
3035 }
3036 return false;
3037 }
3038 case MemberExprClass: {
3039 const MemberExpr *M = cast<MemberExpr>(E);
3040 return M->getBase()->isOBJCGCCandidate(Ctx);
3041 }
3042 case ArraySubscriptExprClass:
3043 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
3044 }
3045}
3046
3048 if (isTypeDependent())
3049 return false;
3051}
3052
3054 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
3055
3056 // Bound member expressions are always one of these possibilities:
3057 // x->m x.m x->*y x.*y
3058 // (possibly parenthesized)
3059
3060 expr = expr->IgnoreParens();
3061 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
3062 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3063 return mem->getMemberDecl()->getType();
3064 }
3065
3066 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
3067 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3068 ->getPointeeType();
3069 assert(type->isFunctionType());
3070 return type;
3071 }
3072
3073 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3074 return QualType();
3075}
3076
3079}
3080
3083}
3084
3087}
3088
3091}
3092
3095}
3096
3100}
3101
3104}
3105
3107 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3108 if (isa_and_nonnull<CXXConversionDecl>(MCE->getMethodDecl()))
3109 return MCE->getImplicitObjectArgument();
3110 }
3111 return this;
3112}
3113
3117}
3118
3122}
3123
3125 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3126 if (auto *CE = dyn_cast<CastExpr>(E)) {
3127 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3128 // ptr<->int casts of the same width. We also ignore all identity casts.
3129 Expr *SubExpr = CE->getSubExpr();
3130 bool IsIdentityCast =
3131 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
3132 bool IsSameWidthCast = (E->getType()->isPointerType() ||
3133 E->getType()->isIntegralType(Ctx)) &&
3134 (SubExpr->getType()->isPointerType() ||
3135 SubExpr->getType()->isIntegralType(Ctx)) &&
3136 (Ctx.getTypeSize(E->getType()) ==
3137 Ctx.getTypeSize(SubExpr->getType()));
3138
3139 if (IsIdentityCast || IsSameWidthCast)
3140 return SubExpr;
3141 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
3142 return NTTP->getReplacement();
3143
3144 return E;
3145 };
3147 IgnoreNoopCastsSingleStep);
3148}
3149
3152 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3153 auto *SE = Cast->getSubExpr();
3154 if (SE->getSourceRange() == E->getSourceRange())
3155 return SE;
3156 }
3157
3158 if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3159 auto NumArgs = C->getNumArgs();
3160 if (NumArgs == 1 ||
3161 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3162 Expr *A = C->getArg(0);
3163 if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3164 return A;
3165 }
3166 }
3167 return E;
3168 };
3169 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3170 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3171 Expr *ExprNode = C->getImplicitObjectArgument();
3172 if (ExprNode->getSourceRange() == E->getSourceRange()) {
3173 return ExprNode;
3174 }
3175 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3176 if (PE->getSourceRange() == C->getSourceRange()) {
3177 return cast<Expr>(PE);
3178 }
3179 }
3180 ExprNode = ExprNode->IgnoreParenImpCasts();
3181 if (ExprNode->getSourceRange() == E->getSourceRange())
3182 return ExprNode;
3183 }
3184 return E;
3185 };
3186 return IgnoreExprNodes(
3189 IgnoreImplicitMemberCallSingleStep);
3190}
3191
3193 const Expr *E = this;
3194 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3195 E = M->getSubExpr();
3196
3197 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3198 E = ICE->getSubExprAsWritten();
3199
3200 return isa<CXXDefaultArgExpr>(E);
3201}
3202
3203/// Skip over any no-op casts and any temporary-binding
3204/// expressions.
3206 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3207 E = M->getSubExpr();
3208
3209 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3210 if (ICE->getCastKind() == CK_NoOp)
3211 E = ICE->getSubExpr();
3212 else
3213 break;
3214 }
3215
3216 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3217 E = BE->getSubExpr();
3218
3219 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3220 if (ICE->getCastKind() == CK_NoOp)
3221 E = ICE->getSubExpr();
3222 else
3223 break;
3224 }
3225
3226 return E->IgnoreParens();
3227}
3228
3229/// isTemporaryObject - Determines if this expression produces a
3230/// temporary of the given class type.
3232 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3233 return false;
3234
3236
3237 // Temporaries are by definition pr-values of class type.
3238 if (!E->Classify(C).isPRValue()) {
3239 // In this context, property reference is a message call and is pr-value.
3240 if (!isa<ObjCPropertyRefExpr>(E))
3241 return false;
3242 }
3243
3244 // Black-list a few cases which yield pr-values of class type that don't
3245 // refer to temporaries of that type:
3246
3247 // - implicit derived-to-base conversions
3248 if (isa<ImplicitCastExpr>(E)) {
3249 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3250 case CK_DerivedToBase:
3251 case CK_UncheckedDerivedToBase:
3252 return false;
3253 default:
3254 break;
3255 }
3256 }
3257
3258 // - member expressions (all)
3259 if (isa<MemberExpr>(E))
3260 return false;
3261
3262 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3263 if (BO->isPtrMemOp())
3264 return false;
3265
3266 // - opaque values (all)
3267 if (isa<OpaqueValueExpr>(E))
3268 return false;
3269
3270 return true;
3271}
3272
3274 const Expr *E = this;
3275
3276 // Strip away parentheses and casts we don't care about.
3277 while (true) {
3278 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3279 E = Paren->getSubExpr();
3280 continue;
3281 }
3282
3283 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3284 if (ICE->getCastKind() == CK_NoOp ||
3285 ICE->getCastKind() == CK_LValueToRValue ||
3286 ICE->getCastKind() == CK_DerivedToBase ||
3287 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3288 E = ICE->getSubExpr();
3289 continue;
3290 }
3291 }
3292
3293 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3294 if (UnOp->getOpcode() == UO_Extension) {
3295 E = UnOp->getSubExpr();
3296 continue;
3297 }
3298 }
3299
3300 if (const MaterializeTemporaryExpr *M
3301 = dyn_cast<MaterializeTemporaryExpr>(E)) {
3302 E = M->getSubExpr();
3303 continue;
3304 }
3305
3306 break;
3307 }
3308
3309 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3310 return This->isImplicit();
3311
3312 return false;
3313}
3314
3315/// hasAnyTypeDependentArguments - Determines if any of the expressions
3316/// in Exprs is type-dependent.
3318 for (unsigned I = 0; I < Exprs.size(); ++I)
3319 if (Exprs[I]->isTypeDependent())
3320 return true;
3321
3322 return false;
3323}
3324
3326 const Expr **Culprit) const {
3327 assert(!isValueDependent() &&
3328 "Expression evaluator can't be called on a dependent expression.");
3329
3330 // This function is attempting whether an expression is an initializer
3331 // which can be evaluated at compile-time. It very closely parallels
3332 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3333 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3334 // to isEvaluatable most of the time.
3335 //
3336 // If we ever capture reference-binding directly in the AST, we can
3337 // kill the second parameter.
3338
3339 if (IsForRef) {
3340 if (auto *EWC = dyn_cast<ExprWithCleanups>(this))
3341 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit);
3342 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this))
3343 return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3345 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3346 return true;
3347 if (Culprit)
3348 *Culprit = this;
3349 return false;
3350 }
3351
3352 switch (getStmtClass()) {
3353 default: break;
3354 case Stmt::ExprWithCleanupsClass:
3355 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3356 Ctx, IsForRef, Culprit);
3357 case StringLiteralClass:
3358 case ObjCEncodeExprClass:
3359 return true;
3360 case CXXTemporaryObjectExprClass:
3361 case CXXConstructExprClass: {
3362 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3363
3364 if (CE->getConstructor()->isTrivial() &&
3366 // Trivial default constructor
3367 if (!CE->getNumArgs()) return true;
3368
3369 // Trivial copy constructor
3370 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3371 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3372 }
3373
3374 break;
3375 }
3376 case ConstantExprClass: {
3377 // FIXME: We should be able to return "true" here, but it can lead to extra
3378 // error messages. E.g. in Sema/array-init.c.
3379 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3380 return Exp->isConstantInitializer(Ctx, false, Culprit);
3381 }
3382 case CompoundLiteralExprClass: {
3383 // This handles gcc's extension that allows global initializers like
3384 // "struct x {int x;} x = (struct x) {};".
3385 // FIXME: This accepts other cases it shouldn't!
3386 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3387 return Exp->isConstantInitializer(Ctx, false, Culprit);
3388 }
3389 case DesignatedInitUpdateExprClass: {
3390 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3391 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3392 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3393 }
3394 case InitListExprClass: {
3395 // C++ [dcl.init.aggr]p2:
3396 // The elements of an aggregate are:
3397 // - for an array, the array elements in increasing subscript order, or
3398 // - for a class, the direct base classes in declaration order, followed
3399 // by the direct non-static data members (11.4) that are not members of
3400 // an anonymous union, in declaration order.
3401 const InitListExpr *ILE = cast<InitListExpr>(this);
3402 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3403 if (ILE->getType()->isArrayType()) {
3404 unsigned numInits = ILE->getNumInits();
3405 for (unsigned i = 0; i < numInits; i++) {
3406 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3407 return false;
3408 }
3409 return true;
3410 }
3411
3412 if (ILE->getType()->isRecordType()) {
3413 unsigned ElementNo = 0;
3414 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3415
3416 // In C++17, bases were added to the list of members used by aggregate
3417 // initialization.
3418 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3419 for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) {
3420 if (ElementNo < ILE->getNumInits()) {
3421 const Expr *Elt = ILE->getInit(ElementNo++);
3422 if (!Elt->isConstantInitializer(Ctx, false, Culprit))
3423 return false;
3424 }
3425 }
3426 }
3427
3428 for (const auto *Field : RD->fields()) {
3429 // If this is a union, skip all the fields that aren't being initialized.
3430 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3431 continue;
3432
3433 // Don't emit anonymous bitfields, they just affect layout.
3434 if (Field->isUnnamedBitField())
3435 continue;
3436
3437 if (ElementNo < ILE->getNumInits()) {
3438 const Expr *Elt = ILE->getInit(ElementNo++);
3439 if (Field->isBitField()) {
3440 // Bitfields have to evaluate to an integer.
3442 if (!Elt->EvaluateAsInt(Result, Ctx)) {
3443 if (Culprit)
3444 *Culprit = Elt;
3445 return false;
3446 }
3447 } else {
3448 bool RefType = Field->getType()->isReferenceType();
3449 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3450 return false;
3451 }
3452 }
3453 }
3454 return true;
3455 }
3456
3457 break;
3458 }
3459 case ImplicitValueInitExprClass:
3460 case NoInitExprClass:
3461 return true;
3462 case ParenExprClass:
3463 return cast<ParenExpr>(this)->getSubExpr()
3464 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3465 case GenericSelectionExprClass:
3466 return cast<GenericSelectionExpr>(this)->getResultExpr()
3467 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3468 case ChooseExprClass:
3469 if (cast<ChooseExpr>(this)->isConditionDependent()) {
3470 if (Culprit)
3471 *Culprit = this;
3472 return false;
3473 }
3474 return cast<ChooseExpr>(this)->getChosenSubExpr()
3475 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3476 case UnaryOperatorClass: {
3477 const UnaryOperator* Exp = cast<UnaryOperator>(this);
3478 if (Exp->getOpcode() == UO_Extension)
3479 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3480 break;
3481 }
3482 case PackIndexingExprClass: {
3483 return cast<PackIndexingExpr>(this)
3484 ->getSelectedExpr()
3485 ->isConstantInitializer(Ctx, false, Culprit);
3486 }
3487 case CXXFunctionalCastExprClass:
3488 case CXXStaticCastExprClass:
3489 case ImplicitCastExprClass:
3490 case CStyleCastExprClass:
3491 case ObjCBridgedCastExprClass:
3492 case CXXDynamicCastExprClass:
3493 case CXXReinterpretCastExprClass:
3494 case CXXAddrspaceCastExprClass:
3495 case CXXConstCastExprClass: {
3496 const CastExpr *CE = cast<CastExpr>(this);
3497
3498 // Handle misc casts we want to ignore.
3499 if (CE->getCastKind() == CK_NoOp ||
3500 CE->getCastKind() == CK_LValueToRValue ||
3501 CE->getCastKind() == CK_ToUnion ||
3502 CE->getCastKind() == CK_ConstructorConversion ||
3503 CE->getCastKind() == CK_NonAtomicToAtomic ||
3504 CE->getCastKind() == CK_AtomicToNonAtomic ||
3505 CE->getCastKind() == CK_NullToPointer ||
3506 CE->getCastKind() == CK_IntToOCLSampler)
3507 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3508
3509 break;
3510 }
3511 case MaterializeTemporaryExprClass:
3512 return cast<MaterializeTemporaryExpr>(this)
3513 ->getSubExpr()
3514 ->isConstantInitializer(Ctx, false, Culprit);
3515
3516 case SubstNonTypeTemplateParmExprClass:
3517 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3518 ->isConstantInitializer(Ctx, false, Culprit);
3519 case CXXDefaultArgExprClass:
3520 return cast<CXXDefaultArgExpr>(this)->getExpr()
3521 ->isConstantInitializer(Ctx, false, Culprit);
3522 case CXXDefaultInitExprClass:
3523 return cast<CXXDefaultInitExpr>(this)->getExpr()
3524 ->isConstantInitializer(Ctx, false, Culprit);
3525 }
3526 // Allow certain forms of UB in constant initializers: signed integer
3527 // overflow and floating-point division by zero. We'll give a warning on
3528 // these, but they're common enough that we have to accept them.
3530 return true;
3531 if (Culprit)
3532 *Culprit = this;
3533 return false;
3534}
3535
3537 unsigned BuiltinID = getBuiltinCallee();
3538 if (BuiltinID != Builtin::BI__assume &&
3539 BuiltinID != Builtin::BI__builtin_assume)
3540 return false;
3541
3542 const Expr* Arg = getArg(0);
3543 bool ArgVal;
3544 return !Arg->isValueDependent() &&
3545 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3546}
3547
3549 return getBuiltinCallee() == Builtin::BImove;
3550}
3551
3552namespace {
3553 /// Look for any side effects within a Stmt.
3554 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3556 const bool IncludePossibleEffects;
3557 bool HasSideEffects;
3558
3559 public:
3560 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3561 : Inherited(Context),
3562 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3563
3564 bool hasSideEffects() const { return HasSideEffects; }
3565
3566 void VisitDecl(const Decl *D) {
3567 if (!D)
3568 return;
3569
3570 // We assume the caller checks subexpressions (eg, the initializer, VLA
3571 // bounds) for side-effects on our behalf.
3572 if (auto *VD = dyn_cast<VarDecl>(D)) {
3573 // Registering a destructor is a side-effect.
3574 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3575 VD->needsDestruction(Context))
3576 HasSideEffects = true;
3577 }
3578 }
3579
3580 void VisitDeclStmt(const DeclStmt *DS) {
3581 for (auto *D : DS->decls())
3582 VisitDecl(D);
3583 Inherited::VisitDeclStmt(DS);
3584 }
3585
3586 void VisitExpr(const Expr *E) {
3587 if (!HasSideEffects &&
3588 E->HasSideEffects(Context, IncludePossibleEffects))
3589 HasSideEffects = true;
3590 }
3591 };
3592}
3593
3595 bool IncludePossibleEffects) const {
3596 // In circumstances where we care about definite side effects instead of
3597 // potential side effects, we want to ignore expressions that are part of a
3598 // macro expansion as a potential side effect.
3599 if (!IncludePossibleEffects && getExprLoc().isMacroID())
3600 return false;
3601
3602 switch (getStmtClass()) {
3603 case NoStmtClass:
3604 #define ABSTRACT_STMT(Type)
3605 #define STMT(Type, Base) case Type##Class:
3606 #define EXPR(Type, Base)
3607 #include "clang/AST/StmtNodes.inc"
3608 llvm_unreachable("unexpected Expr kind");
3609
3610 case DependentScopeDeclRefExprClass:
3611 case CXXUnresolvedConstructExprClass:
3612 case CXXDependentScopeMemberExprClass:
3613 case UnresolvedLookupExprClass:
3614 case UnresolvedMemberExprClass:
3615 case PackExpansionExprClass:
3616 case SubstNonTypeTemplateParmPackExprClass:
3617 case FunctionParmPackExprClass:
3618 case TypoExprClass:
3619 case RecoveryExprClass:
3620 case CXXFoldExprClass:
3621 // Make a conservative assumption for dependent nodes.
3622 return IncludePossibleEffects;
3623
3624 case DeclRefExprClass:
3625 case ObjCIvarRefExprClass:
3626 case PredefinedExprClass:
3627 case IntegerLiteralClass:
3628 case FixedPointLiteralClass:
3629 case FloatingLiteralClass:
3630 case ImaginaryLiteralClass:
3631 case StringLiteralClass:
3632 case CharacterLiteralClass:
3633 case OffsetOfExprClass:
3634 case ImplicitValueInitExprClass:
3635 case UnaryExprOrTypeTraitExprClass:
3636 case AddrLabelExprClass:
3637 case GNUNullExprClass:
3638 case ArrayInitIndexExprClass:
3639 case NoInitExprClass:
3640 case CXXBoolLiteralExprClass:
3641 case CXXNullPtrLiteralExprClass:
3642 case CXXThisExprClass:
3643 case CXXScalarValueInitExprClass:
3644 case TypeTraitExprClass:
3645 case ArrayTypeTraitExprClass:
3646 case ExpressionTraitExprClass:
3647 case CXXNoexceptExprClass:
3648 case SizeOfPackExprClass:
3649 case ObjCStringLiteralClass:
3650 case ObjCEncodeExprClass:
3651 case ObjCBoolLiteralExprClass:
3652 case ObjCAvailabilityCheckExprClass:
3653 case CXXUuidofExprClass:
3654 case OpaqueValueExprClass:
3655 case SourceLocExprClass:
3656 case EmbedExprClass:
3657 case ConceptSpecializationExprClass:
3658 case RequiresExprClass:
3659 case SYCLUniqueStableNameExprClass:
3660 case PackIndexingExprClass:
3661 case HLSLOutArgExprClass:
3662 case OpenACCAsteriskSizeExprClass:
3663 // These never have a side-effect.
3664 return false;
3665
3666 case ConstantExprClass:
3667 // FIXME: Move this into the "return false;" block above.
3668 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3669 Ctx, IncludePossibleEffects);
3670
3671 case CallExprClass:
3672 case CXXOperatorCallExprClass:
3673 case CXXMemberCallExprClass:
3674 case CUDAKernelCallExprClass:
3675 case UserDefinedLiteralClass: {
3676 // We don't know a call definitely has side effects, except for calls
3677 // to pure/const functions that definitely don't.
3678 // If the call itself is considered side-effect free, check the operands.
3679 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3680 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3681 if (IsPure || !IncludePossibleEffects)
3682 break;
3683 return true;
3684 }
3685
3686 case BlockExprClass:
3687 case CXXBindTemporaryExprClass:
3688 if (!IncludePossibleEffects)
3689 break;
3690 return true;
3691
3692 case MSPropertyRefExprClass:
3693 case MSPropertySubscriptExprClass:
3694 case CompoundAssignOperatorClass:
3695 case VAArgExprClass:
3696 case AtomicExprClass:
3697 case CXXThrowExprClass:
3698 case CXXNewExprClass:
3699 case CXXDeleteExprClass:
3700 case CoawaitExprClass:
3701 case DependentCoawaitExprClass:
3702 case CoyieldExprClass:
3703 // These always have a side-effect.
3704 return true;
3705
3706 case StmtExprClass: {
3707 // StmtExprs have a side-effect if any substatement does.
3708 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3709 Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3710 return Finder.hasSideEffects();
3711 }
3712
3713 case ExprWithCleanupsClass:
3714 if (IncludePossibleEffects)
3715 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3716 return true;
3717 break;
3718
3719 case ParenExprClass:
3720 case ArraySubscriptExprClass:
3721 case MatrixSubscriptExprClass:
3722 case ArraySectionExprClass:
3723 case OMPArrayShapingExprClass:
3724 case OMPIteratorExprClass:
3725 case MemberExprClass:
3726 case ConditionalOperatorClass:
3727 case BinaryConditionalOperatorClass:
3728 case CompoundLiteralExprClass:
3729 case ExtVectorElementExprClass:
3730 case DesignatedInitExprClass:
3731 case DesignatedInitUpdateExprClass:
3732 case ArrayInitLoopExprClass:
3733 case ParenListExprClass:
3734 case CXXPseudoDestructorExprClass:
3735 case CXXRewrittenBinaryOperatorClass:
3736 case CXXStdInitializerListExprClass:
3737 case SubstNonTypeTemplateParmExprClass:
3738 case MaterializeTemporaryExprClass:
3739 case ShuffleVectorExprClass:
3740 case ConvertVectorExprClass:
3741 case AsTypeExprClass:
3742 case CXXParenListInitExprClass:
3743 // These have a side-effect if any subexpression does.
3744 break;
3745
3746 case UnaryOperatorClass:
3747 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3748 return true;
3749 break;
3750
3751 case BinaryOperatorClass:
3752 if (cast<BinaryOperator>(this)->isAssignmentOp())
3753 return true;
3754 break;
3755
3756 case InitListExprClass:
3757 // FIXME: The children for an InitListExpr doesn't include the array filler.
3758 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3759 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3760 return true;
3761 break;
3762
3763 case GenericSelectionExprClass:
3764 return cast<GenericSelectionExpr>(this)->getResultExpr()->
3765 HasSideEffects(Ctx, IncludePossibleEffects);
3766
3767 case ChooseExprClass:
3768 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3769 Ctx, IncludePossibleEffects);
3770
3771 case CXXDefaultArgExprClass:
3772 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3773 Ctx, IncludePossibleEffects);
3774
3775 case CXXDefaultInitExprClass: {
3776 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3777 if (const Expr *E = FD->getInClassInitializer())
3778 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3779 // If we've not yet parsed the initializer, assume it has side-effects.
3780 return true;
3781 }
3782
3783 case CXXDynamicCastExprClass: {
3784 // A dynamic_cast expression has side-effects if it can throw.
3785 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3786 if (DCE->getTypeAsWritten()->isReferenceType() &&
3787 DCE->getCastKind() == CK_Dynamic)
3788 return true;
3789 }
3790 [[fallthrough]];
3791 case ImplicitCastExprClass:
3792 case CStyleCastExprClass:
3793 case CXXStaticCastExprClass:
3794 case CXXReinterpretCastExprClass:
3795 case CXXConstCastExprClass:
3796 case CXXAddrspaceCastExprClass:
3797 case CXXFunctionalCastExprClass:
3798 case BuiltinBitCastExprClass: {
3799 // While volatile reads are side-effecting in both C and C++, we treat them
3800 // as having possible (not definite) side-effects. This allows idiomatic
3801 // code to behave without warning, such as sizeof(*v) for a volatile-
3802 // qualified pointer.
3803 if (!IncludePossibleEffects)
3804 break;
3805
3806 const CastExpr *CE = cast<CastExpr>(this);
3807 if (CE->getCastKind() == CK_LValueToRValue &&
3809 return true;
3810 break;
3811 }
3812
3813 case CXXTypeidExprClass: {
3814 const auto *TE = cast<CXXTypeidExpr>(this);
3815 if (!TE->isPotentiallyEvaluated())
3816 return false;
3817
3818 // If this type id expression can throw because of a null pointer, that is a
3819 // side-effect independent of if the operand has a side-effect
3820 if (IncludePossibleEffects && TE->hasNullCheck())
3821 return true;
3822
3823 break;
3824 }
3825
3826 case CXXConstructExprClass:
3827 case CXXTemporaryObjectExprClass: {
3828 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3829 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3830 return true;
3831 // A trivial constructor does not add any side-effects of its own. Just look
3832 // at its arguments.
3833 break;
3834 }
3835
3836 case CXXInheritedCtorInitExprClass: {
3837 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3838 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3839 return true;
3840 break;
3841 }
3842
3843 case LambdaExprClass: {
3844 const LambdaExpr *LE = cast<LambdaExpr>(this);
3845 for (Expr *E : LE->capture_inits())
3846 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3847 return true;
3848 return false;
3849 }
3850
3851 case PseudoObjectExprClass: {
3852 // Only look for side-effects in the semantic form, and look past
3853 // OpaqueValueExpr bindings in that form.
3854 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3856 E = PO->semantics_end();
3857 I != E; ++I) {
3858 const Expr *Subexpr = *I;
3859 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3860 Subexpr = OVE->getSourceExpr();
3861 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3862 return true;
3863 }
3864 return false;
3865 }
3866
3867 case ObjCBoxedExprClass:
3868 case ObjCArrayLiteralClass:
3869 case ObjCDictionaryLiteralClass:
3870 case ObjCSelectorExprClass:
3871 case ObjCProtocolExprClass:
3872 case ObjCIsaExprClass:
3873 case ObjCIndirectCopyRestoreExprClass:
3874 case ObjCSubscriptRefExprClass:
3875 case ObjCBridgedCastExprClass:
3876 case ObjCMessageExprClass:
3877 case ObjCPropertyRefExprClass:
3878 // FIXME: Classify these cases better.
3879 if (IncludePossibleEffects)
3880 return true;
3881 break;
3882 }
3883
3884 // Recurse to children.
3885 for (const Stmt *SubStmt : children())
3886 if (SubStmt &&
3887 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3888 return true;
3889
3890 return false;
3891}
3892
3894 if (auto Call = dyn_cast<CallExpr>(this))
3895 return Call->getFPFeaturesInEffect(LO);
3896 if (auto UO = dyn_cast<UnaryOperator>(this))
3897 return UO->getFPFeaturesInEffect(LO);
3898 if (auto BO = dyn_cast<BinaryOperator>(this))
3899 return BO->getFPFeaturesInEffect(LO);
3900 if (auto Cast = dyn_cast<CastExpr>(this))
3901 return Cast->getFPFeaturesInEffect(LO);
3903}
3904
3905namespace {
3906 /// Look for a call to a non-trivial function within an expression.
3907 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3908 {
3910
3911 bool NonTrivial;
3912
3913 public:
3914 explicit NonTrivialCallFinder(const ASTContext &Context)
3915 : Inherited(Context), NonTrivial(false) { }
3916
3917 bool hasNonTrivialCall() const { return NonTrivial; }
3918
3919 void VisitCallExpr(const CallExpr *E) {
3920 if (const CXXMethodDecl *Method
3921 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3922 if (Method->isTrivial()) {
3923 // Recurse to children of the call.
3924 Inherited::VisitStmt(E);
3925 return;
3926 }
3927 }
3928
3929 NonTrivial = true;
3930 }
3931
3932 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3933 if (E->getConstructor()->isTrivial()) {
3934 // Recurse to children of the call.
3935 Inherited::VisitStmt(E);
3936 return;
3937 }
3938
3939 NonTrivial = true;
3940 }
3941
3942 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3943 // Destructor of the temporary might be null if destructor declaration
3944 // is not valid.
3945 if (const CXXDestructorDecl *DtorDecl =
3946 E->getTemporary()->getDestructor()) {
3947 if (DtorDecl->isTrivial()) {
3948 Inherited::VisitStmt(E);
3949 return;
3950 }
3951 }
3952
3953 NonTrivial = true;
3954 }
3955 };
3956}
3957
3958bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3959 NonTrivialCallFinder Finder(Ctx);
3960 Finder.Visit(this);
3961 return Finder.hasNonTrivialCall();
3962}
3963
3964/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3965/// pointer constant or not, as well as the specific kind of constant detected.
3966/// Null pointer constants can be integer constant expressions with the
3967/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3968/// (a GNU extension).
3972 if (isValueDependent() &&
3973 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3974 // Error-dependent expr should never be a null pointer.
3975 if (containsErrors())
3976 return NPCK_NotNull;
3977 switch (NPC) {
3979 llvm_unreachable("Unexpected value dependent expression!");
3981 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3982 return NPCK_ZeroExpression;
3983 else
3984 return NPCK_NotNull;
3985
3987 return NPCK_NotNull;
3988 }
3989 }
3990
3991 // Strip off a cast to void*, if it exists. Except in C++.
3992 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3993 if (!Ctx.getLangOpts().CPlusPlus) {
3994 // Check that it is a cast to void*.
3995 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3996 QualType Pointee = PT->getPointeeType();
3997 Qualifiers Qs = Pointee.getQualifiers();
3998 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3999 // has non-default address space it is not treated as nullptr.
4000 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
4001 // since it cannot be assigned to a pointer to constant address space.
4002 if (Ctx.getLangOpts().OpenCL &&
4004 Qs.removeAddressSpace();
4005
4006 if (Pointee->isVoidType() && Qs.empty() && // to void*
4007 CE->getSubExpr()->getType()->isIntegerType()) // from int
4008 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4009 }
4010 }
4011 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
4012 // Ignore the ImplicitCastExpr type entirely.
4013 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4014 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
4015 // Accept ((void*)0) as a null pointer constant, as many other
4016 // implementations do.
4017 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4018 } else if (const GenericSelectionExpr *GE =
4019 dyn_cast<GenericSelectionExpr>(this)) {
4020 if (GE->isResultDependent())
4021 return NPCK_NotNull;
4022 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
4023 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
4024 if (CE->isConditionDependent())
4025 return NPCK_NotNull;
4026 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
4027 } else if (const CXXDefaultArgExpr *DefaultArg
4028 = dyn_cast<CXXDefaultArgExpr>(this)) {
4029 // See through default argument expressions.
4030 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
4031 } else if (const CXXDefaultInitExpr *DefaultInit
4032 = dyn_cast<CXXDefaultInitExpr>(this)) {
4033 // See through default initializer expressions.
4034 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
4035 } else if (isa<GNUNullExpr>(this)) {
4036 // The GNU __null extension is always a null pointer constant.
4037 return NPCK_GNUNull;
4038 } else if (const MaterializeTemporaryExpr *M
4039 = dyn_cast<MaterializeTemporaryExpr>(this)) {
4040 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4041 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
4042 if (const Expr *Source = OVE->getSourceExpr())
4043 return Source->isNullPointerConstant(Ctx, NPC);
4044 }
4045
4046 // If the expression has no type information, it cannot be a null pointer
4047 // constant.
4048 if (getType().isNull())
4049 return NPCK_NotNull;
4050
4051 // C++11/C23 nullptr_t is always a null pointer constant.
4052 if (getType()->isNullPtrType())
4053 return NPCK_CXX11_nullptr;
4054
4055 if (const RecordType *UT = getType()->getAsUnionType())
4056 if (!Ctx.getLangOpts().CPlusPlus11 &&
4057 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
4058 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
4059 const Expr *InitExpr = CLE->getInitializer();
4060 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
4061 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
4062 }
4063 // This expression must be an integer type.
4064 if (!getType()->isIntegerType() ||
4065 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
4066 return NPCK_NotNull;
4067
4068 if (Ctx.getLangOpts().CPlusPlus11) {
4069 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
4070 // value zero or a prvalue of type std::nullptr_t.
4071 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
4072 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
4073 if (Lit && !Lit->getValue())
4074 return NPCK_ZeroLiteral;
4075 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
4076 return NPCK_NotNull;
4077 } else {
4078 // If we have an integer constant expression, we need to *evaluate* it and
4079 // test for the value 0.
4080 if (!isIntegerConstantExpr(Ctx))
4081 return NPCK_NotNull;
4082 }
4083
4084 if (EvaluateKnownConstInt(Ctx) != 0)
4085 return NPCK_NotNull;
4086
4087 if (isa<IntegerLiteral>(this))
4088 return NPCK_ZeroLiteral;
4089 return NPCK_ZeroExpression;
4090}
4091
4092/// If this expression is an l-value for an Objective C
4093/// property, find the underlying property reference expression.
4095 const Expr *E = this;
4096 while (true) {
4097 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
4098 "expression is not a property reference");
4099 E = E->IgnoreParenCasts();
4100 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4101 if (BO->getOpcode() == BO_Comma) {
4102 E = BO->getRHS();
4103 continue;
4104 }
4105 }
4106
4107 break;
4108 }
4109
4110 return cast<ObjCPropertyRefExpr>(E);
4111}
4112
4114 const Expr *E = IgnoreParenImpCasts();
4115
4116 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4117 if (!DRE)
4118 return false;
4119
4120 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
4121 if (!Param)
4122 return false;
4123
4124 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4125 if (!M)
4126 return false;
4127
4128 return M->getSelfDecl() == Param;
4129}
4130
4132 Expr *E = this->IgnoreParens();
4133
4134 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4135 if (ICE->getCastKind() == CK_LValueToRValue ||
4136 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4137 E = ICE->getSubExpr()->IgnoreParens();
4138 else
4139 break;
4140 }
4141
4142 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
4143 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
4144 if (Field->isBitField())
4145 return Field;
4146
4147 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
4148 FieldDecl *Ivar = IvarRef->getDecl();
4149 if (Ivar->isBitField())
4150 return Ivar;
4151 }
4152
4153 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
4154 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
4155 if (Field->isBitField())
4156 return Field;
4157
4158 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
4159 if (Expr *E = BD->getBinding())
4160 return E->getSourceBitField();
4161 }
4162
4163 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
4164 if (BinOp->isAssignmentOp() && BinOp->getLHS())
4165 return BinOp->getLHS()->getSourceBitField();
4166
4167 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4168 return BinOp->getRHS()->getSourceBitField();
4169 }
4170
4171 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
4172 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4173 return UnOp->getSubExpr()->getSourceBitField();
4174
4175 return nullptr;
4176}
4177
4179 Expr *E = this->IgnoreParenImpCasts();
4180 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4181 return dyn_cast<EnumConstantDecl>(DRE->getDecl());
4182 return nullptr;
4183}
4184
4186 // FIXME: Why do we not just look at the ObjectKind here?
4187 const Expr *E = this->IgnoreParens();
4188
4189 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4190 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4191 E = ICE->getSubExpr()->IgnoreParens();
4192 else
4193 break;
4194 }
4195
4196 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
4197 return ASE->getBase()->getType()->isVectorType();
4198
4199 if (isa<ExtVectorElementExpr>(E))
4200 return true;
4201
4202 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4203 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4204 if (auto *E = BD->getBinding())
4205 return E->refersToVectorElement();
4206
4207 return false;
4208}
4209
4211 const Expr *E = this->IgnoreParenImpCasts();
4212
4213 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4214 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4215 if (VD->getStorageClass() == SC_Register &&
4216 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4217 return true;
4218
4219 return false;
4220}
4221
4222bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4223 E1 = E1->IgnoreParens();
4224 E2 = E2->IgnoreParens();
4225
4226 if (E1->getStmtClass() != E2->getStmtClass())
4227 return false;
4228
4229 switch (E1->getStmtClass()) {
4230 default:
4231 return false;
4232 case CXXThisExprClass:
4233 return true;
4234 case DeclRefExprClass: {
4235 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4236 // template parameters.
4237 const auto *DRE1 = cast<DeclRefExpr>(E1);
4238 const auto *DRE2 = cast<DeclRefExpr>(E2);
4239 return DRE1->isPRValue() && DRE2->isPRValue() &&
4240 DRE1->getDecl() == DRE2->getDecl();
4241 }
4242 case ImplicitCastExprClass: {
4243 // Peel off implicit casts.
4244 while (true) {
4245 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4246 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4247 if (!ICE1 || !ICE2)
4248 return false;
4249 if (ICE1->getCastKind() != ICE2->getCastKind())
4250 return false;
4251 E1 = ICE1->getSubExpr()->IgnoreParens();
4252 E2 = ICE2->getSubExpr()->IgnoreParens();
4253 // The final cast must be one of these types.
4254 if (ICE1->getCastKind() == CK_LValueToRValue ||
4255 ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4256 ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4257 break;
4258 }
4259 }
4260
4261 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4262 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4263 if (DRE1 && DRE2)
4264 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4265
4266 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4267 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4268 if (Ivar1 && Ivar2) {
4269 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4270 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4271 }
4272
4273 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4274 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4275 if (Array1 && Array2) {
4276 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4277 return false;
4278
4279 auto Idx1 = Array1->getIdx();
4280 auto Idx2 = Array2->getIdx();
4281 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4282 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4283 if (Integer1 && Integer2) {
4284 if (!llvm::APInt::isSameValue(Integer1->getValue(),
4285 Integer2->getValue()))
4286 return false;
4287 } else {
4288 if (!isSameComparisonOperand(Idx1, Idx2))
4289 return false;
4290 }
4291
4292 return true;
4293 }
4294
4295 // Walk the MemberExpr chain.
4296 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4297 const auto *ME1 = cast<MemberExpr>(E1);
4298 const auto *ME2 = cast<MemberExpr>(E2);
4299 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4300 return false;
4301 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4302 if (D->isStaticDataMember())
4303 return true;
4304 E1 = ME1->getBase()->IgnoreParenImpCasts();
4305 E2 = ME2->getBase()->IgnoreParenImpCasts();
4306 }
4307
4308 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4309 return true;
4310
4311 // A static member variable can end the MemberExpr chain with either
4312 // a MemberExpr or a DeclRefExpr.
4313 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4314 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4315 return DRE->getDecl();
4316 if (const auto *ME = dyn_cast<MemberExpr>(E))
4317 return ME->getMemberDecl();
4318 return nullptr;
4319 };
4320
4321 const ValueDecl *VD1 = getAnyDecl(E1);
4322 const ValueDecl *VD2 = getAnyDecl(E2);
4323 return declaresSameEntity(VD1, VD2);
4324 }
4325 }
4326}
4327
4328/// isArrow - Return true if the base expression is a pointer to vector,
4329/// return false if the base expression is a vector.
4331 return getBase()->getType()->isPointerType();
4332}
4333
4335 if (const VectorType *VT = getType()->getAs<VectorType>())
4336 return VT->getNumElements();
4337 return 1;
4338}
4339
4340/// containsDuplicateElements - Return true if any element access is repeated.
4342 // FIXME: Refactor this code to an accessor on the AST node which returns the
4343 // "type" of component access, and share with code below and in Sema.
4344 StringRef Comp = Accessor->getName();
4345
4346 // Halving swizzles do not contain duplicate elements.
4347 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4348 return false;
4349
4350 // Advance past s-char prefix on hex swizzles.
4351 if (Comp[0] == 's' || Comp[0] == 'S')
4352 Comp = Comp.substr(1);
4353
4354 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4355 if (Comp.substr(i + 1).contains(Comp[i]))
4356 return true;
4357
4358 return false;
4359}
4360
4361/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4363 SmallVectorImpl<uint32_t> &Elts) const {
4364 StringRef Comp = Accessor->getName();
4365 bool isNumericAccessor = false;
4366 if (Comp[0] == 's' || Comp[0] == 'S') {
4367 Comp = Comp.substr(1);
4368 isNumericAccessor = true;
4369 }
4370
4371 bool isHi = Comp == "hi";
4372 bool isLo = Comp == "lo";
4373 bool isEven = Comp == "even";
4374 bool isOdd = Comp == "odd";
4375
4376 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4377 uint64_t Index;
4378
4379 if (isHi)
4380 Index = e + i;
4381 else if (isLo)
4382 Index = i;
4383 else if (isEven)
4384 Index = 2 * i;
4385 else if (isOdd)
4386 Index = 2 * i + 1;
4387 else
4388 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4389
4390 Elts.push_back(Index);
4391 }
4392}
4393
4396 SourceLocation RP)
4397 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4398 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4399 SubExprs = new (C) Stmt*[args.size()];
4400 for (unsigned i = 0; i != args.size(); i++)
4401 SubExprs[i] = args[i];
4402
4404}
4405
4407 if (SubExprs) C.Deallocate(SubExprs);
4408
4409 this->NumExprs = Exprs.size();
4410 SubExprs = new (C) Stmt*[NumExprs];
4411 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4412}
4413
4414GenericSelectionExpr::GenericSelectionExpr(
4415 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4416 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4417 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4418 bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4419 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4420 AssocExprs[ResultIndex]->getValueKind(),
4421 AssocExprs[ResultIndex]->getObjectKind()),
4422 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4423 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4424 assert(AssocTypes.size() == AssocExprs.size() &&
4425 "Must have the same number of association expressions"
4426 " and TypeSourceInfo!");
4427 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4428
4429 GenericSelectionExprBits.GenericLoc = GenericLoc;
4430 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4431 ControllingExpr;
4432 std::copy(AssocExprs.begin(), AssocExprs.end(),
4433 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4434 std::copy(AssocTypes.begin(), AssocTypes.end(),
4435 getTrailingObjects<TypeSourceInfo *>() +
4436 getIndexOfStartOfAssociatedTypes());
4437
4438 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4439}
4440
4441GenericSelectionExpr::GenericSelectionExpr(
4442 const ASTContext &, SourceLocation GenericLoc,
4443 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4444 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4445 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4446 unsigned ResultIndex)
4447 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4448 AssocExprs[ResultIndex]->getValueKind(),
4449 AssocExprs[ResultIndex]->getObjectKind()),
4450 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4451 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4452 assert(AssocTypes.size() == AssocExprs.size() &&
4453 "Must have the same number of association expressions"
4454 " and TypeSourceInfo!");
4455 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4456
4457 GenericSelectionExprBits.GenericLoc = GenericLoc;
4458 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4459 ControllingType;
4460 std::copy(AssocExprs.begin(), AssocExprs.end(),
4461 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4462 std::copy(AssocTypes.begin(), AssocTypes.end(),
4463 getTrailingObjects<TypeSourceInfo *>() +
4464 getIndexOfStartOfAssociatedTypes());
4465
4466 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4467}
4468
4469GenericSelectionExpr::GenericSelectionExpr(
4470 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4471 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4472 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4473 bool ContainsUnexpandedParameterPack)
4474 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4475 OK_Ordinary),
4476 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4477 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4478 assert(AssocTypes.size() == AssocExprs.size() &&
4479 "Must have the same number of association expressions"
4480 " and TypeSourceInfo!");
4481
4482 GenericSelectionExprBits.GenericLoc = GenericLoc;
4483 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4484 ControllingExpr;
4485 std::copy(AssocExprs.begin(), AssocExprs.end(),
4486 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4487 std::copy(AssocTypes.begin(), AssocTypes.end(),
4488 getTrailingObjects<TypeSourceInfo *>() +
4489 getIndexOfStartOfAssociatedTypes());
4490
4491 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4492}
4493
4494GenericSelectionExpr::GenericSelectionExpr(
4495 const ASTContext &Context, SourceLocation GenericLoc,
4496 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4497 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4498 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack)
4499 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4500 OK_Ordinary),
4501 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4502 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4503 assert(AssocTypes.size() == AssocExprs.size() &&
4504 "Must have the same number of association expressions"
4505 " and TypeSourceInfo!");
4506
4507 GenericSelectionExprBits.GenericLoc = GenericLoc;
4508 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4509 ControllingType;
4510 std::copy(AssocExprs.begin(), AssocExprs.end(),
4511 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4512 std::copy(AssocTypes.begin(), AssocTypes.end(),
4513 getTrailingObjects<TypeSourceInfo *>() +
4514 getIndexOfStartOfAssociatedTypes());
4515
4516 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4517}
4518
4519GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4520 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4521
4523 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4524 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4525 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4526 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4527 unsigned NumAssocs = AssocExprs.size();
4528 void *Mem = Context.Allocate(
4529 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4530 alignof(GenericSelectionExpr));
4531 return new (Mem) GenericSelectionExpr(
4532 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4533 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4534}
4535
4537 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4538 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4539 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4540 bool ContainsUnexpandedParameterPack) {
4541 unsigned NumAssocs = AssocExprs.size();
4542 void *Mem = Context.Allocate(
4543 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4544 alignof(GenericSelectionExpr));
4545 return new (Mem) GenericSelectionExpr(
4546 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4547 RParenLoc, ContainsUnexpandedParameterPack);
4548}
4549
4551 const ASTContext &Context, SourceLocation GenericLoc,
4552 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4553 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4554 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4555 unsigned ResultIndex) {
4556 unsigned NumAssocs = AssocExprs.size();
4557 void *Mem = Context.Allocate(
4558 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4559 alignof(GenericSelectionExpr));
4560 return new (Mem) GenericSelectionExpr(
4561 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4562 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4563}
4564
4566 const ASTContext &Context, SourceLocation GenericLoc,
4567 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4568 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4569 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) {
4570 unsigned NumAssocs = AssocExprs.size();
4571 void *Mem = Context.Allocate(
4572 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4573 alignof(GenericSelectionExpr));
4574 return new (Mem) GenericSelectionExpr(
4575 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4576 RParenLoc, ContainsUnexpandedParameterPack);
4577}
4578
4581 unsigned NumAssocs) {
4582 void *Mem = Context.Allocate(
4583 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4584 alignof(GenericSelectionExpr));
4585 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4586}
4587
4588//===----------------------------------------------------------------------===//
4589// DesignatedInitExpr
4590//===----------------------------------------------------------------------===//
4591
4593 assert(isFieldDesignator() && "Only valid on a field designator");
4594 if (FieldInfo.NameOrField & 0x01)
4595 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4596 return getFieldDecl()->getIdentifier();
4597}
4598
4599DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4600 llvm::ArrayRef<Designator> Designators,
4601 SourceLocation EqualOrColonLoc,
4602 bool GNUSyntax,
4603 ArrayRef<Expr *> IndexExprs, Expr *Init)
4604 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4605 Init->getObjectKind()),
4606 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4607 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4608 this->Designators = new (C) Designator[NumDesignators];
4609
4610 // Record the initializer itself.
4611 child_iterator Child = child_begin();
4612 *Child++ = Init;
4613
4614 // Copy the designators and their subexpressions, computing
4615 // value-dependence along the way.
4616 unsigned IndexIdx = 0;
4617 for (unsigned I = 0; I != NumDesignators; ++I) {
4618 this->Designators[I] = Designators[I];
4619 if (this->Designators[I].isArrayDesignator()) {
4620 // Copy the index expressions into permanent storage.
4621 *Child++ = IndexExprs[IndexIdx++];
4622 } else if (this->Designators[I].isArrayRangeDesignator()) {
4623 // Copy the start/end expressions into permanent storage.
4624 *Child++ = IndexExprs[IndexIdx++];
4625 *Child++ = IndexExprs[IndexIdx++];
4626 }
4627 }
4628
4629 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4631}
4632
4635 llvm::ArrayRef<Designator> Designators,
4636 ArrayRef<Expr*> IndexExprs,
4637 SourceLocation ColonOrEqualLoc,
4638 bool UsesColonSyntax, Expr *Init) {
4639 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4640 alignof(DesignatedInitExpr));
4641 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4642 ColonOrEqualLoc, UsesColonSyntax,
4643 IndexExprs, Init);
4644}
4645
4647 unsigned NumIndexExprs) {
4648 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4649 alignof(DesignatedInitExpr));
4650 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4651}
4652
4654 const Designator *Desigs,
4655 unsigned NumDesigs) {
4656 Designators = new (C) Designator[NumDesigs];
4657 NumDesignators = NumDesigs;
4658 for (unsigned I = 0; I != NumDesigs; ++I)
4659 Designators[I] = Desigs[I];
4660}
4661
4663 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4664 if (size() == 1)
4665 return DIE->getDesignator(0)->getSourceRange();
4666 return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4667 DIE->getDesignator(size() - 1)->getEndLoc());
4668}
4669
4671 auto *DIE = const_cast<DesignatedInitExpr *>(this);
4672 Designator &First = *DIE->getDesignator(0);
4673 if (First.isFieldDesignator()) {
4674 // Skip past implicit designators for anonymous structs/unions, since
4675 // these do not have valid source locations.
4676 for (unsigned int i = 0; i < DIE->size(); i++) {
4677 Designator &Des = *DIE->getDesignator(i);
4678 SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc();
4679 if (!retval.isValid())
4680 continue;
4681 return retval;
4682 }
4683 }
4684 return First.getLBracketLoc();
4685}
4686
4688 return getInit()->getEndLoc();
4689}
4690
4692 assert(D.isArrayDesignator() && "Requires array designator");
4693 return getSubExpr(D.getArrayIndex() + 1);
4694}
4695
4697 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4698 return getSubExpr(D.getArrayIndex() + 1);
4699}
4700
4702 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4703 return getSubExpr(D.getArrayIndex() + 2);
4704}
4705
4706/// Replaces the designator at index @p Idx with the series
4707/// of designators in [First, Last).
4709 const Designator *First,
4710 const Designator *Last) {
4711 unsigned NumNewDesignators = Last - First;
4712 if (NumNewDesignators == 0) {
4713 std::copy_backward(Designators + Idx + 1,
4714 Designators + NumDesignators,
4715 Designators + Idx);
4716 --NumNewDesignators;
4717 return;
4718 }
4719 if (NumNewDesignators == 1) {
4720 Designators[Idx] = *First;
4721 return;
4722 }
4723
4724 Designator *NewDesignators
4725 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4726 std::copy(Designators, Designators + Idx, NewDesignators);
4727 std::copy(First, Last, NewDesignators + Idx);
4728 std::copy(Designators + Idx + 1, Designators + NumDesignators,
4729 NewDesignators + Idx + NumNewDesignators);
4730 Designators = NewDesignators;
4731 NumDesignators = NumDesignators - 1 + NumNewDesignators;
4732}
4733
4735 SourceLocation lBraceLoc,
4736 Expr *baseExpr,
4737 SourceLocation rBraceLoc)
4738 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4739 OK_Ordinary) {
4740 BaseAndUpdaterExprs[0] = baseExpr;
4741
4742 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, {}, rBraceLoc);
4743 ILE->setType(baseExpr->getType());
4744 BaseAndUpdaterExprs[1] = ILE;
4745
4746 // FIXME: this is wrong, set it correctly.
4747 setDependence(ExprDependence::None);
4748}
4749
4751 return getBase()->getBeginLoc();
4752}
4753
4755 return getBase()->getEndLoc();
4756}
4757
4758ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4759 SourceLocation RParenLoc)
4760 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4761 LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4762 ParenListExprBits.NumExprs = Exprs.size();
4763
4764 for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4765 getTrailingObjects<Stmt *>()[I] = Exprs[I];
4767}
4768
4769ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4770 : Expr(ParenListExprClass, Empty) {
4771 ParenListExprBits.NumExprs = NumExprs;
4772}
4773
4775 SourceLocation LParenLoc,
4776 ArrayRef<Expr *> Exprs,
4777 SourceLocation RParenLoc) {
4778 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4779 alignof(ParenListExpr));
4780 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4781}
4782
4784 unsigned NumExprs) {
4785 void *Mem =
4786 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4787 return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4788}
4789
4790/// Certain overflow-dependent code patterns can have their integer overflow
4791/// sanitization disabled. Check for the common pattern `if (a + b < a)` and
4792/// return the resulting BinaryOperator responsible for the addition so we can
4793/// elide overflow checks during codegen.
4794static std::optional<BinaryOperator *>
4796 Expr *Addition, *ComparedTo;
4797 if (E->getOpcode() == BO_LT) {
4798 Addition = E->getLHS();
4799 ComparedTo = E->getRHS();
4800 } else if (E->getOpcode() == BO_GT) {
4801 Addition = E->getRHS();
4802 ComparedTo = E->getLHS();
4803 } else {
4804 return {};
4805 }
4806
4807 const Expr *AddLHS = nullptr, *AddRHS = nullptr;
4808 BinaryOperator *BO = dyn_cast<BinaryOperator>(Addition);
4809
4810 if (BO && BO->getOpcode() == clang::BO_Add) {
4811 // now store addends for lookup on other side of '>'
4812 AddLHS = BO->getLHS();
4813 AddRHS = BO->getRHS();
4814 }
4815
4816 if (!AddLHS || !AddRHS)
4817 return {};
4818
4819 const Decl *LHSDecl, *RHSDecl, *OtherDecl;
4820
4821 LHSDecl = AddLHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4822 RHSDecl = AddRHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4823 OtherDecl = ComparedTo->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4824
4825 if (!OtherDecl)
4826 return {};
4827
4828 if (!LHSDecl && !RHSDecl)
4829 return {};
4830
4831 if ((LHSDecl && LHSDecl == OtherDecl && LHSDecl != RHSDecl) ||
4832 (RHSDecl && RHSDecl == OtherDecl && RHSDecl != LHSDecl))
4833 return BO;
4834 return {};
4835}
4836
4837/// Compute and set the OverflowPatternExclusion bit based on whether the
4838/// BinaryOperator expression matches an overflow pattern being ignored by
4839/// -fsanitize-undefined-ignore-overflow-pattern=add-signed-overflow-test or
4840/// -fsanitize-undefined-ignore-overflow-pattern=add-unsigned-overflow-test
4842 const BinaryOperator *E) {
4843 std::optional<BinaryOperator *> Result = getOverflowPatternBinOp(E);
4844 if (!Result.has_value())
4845 return;
4846 QualType AdditionResultType = Result.value()->getType();
4847
4848 if ((AdditionResultType->isSignedIntegerType() &&
4851 (AdditionResultType->isUnsignedIntegerType() &&
4854 Result.value()->setExcludedOverflowPattern(true);
4855}
4856
4858 Opcode opc, QualType ResTy, ExprValueKind VK,
4860 FPOptionsOverride FPFeatures)
4861 : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4862 BinaryOperatorBits.Opc = opc;
4863 assert(!isCompoundAssignmentOp() &&
4864 "Use CompoundAssignOperator for compound assignments");
4865 BinaryOperatorBits.OpLoc = opLoc;
4866 BinaryOperatorBits.ExcludedOverflowPattern = false;
4867 SubExprs[LHS] = lhs;
4868 SubExprs[RHS] = rhs;
4870 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4871 if (hasStoredFPFeatures())
4872 setStoredFPFeatures(FPFeatures);
4874}
4875
4877 Opcode opc, QualType ResTy, ExprValueKind VK,
4879 FPOptionsOverride FPFeatures, bool dead2)
4880 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4881 BinaryOperatorBits.Opc = opc;
4882 BinaryOperatorBits.ExcludedOverflowPattern = false;
4883 assert(isCompoundAssignmentOp() &&
4884 "Use CompoundAssignOperator for compound assignments");
4885 BinaryOperatorBits.OpLoc = opLoc;
4886 SubExprs[LHS] = lhs;
4887 SubExprs[RHS] = rhs;
4888 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4889 if (hasStoredFPFeatures())
4890 setStoredFPFeatures(FPFeatures);
4892}
4893
4895 bool HasFPFeatures) {
4896 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4897 void *Mem =
4898 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4899 return new (Mem) BinaryOperator(EmptyShell());
4900}
4901
4903 Expr *rhs, Opcode opc, QualType ResTy,
4905 SourceLocation opLoc,
4906 FPOptionsOverride FPFeatures) {
4907 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4908 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4909 void *Mem =
4910 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4911 return new (Mem)
4912 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4913}
4914
4917 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4918 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4919 alignof(CompoundAssignOperator));
4920 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4921}
4922
4925 Opcode opc, QualType ResTy, ExprValueKind VK,
4927 FPOptionsOverride FPFeatures,
4928 QualType CompLHSType, QualType CompResultType) {
4929 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4930 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4931 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4932 alignof(CompoundAssignOperator));
4933 return new (Mem)
4934 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4935 CompLHSType, CompResultType);
4936}
4937
4939 bool hasFPFeatures) {
4940 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4941 alignof(UnaryOperator));
4942 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4943}
4944
4947 SourceLocation l, bool CanOverflow,
4948 FPOptionsOverride FPFeatures)
4949 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4950 UnaryOperatorBits.Opc = opc;
4951 UnaryOperatorBits.CanOverflow = CanOverflow;
4952 UnaryOperatorBits.Loc = l;
4953 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4954 if (hasStoredFPFeatures())
4955 setStoredFPFeatures(FPFeatures);
4956 setDependence(computeDependence(this, Ctx));
4957}
4958
4960 Opcode opc, QualType type,
4962 SourceLocation l, bool CanOverflow,
4963 FPOptionsOverride FPFeatures) {
4964 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4965 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4966 void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4967 return new (Mem)
4968 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4969}
4970
4972 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4973 e = ewc->getSubExpr();
4974 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4975 e = m->getSubExpr();
4976 e = cast<CXXConstructExpr>(e)->getArg(0);
4977 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4978 e = ice->getSubExpr();
4979 return cast<OpaqueValueExpr>(e);
4980}
4981
4983 EmptyShell sh,
4984 unsigned numSemanticExprs) {
4985 void *buffer =
4986 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4987 alignof(PseudoObjectExpr));
4988 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4989}
4990
4991PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4992 : Expr(PseudoObjectExprClass, shell) {
4993 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4994}
4995
4997 ArrayRef<Expr*> semantics,
4998 unsigned resultIndex) {
4999 assert(syntax && "no syntactic expression!");
5000 assert(semantics.size() && "no semantic expressions!");
5001
5002 QualType type;
5003 ExprValueKind VK;
5004 if (resultIndex == NoResult) {
5005 type = C.VoidTy;
5006 VK = VK_PRValue;
5007 } else {
5008 assert(resultIndex < semantics.size());
5009 type = semantics[resultIndex]->getType();
5010 VK = semantics[resultIndex]->getValueKind();
5011 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
5012 }
5013
5014 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
5015 alignof(PseudoObjectExpr));
5016 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
5017 resultIndex);
5018}
5019
5020PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
5021 Expr *syntax, ArrayRef<Expr *> semantics,
5022 unsigned resultIndex)
5023 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
5024 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
5025 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
5026
5027 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
5028 Expr *E = (i == 0 ? syntax : semantics[i-1]);
5029 getSubExprsBuffer()[i] = E;
5030
5031 if (isa<OpaqueValueExpr>(E))
5032 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
5033 "opaque-value semantic expressions for pseudo-object "
5034 "operations must have sources");
5035 }
5036
5038}
5039
5040//===----------------------------------------------------------------------===//
5041// Child Iterators for iterating over subexpressions/substatements
5042//===----------------------------------------------------------------------===//
5043
5044// UnaryExprOrTypeTraitExpr
5046 const_child_range CCR =
5047 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
5048 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
5049}
5050
5052 // If this is of a type and the type is a VLA type (and not a typedef), the
5053 // size expression of the VLA needs to be treated as an executable expression.
5054 // Why isn't this weirdness documented better in StmtIterator?
5055 if (isArgumentType()) {
5056 if (const VariableArrayType *T =
5057 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
5060 }
5061 return const_child_range(&Argument.Ex, &Argument.Ex + 1);
5062}
5063
5065 AtomicOp op, SourceLocation RP)
5066 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
5067 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
5068 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
5069 for (unsigned i = 0; i != args.size(); i++)
5070 SubExprs[i] = args[i];
5072}
5073
5075 switch (Op) {
5076 case AO__c11_atomic_init:
5077 case AO__opencl_atomic_init:
5078 case AO__c11_atomic_load:
5079 case AO__atomic_load_n:
5080 return 2;
5081
5082 case AO__scoped_atomic_load_n:
5083 case AO__opencl_atomic_load:
5084 case AO__hip_atomic_load:
5085 case AO__c11_atomic_store:
5086 case AO__c11_atomic_exchange:
5087 case AO__atomic_load:
5088 case AO__atomic_store:
5089 case AO__atomic_store_n:
5090 case AO__atomic_exchange_n:
5091 case AO__c11_atomic_fetch_add:
5092 case AO__c11_atomic_fetch_sub:
5093 case AO__c11_atomic_fetch_and:
5094 case AO__c11_atomic_fetch_or:
5095 case AO__c11_atomic_fetch_xor:
5096 case AO__c11_atomic_fetch_nand:
5097 case AO__c11_atomic_fetch_max:
5098 case AO__c11_atomic_fetch_min:
5099 case AO__atomic_fetch_add:
5100 case AO__atomic_fetch_sub:
5101 case AO__atomic_fetch_and:
5102 case AO__atomic_fetch_or:
5103 case AO__atomic_fetch_xor:
5104 case AO__atomic_fetch_nand:
5105 case AO__atomic_add_fetch:
5106 case AO__atomic_sub_fetch:
5107 case AO__atomic_and_fetch:
5108 case AO__atomic_or_fetch:
5109 case AO__atomic_xor_fetch:
5110 case AO__atomic_nand_fetch:
5111 case AO__atomic_min_fetch:
5112 case AO__atomic_max_fetch:
5113 case AO__atomic_fetch_min:
5114 case AO__atomic_fetch_max:
5115 return 3;
5116
5117 case AO__scoped_atomic_load:
5118 case AO__scoped_atomic_store:
5119 case AO__scoped_atomic_store_n:
5120 case AO__scoped_atomic_fetch_add:
5121 case AO__scoped_atomic_fetch_sub:
5122 case AO__scoped_atomic_fetch_and:
5123 case AO__scoped_atomic_fetch_or:
5124 case AO__scoped_atomic_fetch_xor:
5125 case AO__scoped_atomic_fetch_nand:
5126 case AO__scoped_atomic_add_fetch:
5127 case AO__scoped_atomic_sub_fetch:
5128 case AO__scoped_atomic_and_fetch:
5129 case AO__scoped_atomic_or_fetch:
5130 case AO__scoped_atomic_xor_fetch:
5131 case AO__scoped_atomic_nand_fetch:
5132 case AO__scoped_atomic_min_fetch:
5133 case AO__scoped_atomic_max_fetch:
5134 case AO__scoped_atomic_fetch_min:
5135 case AO__scoped_atomic_fetch_max:
5136 case AO__scoped_atomic_exchange_n:
5137 case AO__hip_atomic_exchange:
5138 case AO__hip_atomic_fetch_add:
5139 case AO__hip_atomic_fetch_sub:
5140 case AO__hip_atomic_fetch_and:
5141 case AO__hip_atomic_fetch_or:
5142 case AO__hip_atomic_fetch_xor:
5143 case AO__hip_atomic_fetch_min:
5144 case AO__hip_atomic_fetch_max:
5145 case AO__opencl_atomic_store:
5146 case AO__hip_atomic_store:
5147 case AO__opencl_atomic_exchange:
5148 case AO__opencl_atomic_fetch_add:
5149 case AO__opencl_atomic_fetch_sub:
5150 case AO__opencl_atomic_fetch_and:
5151 case AO__opencl_atomic_fetch_or:
5152 case AO__opencl_atomic_fetch_xor:
5153 case AO__opencl_atomic_fetch_min:
5154 case AO__opencl_atomic_fetch_max:
5155 case AO__atomic_exchange:
5156 return 4;
5157
5158 case AO__scoped_atomic_exchange:
5159 case AO__c11_atomic_compare_exchange_strong:
5160 case AO__c11_atomic_compare_exchange_weak:
5161 return 5;
5162 case AO__hip_atomic_compare_exchange_strong:
5163 case AO__opencl_atomic_compare_exchange_strong:
5164 case AO__opencl_atomic_compare_exchange_weak:
5165 case AO__hip_atomic_compare_exchange_weak:
5166 case AO__atomic_compare_exchange:
5167 case AO__atomic_compare_exchange_n:
5168 return 6;
5169
5170 case AO__scoped_atomic_compare_exchange:
5171 case AO__scoped_atomic_compare_exchange_n:
5172 return 7;
5173 }
5174 llvm_unreachable("unknown atomic op");
5175}
5176
5178 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
5179 if (auto AT = T->getAs<AtomicType>())
5180 return AT->getValueType();
5181 return T;
5182}
5183
5185 unsigned ArraySectionCount = 0;
5186 while (auto *OASE = dyn_cast<ArraySectionExpr>(Base->IgnoreParens())) {
5187 Base = OASE->getBase();
5188 ++ArraySectionCount;
5189 }
5190 while (auto *ASE =
5191 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
5192 Base = ASE->getBase();
5193 ++ArraySectionCount;
5194 }
5195 Base = Base->IgnoreParenImpCasts();
5196 auto OriginalTy = Base->getType();
5197 if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
5198 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
5199 OriginalTy = PVD->getOriginalType().getNonReferenceType();
5200
5201 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
5202 if (OriginalTy->isAnyPointerType())
5203 OriginalTy = OriginalTy->getPointeeType();
5204 else if (OriginalTy->isArrayType())
5205 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
5206 else
5207 return {};
5208 }
5209 return OriginalTy;
5210}
5211
5212RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
5213 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
5214 : Expr(RecoveryExprClass, T.getNonReferenceType(),
5215 T->isDependentType() ? VK_LValue : getValueKindForType(T),
5216 OK_Ordinary),
5217 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
5218 assert(!T.isNull());
5219 assert(!llvm::is_contained(SubExprs, nullptr));
5220
5221 llvm::copy(SubExprs, getTrailingObjects<Expr *>());
5223}
5224
5226 SourceLocation BeginLoc,
5227 SourceLocation EndLoc,
5228 ArrayRef<Expr *> SubExprs) {
5229 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
5230 alignof(RecoveryExpr));
5231 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
5232}
5233
5235 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
5236 alignof(RecoveryExpr));
5237 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
5238}
5239
5240void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
5241 assert(
5242 NumDims == Dims.size() &&
5243 "Preallocated number of dimensions is different from the provided one.");
5244 llvm::copy(Dims, getTrailingObjects<Expr *>());
5245}
5246
5247void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
5248 assert(
5249 NumDims == BR.size() &&
5250 "Preallocated number of dimensions is different from the provided one.");
5251 llvm::copy(BR, getTrailingObjects<SourceRange>());
5252}
5253
5254OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
5256 ArrayRef<Expr *> Dims)
5257 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
5258 RPLoc(R), NumDims(Dims.size()) {
5259 setBase(Op);
5260 setDimensions(Dims);
5262}
5263
5267 ArrayRef<Expr *> Dims,
5268 ArrayRef<SourceRange> BracketRanges) {
5269 assert(Dims.size() == BracketRanges.size() &&
5270 "Different number of dimensions and brackets ranges.");
5271 void *Mem = Context.Allocate(
5272 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
5273 alignof(OMPArrayShapingExpr));
5274 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
5275 E->setBracketsRanges(BracketRanges);
5276 return E;
5277}
5278
5280 unsigned NumDims) {
5281 void *Mem = Context.Allocate(
5282 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
5283 alignof(OMPArrayShapingExpr));
5284 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
5285}
5286
5287void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5288 assert(I < NumIterators &&
5289 "Idx is greater or equal the number of iterators definitions.");
5290 getTrailingObjects<Decl *>()[I] = D;
5291}
5292
5293void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5294 assert(I < NumIterators &&
5295 "Idx is greater or equal the number of iterators definitions.");
5296 getTrailingObjects<
5297 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5298 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5299}
5300
5301void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5302 SourceLocation ColonLoc, Expr *End,
5303 SourceLocation SecondColonLoc,
5304 Expr *Step) {
5305 assert(I < NumIterators &&
5306 "Idx is greater or equal the number of iterators definitions.");
5307 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5308 static_cast<int>(RangeExprOffset::Begin)] =
5309 Begin;
5310 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5311 static_cast<int>(RangeExprOffset::End)] = End;
5312 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5313 static_cast<int>(RangeExprOffset::Step)] = Step;
5314 getTrailingObjects<
5315 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5316 static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5317 ColonLoc;
5318 getTrailingObjects<
5319 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5320 static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5321 SecondColonLoc;
5322}
5323
5325 return getTrailingObjects<Decl *>()[I];
5326}
5327
5329 IteratorRange Res;
5330 Res.Begin =
5331 getTrailingObjects<Expr *>()[I * static_cast<int>(
5332 RangeExprOffset::Total) +
5333 static_cast<int>(RangeExprOffset::Begin)];
5334 Res.End =
5335 getTrailingObjects<Expr *>()[I * static_cast<int>(
5336 RangeExprOffset::Total) +
5337 static_cast<int>(RangeExprOffset::End)];
5338 Res.Step =
5339 getTrailingObjects<Expr *>()[I * static_cast<int>(
5340 RangeExprOffset::Total) +
5341 static_cast<int>(RangeExprOffset::Step)];
5342 return Res;
5343}
5344
5346 return getTrailingObjects<
5347 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5348 static_cast<int>(RangeLocOffset::AssignLoc)];
5349}
5350
5352 return getTrailingObjects<
5353 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5354 static_cast<int>(RangeLocOffset::FirstColonLoc)];
5355}
5356
5358 return getTrailingObjects<
5359 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5360 static_cast<int>(RangeLocOffset::SecondColonLoc)];
5361}
5362
5363void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5364 getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5365}
5366
5368 return getTrailingObjects<OMPIteratorHelperData>()[I];
5369}
5370
5372 return getTrailingObjects<OMPIteratorHelperData>()[I];
5373}
5374
5375OMPIteratorExpr::OMPIteratorExpr(
5376 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5379 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5380 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5381 NumIterators(Data.size()) {
5382 for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5383 const IteratorDefinition &D = Data[I];
5384 setIteratorDeclaration(I, D.IteratorDecl);
5385 setAssignmentLoc(I, D.AssignmentLoc);
5386 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5387 D.SecondColonLoc, D.Range.Step);
5388 setHelper(I, Helpers[I]);
5389 }
5391}
5392
5395 SourceLocation IteratorKwLoc, SourceLocation L,
5399 assert(Data.size() == Helpers.size() &&
5400 "Data and helpers must have the same size.");
5401 void *Mem = Context.Allocate(
5402 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5403 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5404 Data.size() * static_cast<int>(RangeLocOffset::Total),
5405 Helpers.size()),
5406 alignof(OMPIteratorExpr));
5407 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5408}
5409
5411 unsigned NumIterators) {
5412 void *Mem = Context.Allocate(
5413 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5414 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5415 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5416 alignof(OMPIteratorExpr));
5417 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5418}
5419
5422 OpaqueValueExpr *OpV, Expr *WB,
5423 bool IsInOut) {
5424 return new (C) HLSLOutArgExpr(Ty, Base, OpV, WB, IsInOut);
5425}
5426
5428 return new (C) HLSLOutArgExpr(EmptyShell());
5429}
5430
5433 return new (C) OpenACCAsteriskSizeExpr(Loc, C.IntTy);
5434}
5435
5438 return new (C) OpenACCAsteriskSizeExpr({}, C.IntTy);
5439}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3453
This file provides some common utility functions for processing Lambda related AST Constructs.
#define SM(sm)
Definition: Cuda.cpp:84
static bool isBooleanType(QualType Ty)
static Expr * IgnoreImplicitConstructorSingleStep(Expr *E)
Definition: BuildTree.cpp:53
Defines enum values for all the target-independent builtin functions.
const Decl * D
IndirectLocalPath & Path
Expr * E
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the C++ template declaration subclasses.
Defines the clang::Expr interface and subclasses for C++ expressions.
static const Expr * skipTemporaryBindingsNoOpCastsAndParens(const Expr *E)
Skip over any no-op casts and any temporary-binding expressions.
Definition: Expr.cpp:3205
static void AssertResultStorageKind(ConstantResultStorageKind Kind)
Definition: Expr.cpp:293
static void computeOverflowPatternExclusion(const ASTContext &Ctx, const BinaryOperator *E)
Compute and set the OverflowPatternExclusion bit based on whether the BinaryOperator expression match...
Definition: Expr.cpp:4841
static std::optional< BinaryOperator * > getOverflowPatternBinOp(const BinaryOperator *E)
Certain overflow-dependent code patterns can have their integer overflow sanitization disabled.
Definition: Expr.cpp:4795
llvm::MachO::Target Target
Definition: MachO.h:51
Defines the clang::Preprocessor interface.
static QualType getUnderlyingType(const SubRegion *R)
static bool isRecordType(QualType T)
SourceLocation Loc
Definition: SemaObjC.cpp:759
Defines the SourceManager interface.
static QualType getPointeeType(const MemRegion *R)
static const TypeInfo & getInfo(unsigned id)
Definition: Types.cpp:44
SourceLocation Begin
std::string Label
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
do v
Definition: arm_acle.h:91
void setValue(const ASTContext &C, const llvm::APInt &Val)
llvm::APInt getValue() const
uint64_t * pVal
Used to store the >64 bits integer value.
uint64_t VAL
Used to store the <= 64 bits integer value.
void setIntValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.cpp:952
A non-discriminated union of a base, field, or array index.
Definition: APValue.h:206
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition: APValue.h:122
APSInt & getInt()
Definition: APValue.h:465
static APValue IndeterminateValue()
Definition: APValue.h:408
@ Indeterminate
This object has an indeterminate value (C++ [basic.indet]).
Definition: APValue.h:131
@ None
There is no such object (it's outside its lifetime).
Definition: APValue.h:129
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
SourceManager & getSourceManager()
Definition: ASTContext.h:741
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2915
MangleContext * createMangleContext(const TargetInfo *T=nullptr)
If T is null pointer, assume the target in ASTContext.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2716
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
CanQualType DependentTy
Definition: ASTContext.h:1188
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1703
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:682
const LangOptions & getLangOpts() const
Definition: ASTContext.h:834
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const
Return one of the GCNone, Weak or Strong Objective-C garbage collection attributes.
TypeInfo getTypeInfo(const Type *T) const
Get the size and alignment of the specified complete type in bits.
CanQualType CharTy
Definition: ASTContext.h:1162
LangAS getDefaultOpenCLPointeeAddrSpace()
Returns default address space based on OpenCL version and enabled features.
Definition: ASTContext.h:1528
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2763
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2482
CanQualType VoidTy
Definition: ASTContext.h:1160
void * Allocate(size_t Size, unsigned Align=8) const
Definition: ASTContext.h:754
CanQualType UnsignedIntTy
Definition: ASTContext.h:1170
llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const
Make an APSInt of the appropriate width and signedness for the given Value and integer Type.
Definition: ASTContext.h:3175
StringLiteral * getPredefinedStringLiteralFromCache(StringRef Key) const
Return a string representing the human readable name for the specified function declaration or file n...
DiagnosticsEngine & getDiagnostics() const
UnnamedGlobalConstantDecl * getUnnamedGlobalConstantDecl(QualType Ty, const APValue &Value) const
Return a declaration for a uniquified anonymous global constant corresponding to a given APValue.
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
void addDestruction(T *Ptr) const
If T isn't trivially destructible, calls AddDeallocation to register it for destruction.
Definition: ASTContext.h:3261
size_type size() const
Definition: ASTVector.h:109
void resize(const ASTContext &C, unsigned N, const T &NV)
Definition: ASTVector.h:341
iterator begin()
Definition: ASTVector.h:97
iterator insert(const ASTContext &C, iterator I, const T &Elt)
Definition: ASTVector.h:219
void reserve(const ASTContext &C, unsigned N)
Definition: ASTVector.h:173
iterator end()
Definition: ASTVector.h:99
static QualType getBaseOriginalType(const Expr *Base)
Return original type of the base expression for array section.
Definition: Expr.cpp:5184
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2718
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3577
QualType getElementType() const
Definition: Type.h:3589
QualType getValueType() const
Definition: Expr.cpp:5177
Expr * getPtr() const
Definition: Expr.h:6710
AtomicExpr(SourceLocation BLoc, ArrayRef< Expr * > args, QualType t, AtomicOp op, SourceLocation RP)
Definition: Expr.cpp:5064
unsigned getNumSubExprs() const
Definition: Expr.h:6753
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3909
Expr * getLHS() const
Definition: Expr.h:3959
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given binary opcode.
Definition: Expr.cpp:2196
StringRef getOpcodeStr() const
Definition: Expr.h:3975
SourceLocation getOperatorLoc() const
Definition: Expr.h:3951
bool hasStoredFPFeatures() const
Definition: Expr.h:4094
bool isCompoundAssignmentOp() const
Definition: Expr.h:4053
Expr * getRHS() const
Definition: Expr.h:3961
static unsigned sizeOfTrailingObjects(bool HasFPFeatures)
Return the size in bytes needed for the trailing objects.
Definition: Expr.h:4160
static BinaryOperator * Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures)
Definition: Expr.cpp:4902
static BinaryOperator * CreateEmpty(const ASTContext &C, bool hasFPFeatures)
Definition: Expr.cpp:4894
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:4045
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, const Expr *LHS, const Expr *RHS)
Return true if a binary operator using the specified opcode and operands would match the 'p = (i8*)nu...
Definition: Expr.cpp:2221
Opcode getOpcode() const
Definition: Expr.h:3954
void setStoredFPFeatures(FPOptionsOverride F)
Set FPFeatures in trailing storage, used only by Serialization.
Definition: Expr.h:4111
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO)
Retrieve the binary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:2158
BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures)
Build a binary operator, assuming that appropriate storage has been allocated for the trailing object...
Definition: Expr.cpp:4857
A binding in a decomposition declaration.
Definition: DeclCXX.h:4130
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.h:4575
SourceLocation getCaretLocation() const
Definition: Decl.h:4569
SourceLocation getCaretLocation() const
Definition: Expr.cpp:2543
BlockDecl * TheBlock
Definition: Expr.h:6416
const Stmt * getBody() const
Definition: Expr.cpp:2546
const FunctionProtoType * getFunctionType() const
getFunctionType - Return the underlying function type for this block.
Definition: Expr.cpp:2537
Pointer to a block type.
Definition: Type.h:3408
bool isUnevaluated(unsigned ID) const
Returns true if this builtin does not perform the side-effects of its arguments.
Definition: Builtins.h:144
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr....
Definition: Expr.h:3840
static CStyleCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures)
Definition: Expr.cpp:2138
static CStyleCastExpr * Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, FPOptionsOverride FPO, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R)
Definition: Expr.cpp:2120
SourceLocation getLParenLoc() const
Definition: Expr.h:3872
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:231
Represents a base class of a C++ class.
Definition: DeclCXX.h:146
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1491
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1546
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1689
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1609
unsigned getNumArgs() const
Return the number of arguments to the constructor call.
Definition: ExprCXX.h:1686
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2553
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1268
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1375
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2817
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:478
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr....
Definition: ExprCXX.h:1817
Represents a call to a member function that may be written either with member call syntax (e....
Definition: ExprCXX.h:176
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2078
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined.
Definition: DeclCXX.h:2204
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:81
SourceLocation getOperatorLoc() const
Returns the location of the operator symbol in the expression.
Definition: ExprCXX.h:149
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:111
SourceRange getSourceRange() const
Definition: ExprCXX.h:161
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1378
A C++ static_cast expression (C++ [expr.static.cast]).
Definition: ExprCXX.h:433
Represents the this expression in C++.
Definition: ExprCXX.h:1152
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2874
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:3068
bool hasStoredFPFeatures() const
Definition: Expr.h:3036
static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs, bool HasFPFeatures)
Return the size in bytes needed for the trailing objects.
Definition: Expr.h:2948
void setArg(unsigned Arg, Expr *ArgExpr)
setArg - Set the specified argument.
Definition: Expr.h:3081
static CallExpr * Create(const ASTContext &Ctx, Expr *Fn, ArrayRef< Expr * > Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, FPOptionsOverride FPFeatures, unsigned MinNumArgs=0, ADLCallKind UsesADL=NotADL)
Create a call expression.
Definition: Expr.cpp:1499
std::pair< const NamedDecl *, const Attr * > getUnusedResultAttr(const ASTContext &Ctx) const
Returns the WarnUnusedResultAttr that is either declared on the called function, or its return type d...
Definition: Expr.cpp:1626
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1645
unsigned getBuiltinCallee() const
getBuiltinCallee - If this is a call to a builtin, return the builtin ID of the callee.
Definition: Expr.cpp:1584
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:3047
static CallExpr * CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty)
Create an empty call expression, for deserialization.
Definition: Expr.cpp:1523
bool isCallToStdMove() const
Definition: Expr.cpp:3548
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1662
void setPreArg(unsigned I, Stmt *PreArg)
Definition: Expr.h:2962
Expr * getCallee()
Definition: Expr.h:3024
void computeDependence()
Compute and set dependence bits.
Definition: Expr.h:3087
void setStoredFPFeatures(FPOptionsOverride F)
Set FPOptionsOverride in trailing storage. Used only by Serialization.
Definition: Expr.h:3146
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:3055
CallExpr(StmtClass SC, Expr *Fn, ArrayRef< Expr * > PreArgs, ArrayRef< Expr * > Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, FPOptionsOverride FPFeatures, unsigned MinNumArgs, ADLCallKind UsesADL)
Build a call expression, assuming that appropriate storage has been allocated for the trailing object...
Definition: Expr.cpp:1452
SourceLocation getRParenLoc() const
Definition: Expr.h:3194
static constexpr ADLCallKind UsesADL
Definition: Expr.h:2932
static CallExpr * CreateTemporary(void *Mem, Expr *Fn, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, ADLCallKind UsesADL=NotADL)
Create a temporary call expression with no arguments in the memory pointed to by Mem.
Definition: Expr.cpp:1513
bool isBuiltinAssumeFalse(const ASTContext &Ctx) const
Return true if this is a call to __assume() or __builtin_assume() with a non-value-dependent constant...
Definition: Expr.cpp:3536
Decl * getCalleeDecl()
Definition: Expr.h:3041
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1595
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const
Returns true if this is a call to a builtin which does not evaluate side-effects within its arguments...
Definition: Expr.cpp:1589
void setCallee(Expr *F)
Definition: Expr.h:3026
unsigned getNumPreArgs() const
Definition: Expr.h:2967
bool hasUnusedResultAttr(const ASTContext &Ctx) const
Returns true if this call expression should warn on unused results.
Definition: Expr.h:3190
QualType withConst() const
Retrieves a version of this type with const applied.
bool isVolatileQualified() const
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4695
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3547
FPOptionsOverride * getTrailingFPFeatures()
Return a pointer to the trailing FPOptions.
Definition: Expr.cpp:2069
NamedDecl * getConversionFunction() const
If this cast applies a user-defined conversion, retrieve the conversion function that it invokes.
Definition: Expr.cpp:2018
Expr * getSubExprAsWritten()
Retrieve the cast subexpression as it was written in the source code, looking through any implicit ca...
Definition: Expr.cpp:1996
CastKind getCastKind() const
Definition: Expr.h:3591
bool hasStoredFPFeatures() const
Definition: Expr.h:3646
static const FieldDecl * getTargetFieldForToUnionCast(QualType unionType, QualType opType)
Definition: Expr.cpp:2049
const char * getCastKindName() const
Definition: Expr.h:3595
bool path_empty() const
Definition: Expr.h:3615
Expr * getSubExpr()
Definition: Expr.h:3597
SourceLocation getEnd() const
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
void setValue(unsigned Val)
Definition: Expr.h:1621
static void print(unsigned val, CharacterLiteralKind Kind, raw_ostream &OS)
Definition: Expr.cpp:1025
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:4641
Represents a class template specialization, which refers to a class template with a given set of temp...
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:4171
static CompoundAssignOperator * CreateEmpty(const ASTContext &C, bool hasFPFeatures)
Definition: Expr.cpp:4916
static CompoundAssignOperator * Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures, QualType CompLHSType=QualType(), QualType CompResultType=QualType())
Definition: Expr.cpp:4924
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:3477
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1628
bool body_empty() const
Definition: Stmt.h:1672
Stmt * body_back()
Definition: Stmt.h:1696
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:4262
ConstEvaluatedExprVisitor - This class visits 'const Expr *'s.
ConstantExpr - An expression that occurs in a constant context and optionally the result of evaluatin...
Definition: Expr.h:1077
APValue getAPValueResult() const
Definition: Expr.cpp:412
static ConstantResultStorageKind getStorageKind(const APValue &Value)
Definition: Expr.cpp:301
void MoveIntoResult(APValue &Value, const ASTContext &Context)
Definition: Expr.cpp:377
llvm::APSInt getResultAsAPSInt() const
Definition: Expr.cpp:400
ConstantResultStorageKind getResultStorageKind() const
Definition: Expr.h:1146
static ConstantExpr * Create(const ASTContext &Context, Expr *E, const APValue &Result)
Definition: Expr.cpp:349
static ConstantExpr * CreateEmpty(const ASTContext &Context, ConstantResultStorageKind StorageKind)
Definition: Expr.cpp:366
A POD class for pairing a NamedDecl* with an access specifier.
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2380
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1435
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:2100
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1334
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1265
bool hasExplicitTemplateArgs() const
Determines whether this declaration reference was followed by an explicit template argument list.
Definition: Expr.h:1414
void setDecl(ValueDecl *NewD)
Definition: Expr.cpp:543
static DeclRefExpr * CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs)
Construct an empty declaration reference expression.
Definition: Expr.cpp:528
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:550
DeclarationNameInfo getNameInfo() const
Definition: Expr.h:1337
static DeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD=nullptr, const TemplateArgumentListInfo *TemplateArgs=nullptr, NonOdrUseReason NOUR=NOUR_None)
Definition: Expr.cpp:487
bool hasQualifier() const
Determine whether this declaration reference was preceded by a C++ nested-name-specifier,...
Definition: Expr.h:1348
NestedNameSpecifierLoc getQualifierLoc() const
If the name was qualified, retrieves the nested-name-specifier that precedes the name,...
Definition: Expr.h:1352
ValueDecl * getDecl()
Definition: Expr.h:1333
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:555
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition: Expr.h:1402
DeclStmt - Adaptor class for mixing declarations with statements and expressions.
Definition: Stmt.h:1519
decl_range decls()
Definition: Stmt.h:1567
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
T * getAttr() const
Definition: DeclBase.h:576
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:520
static Decl * castFromDeclContext(const DeclContext *)
Definition: DeclBase.cpp:1038
DeclContext * getDeclContext()
Definition: DeclBase.h:451
AccessSpecifier getAccess() const
Definition: DeclBase.h:510
static bool isFlexibleArrayMemberLike(ASTContext &Context, const Decl *D, QualType Ty, LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, bool IgnoreTemplateOrMacroSubstitution)
Whether it resembles a flexible array member.
Definition: DeclBase.cpp:432
bool hasAttr() const
Definition: DeclBase.h:580
DeclarationNameLoc - Additional source/type location info for a declaration name.
Represents the type decltype(expr) (C++11).
Definition: Type.h:5879
Represents a single C99 designator.
Definition: Expr.h:5376
SourceRange getSourceRange() const LLVM_READONLY
Definition: Expr.h:5548
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:5538
struct FieldDesignatorInfo FieldInfo
A field designator, e.g., ".x".
Definition: Expr.h:5438
FieldDecl * getFieldDecl() const
Definition: Expr.h:5467
SourceLocation getFieldLoc() const
Definition: Expr.h:5484
const IdentifierInfo * getFieldName() const
Definition: Expr.cpp:4592
SourceLocation getDotLoc() const
Definition: Expr.h:5479
Represents a C99 designated initializer expression.
Definition: Expr.h:5333
static DesignatedInitExpr * CreateEmpty(const ASTContext &C, unsigned NumIndexExprs)
Definition: Expr.cpp:4646
Expr * getArrayRangeEnd(const Designator &D) const
Definition: Expr.cpp:4701
Expr * getSubExpr(unsigned Idx) const
Definition: Expr.h:5615
SourceRange getDesignatorsSourceRange() const
Definition: Expr.cpp:4662
Expr * getArrayRangeStart(const Designator &D) const
Definition: Expr.cpp:4696
void ExpandDesignator(const ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last)
Replaces the designator at index Idx with the series of designators in [First, Last).
Definition: Expr.cpp:4708
static DesignatedInitExpr * Create(const ASTContext &C, llvm::ArrayRef< Designator > Designators, ArrayRef< Expr * > IndexExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init)
Definition: Expr.cpp:4634
Expr * getArrayIndex(const Designator &D) const
Definition: Expr.cpp:4691
Designator * getDesignator(unsigned Idx)
Definition: Expr.h:5574
Expr * getInit() const
Retrieve the initializer value.
Definition: Expr.h:5601
unsigned size() const
Returns the number of designators in this initializer.
Definition: Expr.h:5563
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:4670
void setDesignators(const ASTContext &C, const Designator *Desigs, unsigned NumDesigs)
Definition: Expr.cpp:4653
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:4687
Expr * getBase() const
Definition: Expr.h:5717
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:4750
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc, Expr *baseExprs, SourceLocation rBraceLoc)
Definition: Expr.cpp:4734
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:4754
InitListExpr * getUpdater() const
Definition: Expr.h:5720
EmbedExpr(const ASTContext &Ctx, SourceLocation Loc, EmbedDataStorage *Data, unsigned Begin, unsigned NumOfElements)
Definition: Expr.cpp:2400
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:3291
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:3799
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3826
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:3474
bool isPRValue() const
Definition: Expr.h:383
This represents one expression.
Definition: Expr.h:110
@ LV_MemberFunction
Definition: Expr.h:289
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects, bool InConstantContext=false) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer,...
EnumConstantDecl * getEnumConstantDecl()
If this expression refers to an enum constant, retrieve its declaration.
Definition: Expr.cpp:4178
bool isReadIfDiscardedInCPlusPlus11() const
Determine whether an lvalue-to-rvalue conversion should implicitly be applied to this expression if i...
Definition: Expr.cpp:2558
bool isGLValue() const
Definition: Expr.h:280
Expr * IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY
Skip past any parentheses and casts which do not change the value (including ptr->int casts of the sa...
Definition: Expr.cpp:3124
@ SE_AllowUndefinedBehavior
Allow UB that we can give a value, but not arbitrary unmodeled side effects.
Definition: Expr.h:669
static QualType findBoundMemberType(const Expr *expr)
Given an expression of bound-member type, find the type of the member.
Definition: Expr.cpp:3053
bool isImplicitCXXThis() const
Whether this expression is an implicit reference to 'this' in C++.
Definition: Expr.cpp:3273
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3102
void setType(QualType t)
Definition: Expr.h:143
bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const
isUnusedResultAWarning - Return true if this immediate expression should be warned about if the resul...
Definition: Expr.cpp:2624
LValueClassification ClassifyLValue(ASTContext &Ctx) const
Reasons why an expression might not be an l-value.
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition: Expr.h:175
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:437
bool refersToVectorElement() const
Returns whether this expression refers to a vector element.
Definition: Expr.cpp:4185
bool isTypeDependent() const
Determines whether the type of this expression depends on.
Definition: Expr.h:192
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
Expr * IgnoreParenLValueCasts() LLVM_READONLY
Skip past any parentheses and lvalue casts which might surround this expression until reaching a fixe...
Definition: Expr.cpp:3114
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Returns the set of floating point options that apply to this expression.
Definition: Expr.cpp:3893
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:68
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition: Expr.cpp:3097
Expr * IgnoreImplicit() LLVM_READONLY
Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3085
Expr * IgnoreConversionOperatorSingleStep() LLVM_READONLY
Skip conversion operators.
Definition: Expr.cpp:3106
bool containsErrors() const
Whether this expression contains subexpressions which had errors, e.g.
Definition: Expr.h:245
bool isObjCSelfExpr() const
Check if this expression is the ObjC 'self' implicit parameter.
Definition: Expr.cpp:4113
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3093
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsLValue - Evaluate an expression to see if we can fold it to an lvalue with link time known ...
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
Expr * IgnoreParenBaseCasts() LLVM_READONLY
Skip past any parentheses and derived-to-base casts until reaching a fixed point.
Definition: Expr.cpp:3119
bool isPRValue() const
Definition: Expr.h:278
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language.
Definition: Expr.h:277
static bool hasAnyTypeDependentArguments(ArrayRef< Expr * > Exprs)
hasAnyTypeDependentArguments - Determines if any of the expressions in Exprs is type-dependent.
Definition: Expr.cpp:3317
FieldDecl * getSourceBitField()
If this expression refers to a bit-field, retrieve the declaration of that bit-field.
Definition: Expr.cpp:4131
NullPointerConstantValueDependence
Enumeration used to describe how isNullPointerConstant() should cope with value-dependent expressions...
Definition: Expr.h:820
@ NPC_ValueDependentIsNull
Specifies that a value-dependent expression of integral or dependent type should be considered a null...
Definition: Expr.h:826
@ NPC_NeverValueDependent
Specifies that the expression should never be value-dependent.
Definition: Expr.h:822
@ NPC_ValueDependentIsNotNull
Specifies that a value-dependent expression should be considered to never be a null pointer constant.
Definition: Expr.h:830
Expr * IgnoreUnlessSpelledInSource()
Skip past any invisible AST nodes which might surround this statement, such as ExprWithCleanups or Im...
Definition: Expr.cpp:3150
ExprObjectKind getObjectKind() const
getObjectKind - The object kind that this expression produces.
Definition: Expr.h:444
Expr * IgnoreCasts() LLVM_READONLY
Skip past any casts which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3081
Decl * getReferencedDeclOfCallee()
Definition: Expr.cpp:1550
Expr * IgnoreImplicitAsWritten() LLVM_READONLY
Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3089
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:3594
bool EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, ConstantExprKind Kind=ConstantExprKind::Normal) const
Evaluate an expression that is required to be a constant expression.
const Expr * getBestDynamicClassTypeExpr() const
Get the inner expression that determines the best dynamic class.
Definition: Expr.cpp:43
bool isIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc=nullptr) const
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3077
NullPointerConstantKind
Enumeration used to describe the kind of Null pointer constant returned from isNullPointerConstant().
Definition: Expr.h:797
@ NPCK_ZeroExpression
Expression is a Null pointer constant built from a zero integer expression that is not a simple,...
Definition: Expr.h:806
@ NPCK_ZeroLiteral
Expression is a Null pointer constant built from a literal zero.
Definition: Expr.h:809
@ NPCK_CXX11_nullptr
Expression is a C++11 nullptr.
Definition: Expr.h:812
@ NPCK_GNUNull
Expression is a GNU-style __null constant.
Definition: Expr.h:815
@ NPCK_NotNull
Expression is not a Null pointer constant.
Definition: Expr.h:799
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsBooleanCondition - Return true if this is a constant which we can fold and convert to a boo...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type.
Definition: Expr.cpp:3231
NullPointerConstantKind isNullPointerConstant(ASTContext &Ctx, NullPointerConstantValueDependence NPC) const
isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to a Null pointer constant.
Definition: Expr.cpp:3970
QualType getEnumCoercedType(const ASTContext &Ctx) const
If this expression is an enumeration constant, return the enumeration type under which said constant ...
Definition: Expr.cpp:265
bool isBoundMemberFunction(ASTContext &Ctx) const
Returns true if this expression is a bound member function.
Definition: Expr.cpp:3047
bool isConstantInitializer(ASTContext &Ctx, bool ForRef, const Expr **Culprit=nullptr) const
isConstantInitializer - Returns true if this expression can be emitted to IR as a constant,...
Definition: Expr.cpp:3325
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:276
static bool isSameComparisonOperand(const Expr *E1, const Expr *E2)
Checks that the two Expr's will refer to the same value as a comparison operand.
Definition: Expr.cpp:4222
bool isDefaultArgument() const
Determine whether this expression is a default function argument.
Definition: Expr.cpp:3192
bool isFlexibleArrayMemberLike(ASTContext &Context, LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, bool IgnoreTemplateOrMacroSubstitution=false) const
Check whether this array fits the idiom of a flexible array member, depending on the value of -fstric...
Definition: Expr.cpp:205
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:405
QualType getType() const
Definition: Expr.h:142
bool hasNonTrivialCall(const ASTContext &Ctx) const
Determine whether this expression involves a call to any function that is not trivial.
Definition: Expr.cpp:3958
bool refersToGlobalRegisterVar() const
Returns whether this expression refers to a global register variable.
Definition: Expr.cpp:4210
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const
isCXX98IntegralConstantExpr - Return true if this expression is an integral constant expression in C+...
const ValueDecl * getAsBuiltinConstantDeclRef(const ASTContext &Context) const
If this expression is an unambiguous reference to a single declaration, in the style of __builtin_fun...
Definition: Expr.cpp:225
bool isOBJCGCCandidate(ASTContext &Ctx) const
isOBJCGCCandidate - Return true if this expression may be used in a read/ write barrier.
Definition: Expr.cpp:3008
static ExprValueKind getValueKindForType(QualType T)
getValueKindForType - Given a formal return or parameter type, give its value kind.
Definition: Expr.h:427
const Expr * skipRValueSubobjectAdjustments() const
Definition: Expr.h:1015
bool isKnownToHaveBooleanValue(bool Semantic=true) const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:136
void setDependence(ExprDependence Deps)
Each concrete expr subclass is expected to compute its dependence and call this in the constructor.
Definition: Expr.h:135
const ObjCPropertyRefExpr * getObjCProperty() const
If this expression is an l-value for an Objective C property, find the underlying property reference ...
Definition: Expr.cpp:4094
bool containsDuplicateElements() const
containsDuplicateElements - Return true if any element access is repeated.
Definition: Expr.cpp:4341
bool isArrow() const
isArrow - Return true if the base expression is a pointer to vector, return false if the base express...
Definition: Expr.cpp:4330
void getEncodedElementAccess(SmallVectorImpl< uint32_t > &Elts) const
getEncodedElementAccess - Encode the elements accessed into an llvm aggregate Constant of ConstantInt...
Definition: Expr.cpp:4362
const Expr * getBase() const
Definition: Expr.h:6371
unsigned getNumElements() const
getNumElements - Get the number of components being selected.
Definition: Expr.cpp:4334
static int getAccessorIdx(char c, bool isNumericAccessor)
Definition: Type.h:4172
Represents difference between two FPOptions values.
Definition: LangOptions.h:978
bool requiresTrailingStorage() const
Definition: LangOptions.h:1004
static FPOptions defaultWithoutTrailingStorage(const LangOptions &LO)
Return the default value of FPOptions that's used when trailing storage isn't required.
Represents a member of a struct/union/class.
Definition: Decl.h:3033
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set.
Definition: Decl.cpp:4580
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:3136
static FixedPointLiteral * Create(const ASTContext &C, EmptyShell Empty)
Returns an empty fixed-point literal.
Definition: Expr.cpp:1010
std::string getValueAsString(unsigned Radix) const
Definition: Expr.cpp:1015
static FixedPointLiteral * CreateFromRawInt(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale)
Definition: Expr.cpp:1002
static FloatingLiteral * Create(const ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L)
Definition: Expr.cpp:1081
double getValueAsApproximateDouble() const
getValueAsApproximateDouble - This returns the value as an inaccurate double.
Definition: Expr.cpp:1094
llvm::APFloat getValue() const
Definition: Expr.h:1652
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:1044
Represents a function declaration or definition.
Definition: Decl.h:1935
FunctionDecl * getTemplateInstantiationPattern(bool ForDefinition=true) const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition: Decl.cpp:4123
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2305
Represents a prototype with parameter type info, e.g.
Definition: Type.h:5107
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:472
TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:486
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:527
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:4321
CallingConv getCallConv() const
Definition: Type.h:4659
QualType getReturnType() const
Definition: Type.h:4648
Represents a C11 generic selection.
Definition: Expr.h:5966
static GenericSelectionExpr * Create(const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef< TypeSourceInfo * > AssocTypes, ArrayRef< Expr * > AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
Create a non-result-dependent generic selection expression accepting an expression predicate.
Definition: Expr.cpp:4522
static GenericSelectionExpr * CreateEmpty(const ASTContext &Context, unsigned NumAssocs)
Create an empty generic selection expression for deserialization.
Definition: Expr.cpp:4580
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:56
This class represents temporary values used to represent inout and out arguments in HLSL.
Definition: Expr.h:7152
static HLSLOutArgExpr * CreateEmpty(const ASTContext &Ctx)
Definition: Expr.cpp:5427
static HLSLOutArgExpr * Create(const ASTContext &C, QualType Ty, OpaqueValueExpr *Base, OpaqueValueExpr *OpV, Expr *WB, bool IsInOut)
Definition: Expr.cpp:5420
One of these records is kept for each identifier that is lexed.
StringRef getName() const
Return the actual identifier string.
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3724
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat, FPOptionsOverride FPO)
Definition: Expr.cpp:2089
static ImplicitCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures)
Definition: Expr.cpp:2111
Describes an C or C++ initializer list.
Definition: Expr.h:5088
bool hasArrayFiller() const
Return true if this is an array initializer and its array "filler" has been set.
Definition: Expr.h:5192
InitListExpr(const ASTContext &C, SourceLocation lbraceloc, ArrayRef< Expr * > initExprs, SourceLocation rbraceloc)
Definition: Expr.cpp:2411
bool isTransparent() const
Is this a transparent initializer list (that is, an InitListExpr that is purely syntactic,...
Definition: Expr.cpp:2467
void resizeInits(const ASTContext &Context, unsigned NumInits)
Specify the number of initializers.
Definition: Expr.cpp:2427
bool isStringLiteralInit() const
Is this an initializer for an array of characters, initialized by a string literal or an @encode?
Definition: Expr.cpp:2453
FieldDecl * getInitializedFieldInUnion()
If this initializes a union, specifies which field in the union to initialize.
Definition: Expr.h:5207
unsigned getNumInits() const
Definition: Expr.h:5118
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:2501
bool isSemanticForm() const
Definition: Expr.h:5247
void setInit(unsigned Init, Expr *expr)
Definition: Expr.h:5144
Expr * updateInit(const ASTContext &C, unsigned Init, Expr *expr)
Updates the initializer at index Init with the new expression expr, and returns the old expression at...
Definition: Expr.cpp:2431
void setArrayFiller(Expr *filler)
Definition: Expr.cpp:2443
InitListExpr * getSyntacticForm() const
Definition: Expr.h:5254
const Expr * getInit(unsigned Init) const
Definition: Expr.h:5134
bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const
Is this the zero initializer {0} in a language which considers it idiomatic?
Definition: Expr.cpp:2490
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:2519
bool isSyntacticForm() const
Definition: Expr.h:5251
ArrayRef< Expr * > inits()
Definition: Expr.h:5128
void sawArrayRangeDesignator(bool ARD=true)
Definition: Expr.h:5268
Expr ** getInits()
Retrieve the set of initializers.
Definition: Expr.h:5121
void reserveInits(const ASTContext &C, unsigned NumInits)
Reserve space for some number of initializers.
Definition: Expr.cpp:2422
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value 'V' and type 'type'.
Definition: Expr.cpp:980
static ItaniumMangleContext * create(ASTContext &Context, DiagnosticsEngine &Diags, bool IsAux=false)
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:2058
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1954
@ AddUnsignedOverflowTest
if (a + b < a)
Definition: LangOptions.h:391
@ AddSignedOverflowTest
if (a + b < a)
Definition: LangOptions.h:389
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:499
bool isOverflowPatternExcluded(OverflowPatternExclusionKind Kind) const
Definition: LangOptions.h:676
void remapPathPrefix(SmallVectorImpl< char > &Path) const
Remap path prefix according to -fmacro-prefix-path option.
Definition: LangOptions.cpp:73
Lexer - This provides a simple interface that turns a text buffer into a stream of tokens.
Definition: Lexer.h:78
bool LexFromRawLexer(Token &Result)
LexFromRawLexer - Lex a token from a designated raw lexer (one with no associated preprocessor object...
Definition: Lexer.h:236
static SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Characters, const SourceManager &SM, const LangOptions &LangOpts)
AdvanceToTokenCharacter - If the current SourceLocation specifies a location at the start of a token,...
Definition: Lexer.h:399
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4734
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:3236
static MemberExpr * CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs)
Definition: Expr.cpp:1791
void setMemberDecl(ValueDecl *D)
Definition: Expr.cpp:1806
NestedNameSpecifierLoc getQualifierLoc() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name,...
Definition: Expr.h:3338
bool hasExplicitTemplateArgs() const
Determines whether the member name was followed by an explicit template argument list.
Definition: Expr.h:3380
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:3333
static MemberExpr * Create(const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, DeclAccessPair FoundDecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs, QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR)
Definition: Expr.cpp:1769
bool isImplicitAccess() const
Determine whether the base of this explicit is implicit.
Definition: Expr.h:3434
Expr * getBase() const
Definition: Expr.h:3313
SourceLocation getRAngleLoc() const
Retrieve the location of the right angle bracket ending the explicit template argument list following...
Definition: Expr.h:3369
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1827
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1813
DeclarationNameInfo getMemberNameInfo() const
Retrieve the member declaration name info.
Definition: Expr.h:3413
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:3519
This represents a decl that may have a name.
Definition: Decl.h:253
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:274
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:280
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:319
A C++ nested-name-specifier augmented with source location information.
SourceLocation getBeginLoc() const
Retrieve the location of the beginning of this nested-name-specifier.
bool hasQualifier() const
Evaluates true when this nested-name-specifier location is non-empty.
An explicit cast in C or a C-style cast in C++, which uses the syntax ([s1][s2]......
Definition: ExprOpenMP.h:24
static OMPArrayShapingExpr * CreateEmpty(const ASTContext &Context, unsigned NumDims)
Definition: Expr.cpp:5279
static OMPArrayShapingExpr * Create(const ASTContext &Context, QualType T, Expr *Op, SourceLocation L, SourceLocation R, ArrayRef< Expr * > Dims, ArrayRef< SourceRange > BracketRanges)
Definition: Expr.cpp:5265
OpenMP 5.0 [2.1.6 Iterators] Iterators are identifiers that expand to multiple values in the clause o...
Definition: ExprOpenMP.h:151
static OMPIteratorExpr * Create(const ASTContext &Context, QualType T, SourceLocation IteratorKwLoc, SourceLocation L, SourceLocation R, ArrayRef< IteratorDefinition > Data, ArrayRef< OMPIteratorHelperData > Helpers)
Definition: Expr.cpp:5394
static OMPIteratorExpr * CreateEmpty(const ASTContext &Context, unsigned NumIterators)
Definition: Expr.cpp:5410
SourceLocation getSecondColonLoc(unsigned I) const
Gets the location of the second ':' (if any) in the range for the given iteratori definition.
Definition: Expr.cpp:5357
SourceLocation getColonLoc(unsigned I) const
Gets the location of the first ':' in the range for the given iterator definition.
Definition: Expr.cpp:5351
IteratorRange getIteratorRange(unsigned I)
Gets the iterator range for the given iterator.
Definition: Expr.cpp:5328
OMPIteratorHelperData & getHelper(unsigned I)
Fetches helper data for the specified iteration space.
Definition: Expr.cpp:5367
SourceLocation getAssignLoc(unsigned I) const
Gets the location of '=' for the given iterator definition.
Definition: Expr.cpp:5345
Decl * getIteratorDecl(unsigned I)
Gets the iterator declaration for the given iterator.
Definition: Expr.cpp:5324
ObjCCategoryImplDecl - An object of this class encapsulates a category @implementation declaration.
Definition: DeclObjC.h:2544
Represents an ObjC class declaration.
Definition: DeclObjC.h:1153
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:549
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:941
ObjCMethodFamily getMethodFamily() const
Definition: ExprObjC.h:1371
bool isInstanceMessage() const
Determine whether this is an instance message to either a computed object or to super.
Definition: ExprObjC.h:1244
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1352
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:140
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:418
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition: ExprObjC.h:617
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type,...
Definition: Expr.h:2519
static OffsetOfExpr * CreateEmpty(const ASTContext &C, unsigned NumComps, unsigned NumExprs)
Definition: Expr.cpp:1685
static OffsetOfExpr * Create(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef< OffsetOfNode > comps, ArrayRef< Expr * > exprs, SourceLocation RParenLoc)
Definition: Expr.cpp:1672
void setIndexExpr(unsigned Idx, Expr *E)
Definition: Expr.h:2590
void setComponent(unsigned Idx, OffsetOfNode ON)
Definition: Expr.h:2571
FieldDecl * getField() const
For a field offsetof node, returns the field.
Definition: Expr.h:2477
IdentifierInfo * getFieldName() const
For a field or identifier offsetof node, returns the name of the field.
Definition: Expr.cpp:1707
@ Identifier
A field in a dependent type, known only by its name.
Definition: Expr.h:2422
@ Field
A field.
Definition: Expr.h:2420
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:2467
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class.
Definition: Expr.h:1173
static const OpaqueValueExpr * findInCopyConstruct(const Expr *expr)
Given an expression which invokes a copy constructor — i.e.
Definition: Expr.cpp:4971
This expression type represents an asterisk in an OpenACC Size-Expr, used in the 'tile' and 'gang' cl...
Definition: Expr.h:2078
static OpenACCAsteriskSizeExpr * Create(const ASTContext &C, SourceLocation Loc)
Definition: Expr.cpp:5431
static OpenACCAsteriskSizeExpr * CreateEmpty(const ASTContext &C)
Definition: Expr.cpp:5437
ParenExpr - This represents a parenthesized expression, e.g.
Definition: Expr.h:2170
static ParenListExpr * CreateEmpty(const ASTContext &Ctx, unsigned NumExprs)
Create an empty paren list.
Definition: Expr.cpp:4783
static ParenListExpr * Create(const ASTContext &Ctx, SourceLocation LParenLoc, ArrayRef< Expr * > Exprs, SourceLocation RParenLoc)
Create a paren list.
Definition: Expr.cpp:4774
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3198
QualType getPointeeType() const
Definition: Type.h:3208
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1991
static PredefinedExpr * Create(const ASTContext &Ctx, SourceLocation L, QualType FNTy, PredefinedIdentKind IK, bool IsTransparent, StringLiteral *SL)
Create a PredefinedExpr.
Definition: Expr.cpp:637
StringRef getIdentKindName() const
Definition: Expr.h:2048
static PredefinedExpr * CreateEmpty(const ASTContext &Ctx, bool HasFunctionName)
Create an empty PredefinedExpr.
Definition: Expr.cpp:646
static std::string ComputeName(PredefinedIdentKind IK, const Decl *CurrentDecl, bool ForceElaboratedPrinting=false)
Definition: Expr.cpp:677
static void processPathToFileName(SmallVectorImpl< char > &FileName, const PresumedLoc &PLoc, const LangOptions &LangOpts, const TargetInfo &TI)
static void processPathForFileMacro(SmallVectorImpl< char > &Path, const LangOptions &LangOpts, const TargetInfo &TI)
Represents an unpacked "presumed" location which can be presented to the user.
unsigned getColumn() const
Return the presumed column number of this location.
const char * getFilename() const
Return the presumed filename of this location.
unsigned getLine() const
Return the presumed line number of this location.
Callbacks to use to customize the behavior of the pretty-printer.
Definition: PrettyPrinter.h:32
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:6546
semantics_iterator semantics_end()
Definition: Expr.h:6618
semantics_iterator semantics_begin()
Definition: Expr.h:6612
const Expr *const * const_semantics_iterator
Definition: Expr.h:6611
static PseudoObjectExpr * Create(const ASTContext &Context, Expr *syntactic, ArrayRef< Expr * > semantic, unsigned resultIndex)
Definition: Expr.cpp:4996
ArrayRef< Expr * > semantics()
Definition: Expr.h:6625
A (possibly-)qualified type.
Definition: Type.h:929
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:8020
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:996
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:8062
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:7976
void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const
QualType getCanonicalType() const
Definition: Type.h:7988
The collection of all-type qualifiers we support.
Definition: Type.h:324
void removeAddressSpace()
Definition: Type.h:589
bool empty() const
Definition: Type.h:640
Represents a struct/union/class.
Definition: Decl.h:4162
field_iterator field_end() const
Definition: Decl.h:4379
field_range fields() const
Definition: Decl.h:4376
field_iterator field_begin() const
Definition: Decl.cpp:5095
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:6077
RecordDecl * getDecl() const
Definition: Type.h:6087
Frontend produces RecoveryExprs on semantic errors that prevent creating other well-formed expression...
Definition: Expr.h:7258
static RecoveryExpr * Create(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, SourceLocation EndLoc, ArrayRef< Expr * > SubExprs)
Definition: Expr.cpp:5225
static RecoveryExpr * CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs)
Definition: Expr.cpp:5234
TypeSourceInfo * getTypeSourceInfo()
Definition: Expr.h:2131
static SYCLUniqueStableNameExpr * Create(const ASTContext &Ctx, SourceLocation OpLoc, SourceLocation LParen, SourceLocation RParen, TypeSourceInfo *TSI)
Definition: Expr.cpp:577
std::string ComputeName(ASTContext &Context) const
Definition: Expr.cpp:591
static SYCLUniqueStableNameExpr * CreateEmpty(const ASTContext &Ctx)
Definition: Expr.cpp:586
void setExprs(const ASTContext &C, ArrayRef< Expr * > Exprs)
Definition: Expr.cpp:4406
ShuffleVectorExpr(const ASTContext &C, ArrayRef< Expr * > args, QualType Type, SourceLocation BLoc, SourceLocation RP)
Definition: Expr.cpp:4394
APValue EvaluateInContext(const ASTContext &Ctx, const Expr *DefaultExpr) const
Return the result of evaluating this SourceLocExpr in the specified (and possibly null) default argum...
Definition: Expr.cpp:2288
SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Type, QualType ResultTy, SourceLocation BLoc, SourceLocation RParenLoc, DeclContext *Context)
Definition: Expr.cpp:2255
SourceLocation getLocation() const
Definition: Expr.h:4854
const DeclContext * getParentContext() const
If the SourceLocExpr has been resolved return the subexpression representing the resolved value.
Definition: Expr.h:4851
StringRef getBuiltinStr() const
Return a string representing the name of the specific builtin function.
Definition: Expr.cpp:2268
static bool MayBeDependent(SourceLocIdentKind Kind)
Definition: Expr.h:4870
SourceLocIdentKind getIdentKind() const
Definition: Expr.h:4830
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
This class handles loading and caching of source files into memory.
PresumedLoc getPresumedLoc(SourceLocation Loc, bool UseLineDirectives=true) const
Returns the "presumed" location of a SourceLocation specifies.
CharSourceRange getExpansionRange(SourceLocation Loc) const
Given a SourceLocation object, return the range of tokens covered by the expansion in the ultimate fi...
A trivial tuple used to represent a source range.
Stmt - This represents one statement.
Definition: Stmt.h:84
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:357
StmtClass
Definition: Stmt.h:86
@ NoStmtClass
Definition: Stmt.h:87
UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits
Definition: Stmt.h:1246
GenericSelectionExprBitfields GenericSelectionExprBits
Definition: Stmt.h:1254
ParenListExprBitfields ParenListExprBits
Definition: Stmt.h:1253
CallExprBitfields CallExprBits
Definition: Stmt.h:1248
child_range children()
Definition: Stmt.cpp:294
FloatingLiteralBitfields FloatingLiteralBits
Definition: Stmt.h:1242
child_iterator child_begin()
Definition: Stmt.h:1479
StmtClass getStmtClass() const
Definition: Stmt.h:1380
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:333
UnaryOperatorBitfields UnaryOperatorBits
Definition: Stmt.h:1245
SourceLocExprBitfields SourceLocExprBits
Definition: Stmt.h:1256
ConstantExprBitfields ConstantExprBits
Definition: Stmt.h:1239
llvm::iterator_range< child_iterator > child_range
Definition: Stmt.h:1469
StringLiteralBitfields StringLiteralBits
Definition: Stmt.h:1243
MemberExprBitfields MemberExprBits
Definition: Stmt.h:1249
DeclRefExprBitfields DeclRefExprBits
Definition: Stmt.h:1241
ConstStmtIterator const_child_iterator
Definition: Stmt.h:1467
PredefinedExprBitfields PredefinedExprBits
Definition: Stmt.h:1240
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:345
BinaryOperatorBitfields BinaryOperatorBits
Definition: Stmt.h:1251
PseudoObjectExprBitfields PseudoObjectExprBits
Definition: Stmt.h:1255
llvm::iterator_range< const_child_iterator > const_child_range
Definition: Stmt.h:1470
StringLiteralParser - This decodes string escape characters and performs wide string analysis and Tra...
unsigned getOffsetOfStringByte(const Token &TheTok, unsigned ByteNo) const
getOffsetOfStringByte - This function returns the offset of the specified byte of the string data rep...
unsigned GetStringLength() const
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1778
SourceLocation getStrTokenLoc(unsigned TokNum) const
Get one of the string literal token.
Definition: Expr.h:1931
unsigned getLength() const
Definition: Expr.h:1895
StringLiteralKind getKind() const
Definition: Expr.h:1898
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken=nullptr, unsigned *StartTokenByteOffset=nullptr) const
getLocationOfByte - Return a source location that points to the specified byte of this string literal...
Definition: Expr.cpp:1332
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1870
void outputString(raw_ostream &OS) const
Definition: Expr.cpp:1216
static StringLiteral * Create(const ASTContext &Ctx, StringRef Str, StringLiteralKind Kind, bool Pascal, QualType Ty, const SourceLocation *Loc, unsigned NumConcatenated)
This is the "fully general" constructor that allows representation of strings formed from multiple co...
Definition: Expr.cpp:1194
static StringLiteral * CreateEmpty(const ASTContext &Ctx, unsigned NumConcatenated, unsigned Length, unsigned CharByteWidth)
Construct an empty string literal.
Definition: Expr.cpp:1205
unsigned getNumConcatenated() const
getNumConcatenated - Get the number of string literal tokens that were concatenated in translation ph...
Definition: Expr.h:1926
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3578
bool isUnion() const
Definition: Decl.h:3784
Exposes information about the current target.
Definition: TargetInfo.h:220
A convenient class for passing around template argument information.
Definition: TemplateBase.h:632
A template argument list.
Definition: DeclTemplate.h:250
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:286
const TemplateArgument & get(unsigned Idx) const
Retrieve the template argument at a given index.
Definition: DeclTemplate.h:271
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:524
void print(const PrintingPolicy &Policy, raw_ostream &Out, bool IncludeType) const
Print this template argument to the given output stream.
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:418
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:73
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:147
static bool shouldIncludeTypeForArgument(const PrintingPolicy &Policy, const TemplateParameterList *TPL, unsigned Idx)
Token - This structure provides full information about a lexed token.
Definition: Token.h:36
A container of type source information.
Definition: Type.h:7907
The base class of the type hierarchy.
Definition: Type.h:1828
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1916
bool isVoidType() const
Definition: Type.h:8515
bool isBooleanType() const
Definition: Type.h:8643
bool hasAttr(attr::Kind AK) const
Determine whether this type had the specified attribute applied to it (looking through top-level type...
Definition: Type.cpp:1933
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition: Type.cpp:2180
bool isArrayType() const
Definition: Type.h:8263
bool isCharType() const
Definition: Type.cpp:2123
bool isPointerType() const
Definition: Type.h:8191
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:8555
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8805
bool isSpecificPlaceholderType(unsigned K) const
Test for a specific placeholder type.
Definition: Type.h:8504
bool isReferenceType() const
Definition: Type.h:8209
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to.
Definition: Type.cpp:1901
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:2092
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:8630
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2706
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type.
Definition: Type.h:8791
bool isVectorType() const
Definition: Type.h:8303
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:2230
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8736
bool isNullPtrType() const
Definition: Type.h:8548
bool isRecordType() const
Definition: Type.h:8291
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand.
Definition: Expr.h:2622
QualType getArgumentType() const
Definition: Expr.h:2665
bool isArgumentType() const
Definition: Expr.h:2664
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo, QualType resultType, SourceLocation op, SourceLocation rp)
Definition: Expr.h:2630
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2232
SourceLocation getOperatorLoc() const
getOperatorLoc - Return the location of the operator.
Definition: Expr.h:2281
Expr * getSubExpr() const
Definition: Expr.h:2277
Opcode getOpcode() const
Definition: Expr.h:2272
bool hasStoredFPFeatures() const
Is FPFeatures in Trailing Storage?
Definition: Expr.h:2373
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode.
Definition: Expr.cpp:1432
static UnaryOperator * Create(const ASTContext &C, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition: Expr.cpp:4959
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix)
Retrieve the unary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:1417
void setStoredFPFeatures(FPOptionsOverride F)
Set FPFeatures in trailing storage, used by Serialization & ASTImporter.
Definition: Expr.h:2387
UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition: Expr.cpp:4945
static UnaryOperator * CreateEmpty(const ASTContext &C, bool hasFPFeatures)
Definition: Expr.cpp:4938
static StringRef getOpcodeStr(Opcode Op)
getOpcodeStr - Turn an Opcode enum value into the punctuation char it corresponds to,...
Definition: Expr.cpp:1408
An artificial decl, representing a global anonymous constant value which is uniquified by value withi...
Definition: DeclCXX.h:4369
A call to a literal operator (C++11 [over.literal]) written as a user-defined literal (C++11 [lit....
Definition: ExprCXX.h:637
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:671
QualType getType() const
Definition: Decl.h:682
Kind getKind() const
Definition: Value.h:137
Represents a variable declaration or definition.
Definition: Decl.h:882
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:3808
Represents a GCC generic vector type.
Definition: Type.h:4034
Defines the clang::TargetInfo interface.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
The JSON file list parser is used to communicate input to InstallAPI.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
@ OO_None
Not an overloaded operator.
Definition: OperatorKinds.h:22
ConstantResultStorageKind
Describes the kind of result that can be tail-allocated.
Definition: Expr.h:1071
@ Ctor_Base
Base object ctor.
Definition: ABI.h:26
LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition: CharInfo.h:160
Expr * IgnoreExprNodes(Expr *E, FnTys &&... Fns)
Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *, Recursively apply each of the f...
Definition: IgnoreExpr.h:34
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1766
@ RQ_LValue
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1771
@ RQ_RValue
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1774
StmtIterator cast_away_const(const ConstStmtIterator &RHS)
Definition: StmtIterator.h:155
ExprObjectKind
A further classification of the kind of object referenced by an l-value or x-value.
Definition: Specifiers.h:149
@ OK_ObjCProperty
An Objective-C property is a logical field of an Objective-C object which is read and written via Obj...
Definition: Specifiers.h:161
@ OK_Ordinary
An ordinary object is located at an address in memory.
Definition: Specifiers.h:151
BinaryOperatorKind
ExprDependence computeDependence(FullExpr *E)
@ Create
'create' clause, allowed on Compute and Combined constructs, plus 'data', 'enter data',...
@ Self
'self' clause, allowed on Compute and Combined Constructs, plus 'update'.
@ SC_Register
Definition: Specifiers.h:257
UnaryExprOrTypeTrait
Names for the "expression or type" traits.
Definition: TypeTraits.h:51
@ UETT_Last
Definition: TypeTraits.h:55
Expr * IgnoreImplicitCastsExtraSingleStep(Expr *E)
Definition: IgnoreExpr.h:58
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:27
@ Result
The result type of a method or function.
Expr * IgnoreImplicitCastsSingleStep(Expr *E)
Definition: IgnoreExpr.h:48
@ Dtor_Base
Base object dtor.
Definition: ABI.h:36
UnaryOperatorKind
CastKind
CastKind - The kind of operation required for a conversion.
void FixedPointValueToString(SmallVectorImpl< char > &Str, llvm::APSInt Val, unsigned Scale)
Definition: Type.cpp:5161
Expr * IgnoreImplicitSingleStep(Expr *E)
Definition: IgnoreExpr.h:111
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:132
@ VK_PRValue
A pr-value expression (in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:135
@ VK_LValue
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:139
Expr * IgnoreParensSingleStep(Expr *E)
Definition: IgnoreExpr.h:150
const FunctionProtoType * T
Expr * IgnoreImplicitAsWrittenSingleStep(Expr *E)
Definition: IgnoreExpr.h:137
Expr * IgnoreCastsSingleStep(Expr *E)
Definition: IgnoreExpr.h:75
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition: DeclBase.h:1274
StringLiteralKind
Definition: Expr.h:1749
@ CC_X86ThisCall
Definition: Specifiers.h:282
@ CC_C
Definition: Specifiers.h:279
@ CC_X86RegCall
Definition: Specifiers.h:287
@ CC_X86VectorCall
Definition: Specifiers.h:283
@ CC_X86StdCall
Definition: Specifiers.h:280
@ CC_X86FastCall
Definition: Specifiers.h:281
SourceLocIdentKind
Definition: Expr.h:4797
Expr * IgnoreLValueCastsSingleStep(Expr *E)
Definition: IgnoreExpr.h:91
Expr * IgnoreParensOnlySingleStep(Expr *E)
Definition: IgnoreExpr.h:144
PredefinedIdentKind
Definition: Expr.h:1975
@ PrettyFunctionNoVirtual
The same as PrettyFunction, except that the 'virtual' keyword is omitted for virtual member functions...
CharacterLiteralKind
Definition: Expr.h:1589
Expr * IgnoreBaseCastsSingleStep(Expr *E)
Definition: IgnoreExpr.h:101
NonOdrUseReason
The reason why a DeclRefExpr does not constitute an odr-use.
Definition: Specifiers.h:173
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
#define true
Definition: stdbool.h:25
#define false
Definition: stdbool.h:26
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:728
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspon...
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
DeclarationName getName() const
getName - Returns the embedded declaration name.
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
SourceLocation getEndLoc() const LLVM_READONLY
Stores data related to a single #embed directive.
Definition: Expr.h:4886
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:642
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:644
Iterator range representation begin:end[:step].
Definition: ExprOpenMP.h:154
Helper expressions and declaration for OMPIteratorExpr class for each iteration space.
Definition: ExprOpenMP.h:111
Describes how types, statements, expressions, and declarations should be printed.
Definition: PrettyPrinter.h:57
unsigned SuppressTagKeyword
Whether type printing should skip printing the tag keyword.
const PrintingCallbacks * Callbacks
Callbacks to use to allow the behavior of printing to be customized.
A placeholder type used to construct an empty shell of a type, that will be filled in later (e....
Definition: Stmt.h:1320
An adjustment to be made to the temporary created when emitting a reference binding,...
Definition: Expr.h:66
uint64_t Width
Definition: ASTContext.h:159