clang 20.0.0git
Decl.cpp
Go to the documentation of this file.
1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
17#include "clang/AST/ASTLambda.h"
19#include "clang/AST/Attr.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
26#include "clang/AST/Expr.h"
27#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ODRHash.h"
35#include "clang/AST/Stmt.h"
37#include "clang/AST/Type.h"
38#include "clang/AST/TypeLoc.h"
41#include "clang/Basic/LLVM.h"
43#include "clang/Basic/Linkage.h"
44#include "clang/Basic/Module.h"
54#include "llvm/ADT/APSInt.h"
55#include "llvm/ADT/ArrayRef.h"
56#include "llvm/ADT/STLExtras.h"
57#include "llvm/ADT/SmallVector.h"
58#include "llvm/ADT/StringRef.h"
59#include "llvm/ADT/StringSwitch.h"
60#include "llvm/Support/Casting.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/TargetParser/Triple.h"
64#include <algorithm>
65#include <cassert>
66#include <cstddef>
67#include <cstring>
68#include <memory>
69#include <optional>
70#include <string>
71#include <tuple>
72#include <type_traits>
73
74using namespace clang;
75
78}
79
80void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81 SourceLocation Loc = this->Loc;
82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83 if (Loc.isValid()) {
84 Loc.print(OS, Context.getSourceManager());
85 OS << ": ";
86 }
87 OS << Message;
88
89 if (auto *ND = dyn_cast_if_present<NamedDecl>(TheDecl)) {
90 OS << " '";
91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92 OS << "'";
93 }
94
95 OS << '\n';
96}
97
98// Defined here so that it can be inlined into its direct callers.
99bool Decl::isOutOfLine() const {
101}
102
103TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104 : Decl(TranslationUnit, nullptr, SourceLocation()),
105 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
106
107//===----------------------------------------------------------------------===//
108// NamedDecl Implementation
109//===----------------------------------------------------------------------===//
110
111// Visibility rules aren't rigorously externally specified, but here
112// are the basic principles behind what we implement:
113//
114// 1. An explicit visibility attribute is generally a direct expression
115// of the user's intent and should be honored. Only the innermost
116// visibility attribute applies. If no visibility attribute applies,
117// global visibility settings are considered.
118//
119// 2. There is one caveat to the above: on or in a template pattern,
120// an explicit visibility attribute is just a default rule, and
121// visibility can be decreased by the visibility of template
122// arguments. But this, too, has an exception: an attribute on an
123// explicit specialization or instantiation causes all the visibility
124// restrictions of the template arguments to be ignored.
125//
126// 3. A variable that does not otherwise have explicit visibility can
127// be restricted by the visibility of its type.
128//
129// 4. A visibility restriction is explicit if it comes from an
130// attribute (or something like it), not a global visibility setting.
131// When emitting a reference to an external symbol, visibility
132// restrictions are ignored unless they are explicit.
133//
134// 5. When computing the visibility of a non-type, including a
135// non-type member of a class, only non-type visibility restrictions
136// are considered: the 'visibility' attribute, global value-visibility
137// settings, and a few special cases like __private_extern.
138//
139// 6. When computing the visibility of a type, including a type member
140// of a class, only type visibility restrictions are considered:
141// the 'type_visibility' attribute and global type-visibility settings.
142// However, a 'visibility' attribute counts as a 'type_visibility'
143// attribute on any declaration that only has the former.
144//
145// The visibility of a "secondary" entity, like a template argument,
146// is computed using the kind of that entity, not the kind of the
147// primary entity for which we are computing visibility. For example,
148// the visibility of a specialization of either of these templates:
149// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150// template <class T, bool (&compare)(T, X)> class matcher;
151// is restricted according to the type visibility of the argument 'T',
152// the type visibility of 'bool(&)(T,X)', and the value visibility of
153// the argument function 'compare'. That 'has_match' is a value
154// and 'matcher' is a type only matters when looking for attributes
155// and settings from the immediate context.
156
157/// Does this computation kind permit us to consider additional
158/// visibility settings from attributes and the like?
160 return computation.IgnoreExplicitVisibility;
161}
162
163/// Given an LVComputationKind, return one of the same type/value sort
164/// that records that it already has explicit visibility.
167 Kind.IgnoreExplicitVisibility = true;
168 return Kind;
169}
170
171static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172 LVComputationKind kind) {
173 assert(!kind.IgnoreExplicitVisibility &&
174 "asking for explicit visibility when we shouldn't be");
175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176}
177
178/// Is the given declaration a "type" or a "value" for the purposes of
179/// visibility computation?
180static bool usesTypeVisibility(const NamedDecl *D) {
181 return isa<TypeDecl>(D) ||
182 isa<ClassTemplateDecl>(D) ||
183 isa<ObjCInterfaceDecl>(D);
184}
185
186/// Does the given declaration have member specialization information,
187/// and if so, is it an explicit specialization?
188template <class T>
189static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
191 if (const MemberSpecializationInfo *member =
192 D->getMemberSpecializationInfo()) {
193 return member->isExplicitSpecialization();
194 }
195 return false;
196}
197
198/// For templates, this question is easier: a member template can't be
199/// explicitly instantiated, so there's a single bit indicating whether
200/// or not this is an explicit member specialization.
202 return D->isMemberSpecialization();
203}
204
205/// Given a visibility attribute, return the explicit visibility
206/// associated with it.
207template <class T>
208static Visibility getVisibilityFromAttr(const T *attr) {
209 switch (attr->getVisibility()) {
210 case T::Default:
211 return DefaultVisibility;
212 case T::Hidden:
213 return HiddenVisibility;
214 case T::Protected:
215 return ProtectedVisibility;
216 }
217 llvm_unreachable("bad visibility kind");
218}
219
220/// Return the explicit visibility of the given declaration.
221static std::optional<Visibility>
223 // If we're ultimately computing the visibility of a type, look for
224 // a 'type_visibility' attribute before looking for 'visibility'.
225 if (kind == NamedDecl::VisibilityForType) {
226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227 return getVisibilityFromAttr(A);
228 }
229 }
230
231 // If this declaration has an explicit visibility attribute, use it.
232 if (const auto *A = D->getAttr<VisibilityAttr>()) {
233 return getVisibilityFromAttr(A);
234 }
235
236 return std::nullopt;
237}
238
239LinkageInfo LinkageComputer::getLVForType(const Type &T,
240 LVComputationKind computation) {
241 if (computation.IgnoreAllVisibility)
242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
244}
245
246/// Get the most restrictive linkage for the types in the given
247/// template parameter list. For visibility purposes, template
248/// parameters are part of the signature of a template.
249LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250 const TemplateParameterList *Params, LVComputationKind computation) {
251 LinkageInfo LV;
252 for (const NamedDecl *P : *Params) {
253 // Template type parameters are the most common and never
254 // contribute to visibility, pack or not.
255 if (isa<TemplateTypeParmDecl>(P))
256 continue;
257
258 // Non-type template parameters can be restricted by the value type, e.g.
259 // template <enum X> class A { ... };
260 // We have to be careful here, though, because we can be dealing with
261 // dependent types.
262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263 // Handle the non-pack case first.
264 if (!NTTP->isExpandedParameterPack()) {
265 if (!NTTP->getType()->isDependentType()) {
266 LV.merge(getLVForType(*NTTP->getType(), computation));
267 }
268 continue;
269 }
270
271 // Look at all the types in an expanded pack.
272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273 QualType type = NTTP->getExpansionType(i);
274 if (!type->isDependentType())
276 }
277 continue;
278 }
279
280 // Template template parameters can be restricted by their
281 // template parameters, recursively.
282 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283
284 // Handle the non-pack case first.
285 if (!TTP->isExpandedParameterPack()) {
286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287 computation));
288 continue;
289 }
290
291 // Look at all expansions in an expanded pack.
292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293 i != n; ++i) {
294 LV.merge(getLVForTemplateParameterList(
295 TTP->getExpansionTemplateParameters(i), computation));
296 }
297 }
298
299 return LV;
300}
301
303 const Decl *Ret = nullptr;
304 const DeclContext *DC = D->getDeclContext();
305 while (DC->getDeclKind() != Decl::TranslationUnit) {
306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307 Ret = cast<Decl>(DC);
308 DC = DC->getParent();
309 }
310 return Ret;
311}
312
313/// Get the most restrictive linkage for the types and
314/// declarations in the given template argument list.
315///
316/// Note that we don't take an LVComputationKind because we always
317/// want to honor the visibility of template arguments in the same way.
319LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320 LVComputationKind computation) {
321 LinkageInfo LV;
322
323 for (const TemplateArgument &Arg : Args) {
324 switch (Arg.getKind()) {
328 continue;
329
331 LV.merge(getLVForType(*Arg.getAsType(), computation));
332 continue;
333
335 const NamedDecl *ND = Arg.getAsDecl();
336 assert(!usesTypeVisibility(ND));
337 LV.merge(getLVForDecl(ND, computation));
338 continue;
339 }
340
342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343 continue;
344
346 LV.merge(getLVForValue(Arg.getAsStructuralValue(), computation));
347 continue;
348
351 if (TemplateDecl *Template =
352 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl(
353 /*IgnoreDeduced=*/true))
354 LV.merge(getLVForDecl(Template, computation));
355 continue;
356
358 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
359 continue;
360 }
361 llvm_unreachable("bad template argument kind");
362 }
363
364 return LV;
365}
366
368LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
369 LVComputationKind computation) {
370 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
371}
372
374 const FunctionTemplateSpecializationInfo *specInfo) {
375 // Include visibility from the template parameters and arguments
376 // only if this is not an explicit instantiation or specialization
377 // with direct explicit visibility. (Implicit instantiations won't
378 // have a direct attribute.)
380 return true;
381
382 return !fn->hasAttr<VisibilityAttr>();
383}
384
385/// Merge in template-related linkage and visibility for the given
386/// function template specialization.
387///
388/// We don't need a computation kind here because we can assume
389/// LVForValue.
390///
391/// \param[out] LV the computation to use for the parent
392void LinkageComputer::mergeTemplateLV(
393 LinkageInfo &LV, const FunctionDecl *fn,
395 LVComputationKind computation) {
396 bool considerVisibility =
398
399 FunctionTemplateDecl *temp = specInfo->getTemplate();
400 // Merge information from the template declaration.
401 LinkageInfo tempLV = getLVForDecl(temp, computation);
402 // The linkage of the specialization should be consistent with the
403 // template declaration.
404 LV.setLinkage(tempLV.getLinkage());
405
406 // Merge information from the template parameters.
407 LinkageInfo paramsLV =
408 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
409 LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
410
411 // Merge information from the template arguments.
412 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
413 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
414 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
415}
416
417/// Does the given declaration have a direct visibility attribute
418/// that would match the given rules?
420 LVComputationKind computation) {
421 if (computation.IgnoreAllVisibility)
422 return false;
423
424 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
425 D->hasAttr<VisibilityAttr>();
426}
427
428/// Should we consider visibility associated with the template
429/// arguments and parameters of the given class template specialization?
432 LVComputationKind computation) {
433 // Include visibility from the template parameters and arguments
434 // only if this is not an explicit instantiation or specialization
435 // with direct explicit visibility (and note that implicit
436 // instantiations won't have a direct attribute).
437 //
438 // Furthermore, we want to ignore template parameters and arguments
439 // for an explicit specialization when computing the visibility of a
440 // member thereof with explicit visibility.
441 //
442 // This is a bit complex; let's unpack it.
443 //
444 // An explicit class specialization is an independent, top-level
445 // declaration. As such, if it or any of its members has an
446 // explicit visibility attribute, that must directly express the
447 // user's intent, and we should honor it. The same logic applies to
448 // an explicit instantiation of a member of such a thing.
449
450 // Fast path: if this is not an explicit instantiation or
451 // specialization, we always want to consider template-related
452 // visibility restrictions.
454 return true;
455
456 // This is the 'member thereof' check.
457 if (spec->isExplicitSpecialization() &&
458 hasExplicitVisibilityAlready(computation))
459 return false;
460
461 return !hasDirectVisibilityAttribute(spec, computation);
462}
463
464/// Merge in template-related linkage and visibility for the given
465/// class template specialization.
466void LinkageComputer::mergeTemplateLV(
468 LVComputationKind computation) {
469 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
470
471 // Merge information from the template parameters, but ignore
472 // visibility if we're only considering template arguments.
474 // Merge information from the template declaration.
475 LinkageInfo tempLV = getLVForDecl(temp, computation);
476 // The linkage of the specialization should be consistent with the
477 // template declaration.
478 LV.setLinkage(tempLV.getLinkage());
479
480 LinkageInfo paramsLV =
481 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
482 LV.mergeMaybeWithVisibility(paramsLV,
483 considerVisibility && !hasExplicitVisibilityAlready(computation));
484
485 // Merge information from the template arguments. We ignore
486 // template-argument visibility if we've got an explicit
487 // instantiation with a visibility attribute.
488 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
489 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
490 if (considerVisibility)
491 LV.mergeVisibility(argsLV);
492 LV.mergeExternalVisibility(argsLV);
493}
494
495/// Should we consider visibility associated with the template
496/// arguments and parameters of the given variable template
497/// specialization? As usual, follow class template specialization
498/// logic up to initialization.
501 LVComputationKind computation) {
502 // Include visibility from the template parameters and arguments
503 // only if this is not an explicit instantiation or specialization
504 // with direct explicit visibility (and note that implicit
505 // instantiations won't have a direct attribute).
507 return true;
508
509 // An explicit variable specialization is an independent, top-level
510 // declaration. As such, if it has an explicit visibility attribute,
511 // that must directly express the user's intent, and we should honor
512 // it.
513 if (spec->isExplicitSpecialization() &&
514 hasExplicitVisibilityAlready(computation))
515 return false;
516
517 return !hasDirectVisibilityAttribute(spec, computation);
518}
519
520/// Merge in template-related linkage and visibility for the given
521/// variable template specialization. As usual, follow class template
522/// specialization logic up to initialization.
523void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
525 LVComputationKind computation) {
526 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
527
528 // Merge information from the template parameters, but ignore
529 // visibility if we're only considering template arguments.
531 LinkageInfo tempLV =
532 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
533 LV.mergeMaybeWithVisibility(tempLV,
534 considerVisibility && !hasExplicitVisibilityAlready(computation));
535
536 // Merge information from the template arguments. We ignore
537 // template-argument visibility if we've got an explicit
538 // instantiation with a visibility attribute.
539 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
540 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
541 if (considerVisibility)
542 LV.mergeVisibility(argsLV);
543 LV.mergeExternalVisibility(argsLV);
544}
545
547 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
548 const LangOptions &Opts = D->getASTContext().getLangOpts();
549 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
550 return false;
551
552 const auto *FD = dyn_cast<FunctionDecl>(D);
553 if (!FD)
554 return false;
555
558 = FD->getTemplateSpecializationInfo()) {
559 TSK = spec->getTemplateSpecializationKind();
560 } else if (MemberSpecializationInfo *MSI =
561 FD->getMemberSpecializationInfo()) {
562 TSK = MSI->getTemplateSpecializationKind();
563 }
564
565 const FunctionDecl *Def = nullptr;
566 // InlineVisibilityHidden only applies to definitions, and
567 // isInlined() only gives meaningful answers on definitions
568 // anyway.
571 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
572}
573
574template <typename T> static bool isFirstInExternCContext(T *D) {
575 const T *First = D->getFirstDecl();
576 return First->isInExternCContext();
577}
578
579static bool isSingleLineLanguageLinkage(const Decl &D) {
580 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
581 if (!SD->hasBraces())
582 return true;
583 return false;
584}
585
587 return LinkageInfo::external();
588}
589
591 if (auto *TD = dyn_cast<TemplateDecl>(D))
592 D = TD->getTemplatedDecl();
593 if (D) {
594 if (auto *VD = dyn_cast<VarDecl>(D))
595 return VD->getStorageClass();
596 if (auto *FD = dyn_cast<FunctionDecl>(D))
597 return FD->getStorageClass();
598 }
599 return SC_None;
600}
601
603LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
604 LVComputationKind computation,
605 bool IgnoreVarTypeLinkage) {
607 "Not a name having namespace scope");
608 ASTContext &Context = D->getASTContext();
609 const auto *Var = dyn_cast<VarDecl>(D);
610
611 // C++ [basic.link]p3:
612 // A name having namespace scope (3.3.6) has internal linkage if it
613 // is the name of
614
616 (Context.getLangOpts().C23 && Var && Var->isConstexpr())) {
617 // - a variable, variable template, function, or function template
618 // that is explicitly declared static; or
619 // (This bullet corresponds to C99 6.2.2p3.)
620
621 // C23 6.2.2p3
622 // If the declaration of a file scope identifier for
623 // an object contains any of the storage-class specifiers static or
624 // constexpr then the identifier has internal linkage.
625 return LinkageInfo::internal();
626 }
627
628 if (Var) {
629 // - a non-template variable of non-volatile const-qualified type, unless
630 // - it is explicitly declared extern, or
631 // - it is declared in the purview of a module interface unit
632 // (outside the private-module-fragment, if any) or module partition, or
633 // - it is inline, or
634 // - it was previously declared and the prior declaration did not have
635 // internal linkage
636 // (There is no equivalent in C99.)
637 if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() &&
638 !Var->getType().isVolatileQualified() && !Var->isInline() &&
639 ![Var]() {
640 // Check if it is module purview except private module fragment
641 // and implementation unit.
642 if (auto *M = Var->getOwningModule())
643 return M->isInterfaceOrPartition() || M->isImplicitGlobalModule();
644 return false;
645 }() &&
646 !isa<VarTemplateSpecializationDecl>(Var) &&
647 !Var->getDescribedVarTemplate()) {
648 const VarDecl *PrevVar = Var->getPreviousDecl();
649 if (PrevVar)
650 return getLVForDecl(PrevVar, computation);
651
652 if (Var->getStorageClass() != SC_Extern &&
653 Var->getStorageClass() != SC_PrivateExtern &&
655 return LinkageInfo::internal();
656 }
657
658 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
659 PrevVar = PrevVar->getPreviousDecl()) {
660 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
661 Var->getStorageClass() == SC_None)
662 return getDeclLinkageAndVisibility(PrevVar);
663 // Explicitly declared static.
664 if (PrevVar->getStorageClass() == SC_Static)
665 return LinkageInfo::internal();
666 }
667 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
668 // - a data member of an anonymous union.
669 const VarDecl *VD = IFD->getVarDecl();
670 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
671 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
672 }
673 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
674
675 // FIXME: This gives internal linkage to names that should have no linkage
676 // (those not covered by [basic.link]p6).
677 if (D->isInAnonymousNamespace()) {
678 const auto *Var = dyn_cast<VarDecl>(D);
679 const auto *Func = dyn_cast<FunctionDecl>(D);
680 // FIXME: The check for extern "C" here is not justified by the standard
681 // wording, but we retain it from the pre-DR1113 model to avoid breaking
682 // code.
683 //
684 // C++11 [basic.link]p4:
685 // An unnamed namespace or a namespace declared directly or indirectly
686 // within an unnamed namespace has internal linkage.
687 if ((!Var || !isFirstInExternCContext(Var)) &&
689 return LinkageInfo::internal();
690 }
691
692 // Set up the defaults.
693
694 // C99 6.2.2p5:
695 // If the declaration of an identifier for an object has file
696 // scope and no storage-class specifier, its linkage is
697 // external.
699
700 if (!hasExplicitVisibilityAlready(computation)) {
701 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
702 LV.mergeVisibility(*Vis, true);
703 } else {
704 // If we're declared in a namespace with a visibility attribute,
705 // use that namespace's visibility, and it still counts as explicit.
706 for (const DeclContext *DC = D->getDeclContext();
707 !isa<TranslationUnitDecl>(DC);
708 DC = DC->getParent()) {
709 const auto *ND = dyn_cast<NamespaceDecl>(DC);
710 if (!ND) continue;
711 if (std::optional<Visibility> Vis =
712 getExplicitVisibility(ND, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 break;
715 }
716 }
717 }
718
719 // Add in global settings if the above didn't give us direct visibility.
720 if (!LV.isVisibilityExplicit()) {
721 // Use global type/value visibility as appropriate.
722 Visibility globalVisibility =
723 computation.isValueVisibility()
724 ? Context.getLangOpts().getValueVisibilityMode()
725 : Context.getLangOpts().getTypeVisibilityMode();
726 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
727
728 // If we're paying attention to global visibility, apply
729 // -finline-visibility-hidden if this is an inline method.
731 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
732 }
733 }
734
735 // C++ [basic.link]p4:
736
737 // A name having namespace scope that has not been given internal linkage
738 // above and that is the name of
739 // [...bullets...]
740 // has its linkage determined as follows:
741 // - if the enclosing namespace has internal linkage, the name has
742 // internal linkage; [handled above]
743 // - otherwise, if the declaration of the name is attached to a named
744 // module and is not exported, the name has module linkage;
745 // - otherwise, the name has external linkage.
746 // LV is currently set up to handle the last two bullets.
747 //
748 // The bullets are:
749
750 // - a variable; or
751 if (const auto *Var = dyn_cast<VarDecl>(D)) {
752 // GCC applies the following optimization to variables and static
753 // data members, but not to functions:
754 //
755 // Modify the variable's LV by the LV of its type unless this is
756 // C or extern "C". This follows from [basic.link]p9:
757 // A type without linkage shall not be used as the type of a
758 // variable or function with external linkage unless
759 // - the entity has C language linkage, or
760 // - the entity is declared within an unnamed namespace, or
761 // - the entity is not used or is defined in the same
762 // translation unit.
763 // and [basic.link]p10:
764 // ...the types specified by all declarations referring to a
765 // given variable or function shall be identical...
766 // C does not have an equivalent rule.
767 //
768 // Ignore this if we've got an explicit attribute; the user
769 // probably knows what they're doing.
770 //
771 // Note that we don't want to make the variable non-external
772 // because of this, but unique-external linkage suits us.
773
774 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
775 !IgnoreVarTypeLinkage) {
776 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
777 if (!isExternallyVisible(TypeLV.getLinkage()))
779 if (!LV.isVisibilityExplicit())
780 LV.mergeVisibility(TypeLV);
781 }
782
783 if (Var->getStorageClass() == SC_PrivateExtern)
785
786 // Note that Sema::MergeVarDecl already takes care of implementing
787 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
788 // to do it here.
789
790 // As per function and class template specializations (below),
791 // consider LV for the template and template arguments. We're at file
792 // scope, so we do not need to worry about nested specializations.
793 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
794 mergeTemplateLV(LV, spec, computation);
795 }
796
797 // - a function; or
798 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
799 // In theory, we can modify the function's LV by the LV of its
800 // type unless it has C linkage (see comment above about variables
801 // for justification). In practice, GCC doesn't do this, so it's
802 // just too painful to make work.
803
804 if (Function->getStorageClass() == SC_PrivateExtern)
806
807 // OpenMP target declare device functions are not callable from the host so
808 // they should not be exported from the device image. This applies to all
809 // functions as the host-callable kernel functions are emitted at codegen.
810 if (Context.getLangOpts().OpenMP &&
811 Context.getLangOpts().OpenMPIsTargetDevice &&
812 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
813 Context.getTargetInfo().getTriple().isNVPTX()) ||
814 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function)))
815 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
816
817 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
818 // merging storage classes and visibility attributes, so we don't have to
819 // look at previous decls in here.
820
821 // In C++, then if the type of the function uses a type with
822 // unique-external linkage, it's not legally usable from outside
823 // this translation unit. However, we should use the C linkage
824 // rules instead for extern "C" declarations.
825 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
826 // Only look at the type-as-written. Otherwise, deducing the return type
827 // of a function could change its linkage.
828 QualType TypeAsWritten = Function->getType();
829 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
830 TypeAsWritten = TSI->getType();
831 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
833 }
834
835 // Consider LV from the template and the template arguments.
836 // We're at file scope, so we do not need to worry about nested
837 // specializations.
839 = Function->getTemplateSpecializationInfo()) {
840 mergeTemplateLV(LV, Function, specInfo, computation);
841 }
842
843 // - a named class (Clause 9), or an unnamed class defined in a
844 // typedef declaration in which the class has the typedef name
845 // for linkage purposes (7.1.3); or
846 // - a named enumeration (7.2), or an unnamed enumeration
847 // defined in a typedef declaration in which the enumeration
848 // has the typedef name for linkage purposes (7.1.3); or
849 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
850 // Unnamed tags have no linkage.
851 if (!Tag->hasNameForLinkage())
852 return LinkageInfo::none();
853
854 // If this is a class template specialization, consider the
855 // linkage of the template and template arguments. We're at file
856 // scope, so we do not need to worry about nested specializations.
857 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
858 mergeTemplateLV(LV, spec, computation);
859 }
860
861 // FIXME: This is not part of the C++ standard any more.
862 // - an enumerator belonging to an enumeration with external linkage; or
863 } else if (isa<EnumConstantDecl>(D)) {
864 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
865 computation);
866 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
867 return LinkageInfo::none();
868 LV.merge(EnumLV);
869
870 // - a template
871 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
872 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
873 LinkageInfo tempLV =
874 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
875 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
876
877 // An unnamed namespace or a namespace declared directly or indirectly
878 // within an unnamed namespace has internal linkage. All other namespaces
879 // have external linkage.
880 //
881 // We handled names in anonymous namespaces above.
882 } else if (isa<NamespaceDecl>(D)) {
883 return LV;
884
885 // By extension, we assign external linkage to Objective-C
886 // interfaces.
887 } else if (isa<ObjCInterfaceDecl>(D)) {
888 // fallout
889
890 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
891 // A typedef declaration has linkage if it gives a type a name for
892 // linkage purposes.
893 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
894 return LinkageInfo::none();
895
896 } else if (isa<MSGuidDecl>(D)) {
897 // A GUID behaves like an inline variable with external linkage. Fall
898 // through.
899
900 // Everything not covered here has no linkage.
901 } else {
902 return LinkageInfo::none();
903 }
904
905 // If we ended up with non-externally-visible linkage, visibility should
906 // always be default.
908 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
909
910 return LV;
911}
912
914LinkageComputer::getLVForClassMember(const NamedDecl *D,
915 LVComputationKind computation,
916 bool IgnoreVarTypeLinkage) {
917 // Only certain class members have linkage. Note that fields don't
918 // really have linkage, but it's convenient to say they do for the
919 // purposes of calculating linkage of pointer-to-data-member
920 // template arguments.
921 //
922 // Templates also don't officially have linkage, but since we ignore
923 // the C++ standard and look at template arguments when determining
924 // linkage and visibility of a template specialization, we might hit
925 // a template template argument that way. If we do, we need to
926 // consider its linkage.
927 if (!(isa<CXXMethodDecl>(D) ||
928 isa<VarDecl>(D) ||
929 isa<FieldDecl>(D) ||
930 isa<IndirectFieldDecl>(D) ||
931 isa<TagDecl>(D) ||
932 isa<TemplateDecl>(D)))
933 return LinkageInfo::none();
934
935 LinkageInfo LV;
936
937 // If we have an explicit visibility attribute, merge that in.
938 if (!hasExplicitVisibilityAlready(computation)) {
939 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation))
940 LV.mergeVisibility(*Vis, true);
941 // If we're paying attention to global visibility, apply
942 // -finline-visibility-hidden if this is an inline method.
943 //
944 // Note that we do this before merging information about
945 // the class visibility.
947 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
948 }
949
950 // If this class member has an explicit visibility attribute, the only
951 // thing that can change its visibility is the template arguments, so
952 // only look for them when processing the class.
953 LVComputationKind classComputation = computation;
954 if (LV.isVisibilityExplicit())
955 classComputation = withExplicitVisibilityAlready(computation);
956
957 LinkageInfo classLV =
958 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
959 // The member has the same linkage as the class. If that's not externally
960 // visible, we don't need to compute anything about the linkage.
961 // FIXME: If we're only computing linkage, can we bail out here?
962 if (!isExternallyVisible(classLV.getLinkage()))
963 return classLV;
964
965
966 // Otherwise, don't merge in classLV yet, because in certain cases
967 // we need to completely ignore the visibility from it.
968
969 // Specifically, if this decl exists and has an explicit attribute.
970 const NamedDecl *explicitSpecSuppressor = nullptr;
971
972 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
973 // Only look at the type-as-written. Otherwise, deducing the return type
974 // of a function could change its linkage.
975 QualType TypeAsWritten = MD->getType();
976 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
977 TypeAsWritten = TSI->getType();
978 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
980
981 // If this is a method template specialization, use the linkage for
982 // the template parameters and arguments.
984 = MD->getTemplateSpecializationInfo()) {
985 mergeTemplateLV(LV, MD, spec, computation);
986 if (spec->isExplicitSpecialization()) {
987 explicitSpecSuppressor = MD;
988 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
989 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
990 }
991 } else if (isExplicitMemberSpecialization(MD)) {
992 explicitSpecSuppressor = MD;
993 }
994
995 // OpenMP target declare device functions are not callable from the host so
996 // they should not be exported from the device image. This applies to all
997 // functions as the host-callable kernel functions are emitted at codegen.
998 ASTContext &Context = D->getASTContext();
999 if (Context.getLangOpts().OpenMP &&
1000 Context.getLangOpts().OpenMPIsTargetDevice &&
1001 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1002 Context.getTargetInfo().getTriple().isNVPTX()) ||
1003 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD)))
1004 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
1005
1006 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1007 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1008 mergeTemplateLV(LV, spec, computation);
1009 if (spec->isExplicitSpecialization()) {
1010 explicitSpecSuppressor = spec;
1011 } else {
1012 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1014 explicitSpecSuppressor = temp->getTemplatedDecl();
1015 }
1016 }
1017 } else if (isExplicitMemberSpecialization(RD)) {
1018 explicitSpecSuppressor = RD;
1019 }
1020
1021 // Static data members.
1022 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1023 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1024 mergeTemplateLV(LV, spec, computation);
1025
1026 // Modify the variable's linkage by its type, but ignore the
1027 // type's visibility unless it's a definition.
1028 if (!IgnoreVarTypeLinkage) {
1029 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1030 // FIXME: If the type's linkage is not externally visible, we can
1031 // give this static data member UniqueExternalLinkage.
1032 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1033 LV.mergeVisibility(typeLV);
1034 LV.mergeExternalVisibility(typeLV);
1035 }
1036
1038 explicitSpecSuppressor = VD;
1039 }
1040
1041 // Template members.
1042 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1043 bool considerVisibility =
1044 (!LV.isVisibilityExplicit() &&
1045 !classLV.isVisibilityExplicit() &&
1046 !hasExplicitVisibilityAlready(computation));
1047 LinkageInfo tempLV =
1048 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1049 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1050
1051 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1052 if (isExplicitMemberSpecialization(redeclTemp)) {
1053 explicitSpecSuppressor = temp->getTemplatedDecl();
1054 }
1055 }
1056 }
1057
1058 // We should never be looking for an attribute directly on a template.
1059 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1060
1061 // If this member is an explicit member specialization, and it has
1062 // an explicit attribute, ignore visibility from the parent.
1063 bool considerClassVisibility = true;
1064 if (explicitSpecSuppressor &&
1065 // optimization: hasDVA() is true only with explicit visibility.
1066 LV.isVisibilityExplicit() &&
1067 classLV.getVisibility() != DefaultVisibility &&
1068 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1069 considerClassVisibility = false;
1070 }
1071
1072 // Finally, merge in information from the class.
1073 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1074 return LV;
1075}
1076
1077void NamedDecl::anchor() {}
1078
1080 if (!hasCachedLinkage())
1081 return true;
1082
1085 .getLinkage();
1086 return L == getCachedLinkage();
1087}
1088
1089bool NamedDecl::isPlaceholderVar(const LangOptions &LangOpts) const {
1090 // [C++2c] [basic.scope.scope]/p5
1091 // A declaration is name-independent if its name is _ and it declares
1092 // - a variable with automatic storage duration,
1093 // - a structured binding not inhabiting a namespace scope,
1094 // - the variable introduced by an init-capture
1095 // - or a non-static data member.
1096
1097 if (!LangOpts.CPlusPlus || !getIdentifier() ||
1098 !getIdentifier()->isPlaceholder())
1099 return false;
1100 if (isa<FieldDecl>(this))
1101 return true;
1102 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(this)) {
1103 if (!getDeclContext()->isFunctionOrMethod() &&
1104 !getDeclContext()->isRecord())
1105 return false;
1106 const VarDecl *VD = IFD->getVarDecl();
1107 return !VD || VD->getStorageDuration() == SD_Automatic;
1108 }
1109 // and it declares a variable with automatic storage duration
1110 if (const auto *VD = dyn_cast<VarDecl>(this)) {
1111 if (isa<ParmVarDecl>(VD))
1112 return false;
1113 if (VD->isInitCapture())
1114 return true;
1116 }
1117 if (const auto *BD = dyn_cast<BindingDecl>(this);
1119 const VarDecl *VD = BD->getHoldingVar();
1121 }
1122 return false;
1123}
1124
1126NamedDecl::isReserved(const LangOptions &LangOpts) const {
1127 const IdentifierInfo *II = getIdentifier();
1128
1129 // This triggers at least for CXXLiteralIdentifiers, which we already checked
1130 // at lexing time.
1131 if (!II)
1133
1134 ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1135 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1136 // This name is only reserved at global scope. Check if this declaration
1137 // conflicts with a global scope declaration.
1138 if (isa<ParmVarDecl>(this) || isTemplateParameter())
1140
1141 // C++ [dcl.link]/7:
1142 // Two declarations [conflict] if [...] one declares a function or
1143 // variable with C language linkage, and the other declares [...] a
1144 // variable that belongs to the global scope.
1145 //
1146 // Therefore names that are reserved at global scope are also reserved as
1147 // names of variables and functions with C language linkage.
1149 if (DC->isTranslationUnit())
1150 return Status;
1151 if (auto *VD = dyn_cast<VarDecl>(this))
1152 if (VD->isExternC())
1154 if (auto *FD = dyn_cast<FunctionDecl>(this))
1155 if (FD->isExternC())
1158 }
1159
1160 return Status;
1161}
1162
1164 StringRef name = getName();
1165 if (name.empty()) return SFF_None;
1166
1167 if (name.front() == 'C')
1168 if (name == "CFStringCreateWithFormat" ||
1169 name == "CFStringCreateWithFormatAndArguments" ||
1170 name == "CFStringAppendFormat" ||
1171 name == "CFStringAppendFormatAndArguments")
1172 return SFF_CFString;
1173 return SFF_None;
1174}
1175
1177 // We don't care about visibility here, so ask for the cheapest
1178 // possible visibility analysis.
1179 return LinkageComputer{}
1181 .getLinkage();
1182}
1183
1185 // FIXME: Handle isModulePrivate.
1186 switch (D->getModuleOwnershipKind()) {
1190 return false;
1193 return D->isInNamedModule();
1194 }
1195 llvm_unreachable("unexpected module ownership kind");
1196}
1197
1198/// Get the linkage from a semantic point of view. Entities in
1199/// anonymous namespaces are external (in c++98).
1201 Linkage InternalLinkage = getLinkageInternal();
1202
1203 // C++ [basic.link]p4.8:
1204 // - if the declaration of the name is attached to a named module and is not
1205 // exported
1206 // the name has module linkage;
1207 //
1208 // [basic.namespace.general]/p2
1209 // A namespace is never attached to a named module and never has a name with
1210 // module linkage.
1211 if (isInNamedModule() && InternalLinkage == Linkage::External &&
1213 cast<NamedDecl>(this->getCanonicalDecl())) &&
1214 !isa<NamespaceDecl>(this))
1215 InternalLinkage = Linkage::Module;
1216
1217 return clang::getFormalLinkage(InternalLinkage);
1218}
1219
1222}
1223
1224static std::optional<Visibility>
1227 bool IsMostRecent) {
1228 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1229
1230 // Check the declaration itself first.
1231 if (std::optional<Visibility> V = getVisibilityOf(ND, kind))
1232 return V;
1233
1234 // If this is a member class of a specialization of a class template
1235 // and the corresponding decl has explicit visibility, use that.
1236 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1237 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1238 if (InstantiatedFrom)
1239 return getVisibilityOf(InstantiatedFrom, kind);
1240 }
1241
1242 // If there wasn't explicit visibility there, and this is a
1243 // specialization of a class template, check for visibility
1244 // on the pattern.
1245 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1246 // Walk all the template decl till this point to see if there are
1247 // explicit visibility attributes.
1248 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1249 while (TD != nullptr) {
1250 auto Vis = getVisibilityOf(TD, kind);
1251 if (Vis != std::nullopt)
1252 return Vis;
1253 TD = TD->getPreviousDecl();
1254 }
1255 return std::nullopt;
1256 }
1257
1258 // Use the most recent declaration.
1259 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1260 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1261 if (MostRecent != ND)
1262 return getExplicitVisibilityAux(MostRecent, kind, true);
1263 }
1264
1265 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1266 if (Var->isStaticDataMember()) {
1267 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1268 if (InstantiatedFrom)
1269 return getVisibilityOf(InstantiatedFrom, kind);
1270 }
1271
1272 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1273 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1274 kind);
1275
1276 return std::nullopt;
1277 }
1278 // Also handle function template specializations.
1279 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1280 // If the function is a specialization of a template with an
1281 // explicit visibility attribute, use that.
1282 if (FunctionTemplateSpecializationInfo *templateInfo
1284 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1285 kind);
1286
1287 // If the function is a member of a specialization of a class template
1288 // and the corresponding decl has explicit visibility, use that.
1289 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1290 if (InstantiatedFrom)
1291 return getVisibilityOf(InstantiatedFrom, kind);
1292
1293 return std::nullopt;
1294 }
1295
1296 // The visibility of a template is stored in the templated decl.
1297 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1298 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1299
1300 return std::nullopt;
1301}
1302
1303std::optional<Visibility>
1305 return getExplicitVisibilityAux(this, kind, false);
1306}
1307
1308LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1309 Decl *ContextDecl,
1310 LVComputationKind computation) {
1311 // This lambda has its linkage/visibility determined by its owner.
1312 const NamedDecl *Owner;
1313 if (!ContextDecl)
1314 Owner = dyn_cast<NamedDecl>(DC);
1315 else if (isa<ParmVarDecl>(ContextDecl))
1316 Owner =
1317 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1318 else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) {
1319 // Replace with the concept's owning decl, which is either a namespace or a
1320 // TU, so this needs a dyn_cast.
1321 Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext());
1322 } else {
1323 Owner = cast<NamedDecl>(ContextDecl);
1324 }
1325
1326 if (!Owner)
1327 return LinkageInfo::none();
1328
1329 // If the owner has a deduced type, we need to skip querying the linkage and
1330 // visibility of that type, because it might involve this closure type. The
1331 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1332 // than NoLinkage when we don't strictly need to, which is benign.
1333 auto *VD = dyn_cast<VarDecl>(Owner);
1334 LinkageInfo OwnerLV =
1335 VD && VD->getType()->getContainedDeducedType()
1336 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1337 : getLVForDecl(Owner, computation);
1338
1339 // A lambda never formally has linkage. But if the owner is externally
1340 // visible, then the lambda is too. We apply the same rules to blocks.
1341 if (!isExternallyVisible(OwnerLV.getLinkage()))
1342 return LinkageInfo::none();
1344 OwnerLV.isVisibilityExplicit());
1345}
1346
1347LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1348 LVComputationKind computation) {
1349 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1350 if (Function->isInAnonymousNamespace() &&
1352 return LinkageInfo::internal();
1353
1354 // This is a "void f();" which got merged with a file static.
1355 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1356 return LinkageInfo::internal();
1357
1358 LinkageInfo LV;
1359 if (!hasExplicitVisibilityAlready(computation)) {
1360 if (std::optional<Visibility> Vis =
1361 getExplicitVisibility(Function, computation))
1362 LV.mergeVisibility(*Vis, true);
1363 }
1364
1365 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1366 // merging storage classes and visibility attributes, so we don't have to
1367 // look at previous decls in here.
1368
1369 return LV;
1370 }
1371
1372 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1373 if (Var->hasExternalStorage()) {
1374 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1375 return LinkageInfo::internal();
1376
1377 LinkageInfo LV;
1378 if (Var->getStorageClass() == SC_PrivateExtern)
1380 else if (!hasExplicitVisibilityAlready(computation)) {
1381 if (std::optional<Visibility> Vis =
1382 getExplicitVisibility(Var, computation))
1383 LV.mergeVisibility(*Vis, true);
1384 }
1385
1386 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1387 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1388 if (PrevLV.getLinkage() != Linkage::Invalid)
1389 LV.setLinkage(PrevLV.getLinkage());
1390 LV.mergeVisibility(PrevLV);
1391 }
1392
1393 return LV;
1394 }
1395
1396 if (!Var->isStaticLocal())
1397 return LinkageInfo::none();
1398 }
1399
1400 ASTContext &Context = D->getASTContext();
1401 if (!Context.getLangOpts().CPlusPlus)
1402 return LinkageInfo::none();
1403
1404 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1405 if (!OuterD || OuterD->isInvalidDecl())
1406 return LinkageInfo::none();
1407
1408 LinkageInfo LV;
1409 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1410 if (!BD->getBlockManglingNumber())
1411 return LinkageInfo::none();
1412
1413 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1414 BD->getBlockManglingContextDecl(), computation);
1415 } else {
1416 const auto *FD = cast<FunctionDecl>(OuterD);
1417 if (!FD->isInlined() &&
1418 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1419 return LinkageInfo::none();
1420
1421 // If a function is hidden by -fvisibility-inlines-hidden option and
1422 // is not explicitly attributed as a hidden function,
1423 // we should not make static local variables in the function hidden.
1424 LV = getLVForDecl(FD, computation);
1425 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1426 !LV.isVisibilityExplicit() &&
1427 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1428 assert(cast<VarDecl>(D)->isStaticLocal());
1429 // If this was an implicitly hidden inline method, check again for
1430 // explicit visibility on the parent class, and use that for static locals
1431 // if present.
1432 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1433 LV = getLVForDecl(MD->getParent(), computation);
1434 if (!LV.isVisibilityExplicit()) {
1435 Visibility globalVisibility =
1436 computation.isValueVisibility()
1437 ? Context.getLangOpts().getValueVisibilityMode()
1438 : Context.getLangOpts().getTypeVisibilityMode();
1439 return LinkageInfo(Linkage::VisibleNone, globalVisibility,
1440 /*visibilityExplicit=*/false);
1441 }
1442 }
1443 }
1445 return LinkageInfo::none();
1448}
1449
1451 LVComputationKind computation,
1452 bool IgnoreVarTypeLinkage) {
1453 // Internal_linkage attribute overrides other considerations.
1454 if (D->hasAttr<InternalLinkageAttr>())
1455 return LinkageInfo::internal();
1456
1457 // Objective-C: treat all Objective-C declarations as having external
1458 // linkage.
1459 switch (D->getKind()) {
1460 default:
1461 break;
1462
1463 // Per C++ [basic.link]p2, only the names of objects, references,
1464 // functions, types, templates, namespaces, and values ever have linkage.
1465 //
1466 // Note that the name of a typedef, namespace alias, using declaration,
1467 // and so on are not the name of the corresponding type, namespace, or
1468 // declaration, so they do *not* have linkage.
1469 case Decl::ImplicitParam:
1470 case Decl::Label:
1471 case Decl::NamespaceAlias:
1472 case Decl::ParmVar:
1473 case Decl::Using:
1474 case Decl::UsingEnum:
1475 case Decl::UsingShadow:
1476 case Decl::UsingDirective:
1477 return LinkageInfo::none();
1478
1479 case Decl::EnumConstant:
1480 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1481 if (D->getASTContext().getLangOpts().CPlusPlus)
1482 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1484
1485 case Decl::Typedef:
1486 case Decl::TypeAlias:
1487 // A typedef declaration has linkage if it gives a type a name for
1488 // linkage purposes.
1489 if (!cast<TypedefNameDecl>(D)
1490 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1491 return LinkageInfo::none();
1492 break;
1493
1494 case Decl::TemplateTemplateParm: // count these as external
1495 case Decl::NonTypeTemplateParm:
1496 case Decl::ObjCAtDefsField:
1497 case Decl::ObjCCategory:
1498 case Decl::ObjCCategoryImpl:
1499 case Decl::ObjCCompatibleAlias:
1500 case Decl::ObjCImplementation:
1501 case Decl::ObjCMethod:
1502 case Decl::ObjCProperty:
1503 case Decl::ObjCPropertyImpl:
1504 case Decl::ObjCProtocol:
1505 return getExternalLinkageFor(D);
1506
1507 case Decl::CXXRecord: {
1508 const auto *Record = cast<CXXRecordDecl>(D);
1509 if (Record->isLambda()) {
1510 if (Record->hasKnownLambdaInternalLinkage() ||
1511 !Record->getLambdaManglingNumber()) {
1512 // This lambda has no mangling number, so it's internal.
1513 return LinkageInfo::internal();
1514 }
1515
1516 return getLVForClosure(
1517 Record->getDeclContext()->getRedeclContext(),
1518 Record->getLambdaContextDecl(), computation);
1519 }
1520
1521 break;
1522 }
1523
1524 case Decl::TemplateParamObject: {
1525 // The template parameter object can be referenced from anywhere its type
1526 // and value can be referenced.
1527 auto *TPO = cast<TemplateParamObjectDecl>(D);
1528 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1529 LV.merge(getLVForValue(TPO->getValue(), computation));
1530 return LV;
1531 }
1532 }
1533
1534 // Handle linkage for namespace-scope names.
1536 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1537
1538 // C++ [basic.link]p5:
1539 // In addition, a member function, static data member, a named
1540 // class or enumeration of class scope, or an unnamed class or
1541 // enumeration defined in a class-scope typedef declaration such
1542 // that the class or enumeration has the typedef name for linkage
1543 // purposes (7.1.3), has external linkage if the name of the class
1544 // has external linkage.
1545 if (D->getDeclContext()->isRecord())
1546 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1547
1548 // C++ [basic.link]p6:
1549 // The name of a function declared in block scope and the name of
1550 // an object declared by a block scope extern declaration have
1551 // linkage. If there is a visible declaration of an entity with
1552 // linkage having the same name and type, ignoring entities
1553 // declared outside the innermost enclosing namespace scope, the
1554 // block scope declaration declares that same entity and receives
1555 // the linkage of the previous declaration. If there is more than
1556 // one such matching entity, the program is ill-formed. Otherwise,
1557 // if no matching entity is found, the block scope entity receives
1558 // external linkage.
1560 return getLVForLocalDecl(D, computation);
1561
1562 // C++ [basic.link]p6:
1563 // Names not covered by these rules have no linkage.
1564 return LinkageInfo::none();
1565}
1566
1567/// getLVForDecl - Get the linkage and visibility for the given declaration.
1569 LVComputationKind computation) {
1570 // Internal_linkage attribute overrides other considerations.
1571 if (D->hasAttr<InternalLinkageAttr>())
1572 return LinkageInfo::internal();
1573
1574 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1576
1577 if (std::optional<LinkageInfo> LI = lookup(D, computation))
1578 return *LI;
1579
1580 LinkageInfo LV = computeLVForDecl(D, computation);
1581 if (D->hasCachedLinkage())
1582 assert(D->getCachedLinkage() == LV.getLinkage());
1583
1585 cache(D, computation, LV);
1586
1587#ifndef NDEBUG
1588 // In C (because of gnu inline) and in c++ with microsoft extensions an
1589 // static can follow an extern, so we can have two decls with different
1590 // linkages.
1591 const LangOptions &Opts = D->getASTContext().getLangOpts();
1592 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1593 return LV;
1594
1595 // We have just computed the linkage for this decl. By induction we know
1596 // that all other computed linkages match, check that the one we just
1597 // computed also does.
1598 NamedDecl *Old = nullptr;
1599 for (auto *I : D->redecls()) {
1600 auto *T = cast<NamedDecl>(I);
1601 if (T == D)
1602 continue;
1603 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1604 Old = T;
1605 break;
1606 }
1607 }
1608 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1609#endif
1610
1611 return LV;
1612}
1613
1618 LVComputationKind CK(EK);
1619 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1620 ? CK.forLinkageOnly()
1621 : CK);
1622}
1623
1625 if (isa<NamespaceDecl>(this))
1626 // Namespaces never have module linkage. It is the entities within them
1627 // that [may] do.
1628 return nullptr;
1629
1630 Module *M = getOwningModule();
1631 if (!M)
1632 return nullptr;
1633
1634 switch (M->Kind) {
1636 // Module map modules have no special linkage semantics.
1637 return nullptr;
1638
1643 return M;
1644
1648 // The global module shouldn't change the linkage.
1649 return nullptr;
1650
1652 // The private module fragment is part of its containing module for linkage
1653 // purposes.
1654 return M->Parent;
1655 }
1656
1657 llvm_unreachable("unknown module kind");
1658}
1659
1660void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
1661 Name.print(OS, Policy);
1662}
1663
1664void NamedDecl::printName(raw_ostream &OS) const {
1665 printName(OS, getASTContext().getPrintingPolicy());
1666}
1667
1669 std::string QualName;
1670 llvm::raw_string_ostream OS(QualName);
1671 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1672 return QualName;
1673}
1674
1675void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1676 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1677}
1678
1680 const PrintingPolicy &P) const {
1681 if (getDeclContext()->isFunctionOrMethod()) {
1682 // We do not print '(anonymous)' for function parameters without name.
1683 printName(OS, P);
1684 return;
1685 }
1687 if (getDeclName())
1688 OS << *this;
1689 else {
1690 // Give the printName override a chance to pick a different name before we
1691 // fall back to "(anonymous)".
1692 SmallString<64> NameBuffer;
1693 llvm::raw_svector_ostream NameOS(NameBuffer);
1694 printName(NameOS, P);
1695 if (NameBuffer.empty())
1696 OS << "(anonymous)";
1697 else
1698 OS << NameBuffer;
1699 }
1700}
1701
1702void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1703 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1704}
1705
1707 const PrintingPolicy &P) const {
1708 const DeclContext *Ctx = getDeclContext();
1709
1710 // For ObjC methods and properties, look through categories and use the
1711 // interface as context.
1712 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1713 if (auto *ID = MD->getClassInterface())
1714 Ctx = ID;
1715 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1716 if (auto *MD = PD->getGetterMethodDecl())
1717 if (auto *ID = MD->getClassInterface())
1718 Ctx = ID;
1719 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1720 if (auto *CI = ID->getContainingInterface())
1721 Ctx = CI;
1722 }
1723
1724 if (Ctx->isFunctionOrMethod())
1725 return;
1726
1727 using ContextsTy = SmallVector<const DeclContext *, 8>;
1728 ContextsTy Contexts;
1729
1730 // Collect named contexts.
1731 DeclarationName NameInScope = getDeclName();
1732 for (; Ctx; Ctx = Ctx->getParent()) {
1733 // Suppress anonymous namespace if requested.
1734 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1735 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1736 continue;
1737
1738 // Suppress inline namespace if it doesn't make the result ambiguous.
1739 if (Ctx->isInlineNamespace() && NameInScope) {
1740 if (P.SuppressInlineNamespace ==
1742 (P.SuppressInlineNamespace ==
1744 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(
1745 NameInScope))) {
1746 continue;
1747 }
1748 }
1749
1750 // Skip non-named contexts such as linkage specifications and ExportDecls.
1751 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1752 if (!ND)
1753 continue;
1754
1755 Contexts.push_back(Ctx);
1756 NameInScope = ND->getDeclName();
1757 }
1758
1759 for (const DeclContext *DC : llvm::reverse(Contexts)) {
1760 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1761 OS << Spec->getName();
1762 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1764 OS, TemplateArgs.asArray(), P,
1765 Spec->getSpecializedTemplate()->getTemplateParameters());
1766 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1767 if (ND->isAnonymousNamespace()) {
1768 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1769 : "(anonymous namespace)");
1770 }
1771 else
1772 OS << *ND;
1773 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1774 if (!RD->getIdentifier())
1775 OS << "(anonymous " << RD->getKindName() << ')';
1776 else
1777 OS << *RD;
1778 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1779 const FunctionProtoType *FT = nullptr;
1780 if (FD->hasWrittenPrototype())
1781 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1782
1783 OS << *FD << '(';
1784 if (FT) {
1785 unsigned NumParams = FD->getNumParams();
1786 for (unsigned i = 0; i < NumParams; ++i) {
1787 if (i)
1788 OS << ", ";
1789 OS << FD->getParamDecl(i)->getType().stream(P);
1790 }
1791
1792 if (FT->isVariadic()) {
1793 if (NumParams > 0)
1794 OS << ", ";
1795 OS << "...";
1796 }
1797 }
1798 OS << ')';
1799 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1800 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1801 // enumerator is declared in the scope that immediately contains
1802 // the enum-specifier. Each scoped enumerator is declared in the
1803 // scope of the enumeration.
1804 // For the case of unscoped enumerator, do not include in the qualified
1805 // name any information about its enum enclosing scope, as its visibility
1806 // is global.
1807 if (ED->isScoped())
1808 OS << *ED;
1809 else
1810 continue;
1811 } else {
1812 OS << *cast<NamedDecl>(DC);
1813 }
1814 OS << "::";
1815 }
1816}
1817
1819 const PrintingPolicy &Policy,
1820 bool Qualified) const {
1821 if (Qualified)
1822 printQualifiedName(OS, Policy);
1823 else
1824 printName(OS, Policy);
1825}
1826
1827template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1828 return true;
1829}
1830static bool isRedeclarableImpl(...) { return false; }
1832 switch (K) {
1833#define DECL(Type, Base) \
1834 case Decl::Type: \
1835 return isRedeclarableImpl((Type##Decl *)nullptr);
1836#define ABSTRACT_DECL(DECL)
1837#include "clang/AST/DeclNodes.inc"
1838 }
1839 llvm_unreachable("unknown decl kind");
1840}
1841
1843 bool IsKnownNewer) const {
1844 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1845
1846 // Never replace one imported declaration with another; we need both results
1847 // when re-exporting.
1848 if (OldD->isFromASTFile() && isFromASTFile())
1849 return false;
1850
1851 // A kind mismatch implies that the declaration is not replaced.
1852 if (OldD->getKind() != getKind())
1853 return false;
1854
1855 // For method declarations, we never replace. (Why?)
1856 if (isa<ObjCMethodDecl>(this))
1857 return false;
1858
1859 // For parameters, pick the newer one. This is either an error or (in
1860 // Objective-C) permitted as an extension.
1861 if (isa<ParmVarDecl>(this))
1862 return true;
1863
1864 // Inline namespaces can give us two declarations with the same
1865 // name and kind in the same scope but different contexts; we should
1866 // keep both declarations in this case.
1867 if (!this->getDeclContext()->getRedeclContext()->Equals(
1868 OldD->getDeclContext()->getRedeclContext()))
1869 return false;
1870
1871 // Using declarations can be replaced if they import the same name from the
1872 // same context.
1873 if (const auto *UD = dyn_cast<UsingDecl>(this)) {
1874 ASTContext &Context = getASTContext();
1875 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1877 cast<UsingDecl>(OldD)->getQualifier());
1878 }
1879 if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1880 ASTContext &Context = getASTContext();
1881 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1883 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1884 }
1885
1886 if (isRedeclarable(getKind())) {
1887 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1888 return false;
1889
1890 if (IsKnownNewer)
1891 return true;
1892
1893 // Check whether this is actually newer than OldD. We want to keep the
1894 // newer declaration. This loop will usually only iterate once, because
1895 // OldD is usually the previous declaration.
1896 for (const auto *D : redecls()) {
1897 if (D == OldD)
1898 break;
1899
1900 // If we reach the canonical declaration, then OldD is not actually older
1901 // than this one.
1902 //
1903 // FIXME: In this case, we should not add this decl to the lookup table.
1904 if (D->isCanonicalDecl())
1905 return false;
1906 }
1907
1908 // It's a newer declaration of the same kind of declaration in the same
1909 // scope: we want this decl instead of the existing one.
1910 return true;
1911 }
1912
1913 // In all other cases, we need to keep both declarations in case they have
1914 // different visibility. Any attempt to use the name will result in an
1915 // ambiguity if more than one is visible.
1916 return false;
1917}
1918
1920 switch (getFormalLinkage()) {
1921 case Linkage::Invalid:
1922 llvm_unreachable("Linkage hasn't been computed!");
1923 case Linkage::None:
1924 return false;
1925 case Linkage::Internal:
1926 return true;
1929 llvm_unreachable("Non-formal linkage is not allowed here!");
1930 case Linkage::Module:
1931 case Linkage::External:
1932 return true;
1933 }
1934 llvm_unreachable("Unhandled Linkage enum");
1935}
1936
1937NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1938 NamedDecl *ND = this;
1939 if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1940 ND = UD->getTargetDecl();
1941
1942 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1943 return AD->getClassInterface();
1944
1945 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1946 return AD->getNamespace();
1947
1948 return ND;
1949}
1950
1952 if (!isCXXClassMember())
1953 return false;
1954
1955 const NamedDecl *D = this;
1956 if (isa<UsingShadowDecl>(D))
1957 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1958
1959 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1960 return true;
1961 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(D->getAsFunction()))
1962 return MD->isInstance();
1963 return false;
1964}
1965
1966//===----------------------------------------------------------------------===//
1967// DeclaratorDecl Implementation
1968//===----------------------------------------------------------------------===//
1969
1970template <typename DeclT>
1972 if (decl->getNumTemplateParameterLists() > 0)
1973 return decl->getTemplateParameterList(0)->getTemplateLoc();
1974 return decl->getInnerLocStart();
1975}
1976
1979 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1980 return SourceLocation();
1981}
1982
1985 if (TSI) return TSI->getTypeLoc().getEndLoc();
1986 return SourceLocation();
1987}
1988
1990 if (QualifierLoc) {
1991 // Make sure the extended decl info is allocated.
1992 if (!hasExtInfo()) {
1993 // Save (non-extended) type source info pointer.
1994 auto *savedTInfo = cast<TypeSourceInfo *>(DeclInfo);
1995 // Allocate external info struct.
1996 DeclInfo = new (getASTContext()) ExtInfo;
1997 // Restore savedTInfo into (extended) decl info.
1998 getExtInfo()->TInfo = savedTInfo;
1999 }
2000 // Set qualifier info.
2001 getExtInfo()->QualifierLoc = QualifierLoc;
2002 } else if (hasExtInfo()) {
2003 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
2004 getExtInfo()->QualifierLoc = QualifierLoc;
2005 }
2006}
2007
2009 assert(TrailingRequiresClause);
2010 // Make sure the extended decl info is allocated.
2011 if (!hasExtInfo()) {
2012 // Save (non-extended) type source info pointer.
2013 auto *savedTInfo = cast<TypeSourceInfo *>(DeclInfo);
2014 // Allocate external info struct.
2015 DeclInfo = new (getASTContext()) ExtInfo;
2016 // Restore savedTInfo into (extended) decl info.
2017 getExtInfo()->TInfo = savedTInfo;
2018 }
2019 // Set requires clause info.
2020 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
2021}
2022
2025 assert(!TPLists.empty());
2026 // Make sure the extended decl info is allocated.
2027 if (!hasExtInfo()) {
2028 // Save (non-extended) type source info pointer.
2029 auto *savedTInfo = cast<TypeSourceInfo *>(DeclInfo);
2030 // Allocate external info struct.
2031 DeclInfo = new (getASTContext()) ExtInfo;
2032 // Restore savedTInfo into (extended) decl info.
2033 getExtInfo()->TInfo = savedTInfo;
2034 }
2035 // Set the template parameter lists info.
2036 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
2037}
2038
2040 return getTemplateOrInnerLocStart(this);
2041}
2042
2043// Helper function: returns true if QT is or contains a type
2044// having a postfix component.
2045static bool typeIsPostfix(QualType QT) {
2046 while (true) {
2047 const Type* T = QT.getTypePtr();
2048 switch (T->getTypeClass()) {
2049 default:
2050 return false;
2051 case Type::Pointer:
2052 QT = cast<PointerType>(T)->getPointeeType();
2053 break;
2054 case Type::BlockPointer:
2055 QT = cast<BlockPointerType>(T)->getPointeeType();
2056 break;
2057 case Type::MemberPointer:
2058 QT = cast<MemberPointerType>(T)->getPointeeType();
2059 break;
2060 case Type::LValueReference:
2061 case Type::RValueReference:
2062 QT = cast<ReferenceType>(T)->getPointeeType();
2063 break;
2064 case Type::PackExpansion:
2065 QT = cast<PackExpansionType>(T)->getPattern();
2066 break;
2067 case Type::Paren:
2068 case Type::ConstantArray:
2069 case Type::DependentSizedArray:
2070 case Type::IncompleteArray:
2071 case Type::VariableArray:
2072 case Type::FunctionProto:
2073 case Type::FunctionNoProto:
2074 return true;
2075 }
2076 }
2077}
2078
2080 SourceLocation RangeEnd = getLocation();
2081 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2082 // If the declaration has no name or the type extends past the name take the
2083 // end location of the type.
2084 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2085 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2086 }
2087 return SourceRange(getOuterLocStart(), RangeEnd);
2088}
2089
2092 // Free previous template parameters (if any).
2093 if (NumTemplParamLists > 0) {
2094 Context.Deallocate(TemplParamLists);
2095 TemplParamLists = nullptr;
2097 }
2098 // Set info on matched template parameter lists (if any).
2099 if (!TPLists.empty()) {
2100 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2101 NumTemplParamLists = TPLists.size();
2102 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2103 }
2104}
2105
2106//===----------------------------------------------------------------------===//
2107// VarDecl Implementation
2108//===----------------------------------------------------------------------===//
2109
2111 switch (SC) {
2112 case SC_None: break;
2113 case SC_Auto: return "auto";
2114 case SC_Extern: return "extern";
2115 case SC_PrivateExtern: return "__private_extern__";
2116 case SC_Register: return "register";
2117 case SC_Static: return "static";
2118 }
2119
2120 llvm_unreachable("Invalid storage class");
2121}
2122
2124 SourceLocation StartLoc, SourceLocation IdLoc,
2125 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2126 StorageClass SC)
2127 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2129 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2130 "VarDeclBitfields too large!");
2131 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2132 "ParmVarDeclBitfields too large!");
2133 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2134 "NonParmVarDeclBitfields too large!");
2135 AllBits = 0;
2136 VarDeclBits.SClass = SC;
2137 // Everything else is implicitly initialized to false.
2138}
2139
2141 SourceLocation IdL, const IdentifierInfo *Id,
2143 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2144}
2145
2147 return new (C, ID)
2148 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2149 QualType(), nullptr, SC_None);
2150}
2151
2153 assert(isLegalForVariable(SC));
2154 VarDeclBits.SClass = SC;
2155}
2156
2158 switch (VarDeclBits.TSCSpec) {
2159 case TSCS_unspecified:
2160 if (!hasAttr<ThreadAttr>() &&
2161 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2162 getASTContext().getTargetInfo().isTLSSupported() &&
2163 hasAttr<OMPThreadPrivateDeclAttr>()))
2164 return TLS_None;
2165 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2167 hasAttr<OMPThreadPrivateDeclAttr>())
2168 ? TLS_Dynamic
2169 : TLS_Static;
2170 case TSCS___thread: // Fall through.
2171 case TSCS__Thread_local:
2172 return TLS_Static;
2173 case TSCS_thread_local:
2174 return TLS_Dynamic;
2175 }
2176 llvm_unreachable("Unknown thread storage class specifier!");
2177}
2178
2180 if (const Expr *Init = getInit()) {
2181 SourceLocation InitEnd = Init->getEndLoc();
2182 // If Init is implicit, ignore its source range and fallback on
2183 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2184 if (InitEnd.isValid() && InitEnd != getLocation())
2185 return SourceRange(getOuterLocStart(), InitEnd);
2186 }
2188}
2189
2190template<typename T>
2192 // C++ [dcl.link]p1: All function types, function names with external linkage,
2193 // and variable names with external linkage have a language linkage.
2194 if (!D.hasExternalFormalLinkage())
2195 return NoLanguageLinkage;
2196
2197 // Language linkage is a C++ concept, but saying that everything else in C has
2198 // C language linkage fits the implementation nicely.
2199 if (!D.getASTContext().getLangOpts().CPlusPlus)
2200 return CLanguageLinkage;
2201
2202 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2203 // language linkage of the names of class members and the function type of
2204 // class member functions.
2205 const DeclContext *DC = D.getDeclContext();
2206 if (DC->isRecord())
2207 return CXXLanguageLinkage;
2208
2209 // If the first decl is in an extern "C" context, any other redeclaration
2210 // will have C language linkage. If the first one is not in an extern "C"
2211 // context, we would have reported an error for any other decl being in one.
2213 return CLanguageLinkage;
2214 return CXXLanguageLinkage;
2215}
2216
2217template<typename T>
2218static bool isDeclExternC(const T &D) {
2219 // Since the context is ignored for class members, they can only have C++
2220 // language linkage or no language linkage.
2221 const DeclContext *DC = D.getDeclContext();
2222 if (DC->isRecord()) {
2223 assert(D.getASTContext().getLangOpts().CPlusPlus);
2224 return false;
2225 }
2226
2227 return D.getLanguageLinkage() == CLanguageLinkage;
2228}
2229
2231 return getDeclLanguageLinkage(*this);
2232}
2233
2235 return isDeclExternC(*this);
2236}
2237
2240}
2241
2244}
2245
2247
2251 return DeclarationOnly;
2252
2253 // C++ [basic.def]p2:
2254 // A declaration is a definition unless [...] it contains the 'extern'
2255 // specifier or a linkage-specification and neither an initializer [...],
2256 // it declares a non-inline static data member in a class declaration [...],
2257 // it declares a static data member outside a class definition and the variable
2258 // was defined within the class with the constexpr specifier [...],
2259 // C++1y [temp.expl.spec]p15:
2260 // An explicit specialization of a static data member or an explicit
2261 // specialization of a static data member template is a definition if the
2262 // declaration includes an initializer; otherwise, it is a declaration.
2263 //
2264 // FIXME: How do you declare (but not define) a partial specialization of
2265 // a static data member template outside the containing class?
2266 if (isStaticDataMember()) {
2267 if (isOutOfLine() &&
2268 !(getCanonicalDecl()->isInline() &&
2270 (hasInit() ||
2271 // If the first declaration is out-of-line, this may be an
2272 // instantiation of an out-of-line partial specialization of a variable
2273 // template for which we have not yet instantiated the initializer.
2278 isa<VarTemplatePartialSpecializationDecl>(this)))
2279 return Definition;
2280 if (!isOutOfLine() && isInline())
2281 return Definition;
2282 return DeclarationOnly;
2283 }
2284 // C99 6.7p5:
2285 // A definition of an identifier is a declaration for that identifier that
2286 // [...] causes storage to be reserved for that object.
2287 // Note: that applies for all non-file-scope objects.
2288 // C99 6.9.2p1:
2289 // If the declaration of an identifier for an object has file scope and an
2290 // initializer, the declaration is an external definition for the identifier
2291 if (hasInit())
2292 return Definition;
2293
2294 if (hasDefiningAttr())
2295 return Definition;
2296
2297 if (const auto *SAA = getAttr<SelectAnyAttr>())
2298 if (!SAA->isInherited())
2299 return Definition;
2300
2301 // A variable template specialization (other than a static data member
2302 // template or an explicit specialization) is a declaration until we
2303 // instantiate its initializer.
2304 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2305 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2306 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2307 !VTSD->IsCompleteDefinition)
2308 return DeclarationOnly;
2309 }
2310
2311 if (hasExternalStorage())
2312 return DeclarationOnly;
2313
2314 // [dcl.link] p7:
2315 // A declaration directly contained in a linkage-specification is treated
2316 // as if it contains the extern specifier for the purpose of determining
2317 // the linkage of the declared name and whether it is a definition.
2318 if (isSingleLineLanguageLinkage(*this))
2319 return DeclarationOnly;
2320
2321 // C99 6.9.2p2:
2322 // A declaration of an object that has file scope without an initializer,
2323 // and without a storage class specifier or the scs 'static', constitutes
2324 // a tentative definition.
2325 // No such thing in C++.
2326 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2327 return TentativeDefinition;
2328
2329 // What's left is (in C, block-scope) declarations without initializers or
2330 // external storage. These are definitions.
2331 return Definition;
2332}
2333
2337 return nullptr;
2338
2339 VarDecl *LastTentative = nullptr;
2340
2341 // Loop through the declaration chain, starting with the most recent.
2343 Decl = Decl->getPreviousDecl()) {
2344 Kind = Decl->isThisDeclarationADefinition();
2345 if (Kind == Definition)
2346 return nullptr;
2347 // Record the first (most recent) TentativeDefinition that is encountered.
2348 if (Kind == TentativeDefinition && !LastTentative)
2349 LastTentative = Decl;
2350 }
2351
2352 return LastTentative;
2353}
2354
2357 for (auto *I : First->redecls()) {
2358 if (I->isThisDeclarationADefinition(C) == Definition)
2359 return I;
2360 }
2361 return nullptr;
2362}
2363
2366
2367 const VarDecl *First = getFirstDecl();
2368 for (auto *I : First->redecls()) {
2369 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2370 if (Kind == Definition)
2371 break;
2372 }
2373
2374 return Kind;
2375}
2376
2378 for (auto *I : redecls()) {
2379 if (auto Expr = I->getInit()) {
2380 D = I;
2381 return Expr;
2382 }
2383 }
2384 return nullptr;
2385}
2386
2387bool VarDecl::hasInit() const {
2388 if (auto *P = dyn_cast<ParmVarDecl>(this))
2389 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2390 return false;
2391
2392 if (auto *Eval = getEvaluatedStmt())
2393 return Eval->Value.isValid();
2394
2395 return !Init.isNull();
2396}
2397
2399 if (!hasInit())
2400 return nullptr;
2401
2402 if (auto *S = Init.dyn_cast<Stmt *>())
2403 return cast<Expr>(S);
2404
2405 auto *Eval = getEvaluatedStmt();
2406
2407 return cast<Expr>(Eval->Value.get(
2408 Eval->Value.isOffset() ? getASTContext().getExternalSource() : nullptr));
2409}
2410
2412 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2413 return ES->Value.getAddressOfPointer(getASTContext().getExternalSource());
2414
2415 return Init.getAddrOfPtr1();
2416}
2417
2419 VarDecl *Def = nullptr;
2420 for (auto *I : redecls()) {
2421 if (I->hasInit())
2422 return I;
2423
2424 if (I->isThisDeclarationADefinition()) {
2425 if (isStaticDataMember())
2426 return I;
2427 Def = I;
2428 }
2429 }
2430 return Def;
2431}
2432
2434 if (Decl::isOutOfLine())
2435 return true;
2436
2437 if (!isStaticDataMember())
2438 return false;
2439
2440 // If this static data member was instantiated from a static data member of
2441 // a class template, check whether that static data member was defined
2442 // out-of-line.
2444 return VD->isOutOfLine();
2445
2446 return false;
2447}
2448
2450 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2451 Eval->~EvaluatedStmt();
2452 getASTContext().Deallocate(Eval);
2453 }
2454
2455 Init = I;
2456}
2457
2459 const LangOptions &Lang = C.getLangOpts();
2460
2461 // OpenCL permits const integral variables to be used in constant
2462 // expressions, like in C++98.
2463 if (!Lang.CPlusPlus && !Lang.OpenCL && !Lang.C23)
2464 return false;
2465
2466 // Function parameters are never usable in constant expressions.
2467 if (isa<ParmVarDecl>(this))
2468 return false;
2469
2470 // The values of weak variables are never usable in constant expressions.
2471 if (isWeak())
2472 return false;
2473
2474 // In C++11, any variable of reference type can be used in a constant
2475 // expression if it is initialized by a constant expression.
2476 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2477 return true;
2478
2479 // Only const objects can be used in constant expressions in C++. C++98 does
2480 // not require the variable to be non-volatile, but we consider this to be a
2481 // defect.
2482 if (!getType().isConstant(C) || getType().isVolatileQualified())
2483 return false;
2484
2485 // In C++, but not in C, const, non-volatile variables of integral or
2486 // enumeration types can be used in constant expressions.
2487 if (getType()->isIntegralOrEnumerationType() && !Lang.C23)
2488 return true;
2489
2490 // C23 6.6p7: An identifier that is:
2491 // ...
2492 // - declared with storage-class specifier constexpr and has an object type,
2493 // is a named constant, ... such a named constant is a constant expression
2494 // with the type and value of the declared object.
2495 // Additionally, in C++11, non-volatile constexpr variables can be used in
2496 // constant expressions.
2497 return (Lang.CPlusPlus11 || Lang.C23) && isConstexpr();
2498}
2499
2501 // C++2a [expr.const]p3:
2502 // A variable is usable in constant expressions after its initializing
2503 // declaration is encountered...
2504 const VarDecl *DefVD = nullptr;
2505 const Expr *Init = getAnyInitializer(DefVD);
2506 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2507 return false;
2508 // ... if it is a constexpr variable, or it is of reference type or of
2509 // const-qualified integral or enumeration type, ...
2510 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2511 return false;
2512 // ... and its initializer is a constant initializer.
2513 if ((Context.getLangOpts().CPlusPlus || getLangOpts().C23) &&
2514 !DefVD->hasConstantInitialization())
2515 return false;
2516 // C++98 [expr.const]p1:
2517 // An integral constant-expression can involve only [...] const variables
2518 // or static data members of integral or enumeration types initialized with
2519 // [integer] constant expressions (dcl.init)
2520 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2521 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2522 return false;
2523 return true;
2524}
2525
2526/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2527/// form, which contains extra information on the evaluated value of the
2528/// initializer.
2530 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2531 if (!Eval) {
2532 // Note: EvaluatedStmt contains an APValue, which usually holds
2533 // resources not allocated from the ASTContext. We need to do some
2534 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2535 // where we can detect whether there's anything to clean up or not.
2536 Eval = new (getASTContext()) EvaluatedStmt;
2537 Eval->Value = cast<Stmt *>(Init);
2538 Init = Eval;
2539 }
2540 return Eval;
2541}
2542
2544 return Init.dyn_cast<EvaluatedStmt *>();
2545}
2546
2549 return evaluateValueImpl(Notes, hasConstantInitialization());
2550}
2551
2552APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2553 bool IsConstantInitialization) const {
2555
2556 const auto *Init = getInit();
2557 assert(!Init->isValueDependent());
2558
2559 // We only produce notes indicating why an initializer is non-constant the
2560 // first time it is evaluated. FIXME: The notes won't always be emitted the
2561 // first time we try evaluation, so might not be produced at all.
2562 if (Eval->WasEvaluated)
2563 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2564
2565 if (Eval->IsEvaluating) {
2566 // FIXME: Produce a diagnostic for self-initialization.
2567 return nullptr;
2568 }
2569
2570 Eval->IsEvaluating = true;
2571
2572 ASTContext &Ctx = getASTContext();
2573 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2574 IsConstantInitialization);
2575
2576 // In C++, or in C23 if we're initialising a 'constexpr' variable, this isn't
2577 // a constant initializer if we produced notes. In that case, we can't keep
2578 // the result, because it may only be correct under the assumption that the
2579 // initializer is a constant context.
2580 if (IsConstantInitialization &&
2581 (Ctx.getLangOpts().CPlusPlus ||
2582 (isConstexpr() && Ctx.getLangOpts().C23)) &&
2583 !Notes.empty())
2584 Result = false;
2585
2586 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2587 // or that it's empty (so that there's nothing to clean up) if evaluation
2588 // failed.
2589 if (!Result)
2590 Eval->Evaluated = APValue();
2591 else if (Eval->Evaluated.needsCleanup())
2592 Ctx.addDestruction(&Eval->Evaluated);
2593
2594 Eval->IsEvaluating = false;
2595 Eval->WasEvaluated = true;
2596
2597 return Result ? &Eval->Evaluated : nullptr;
2598}
2599
2601 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2602 if (Eval->WasEvaluated)
2603 return &Eval->Evaluated;
2604
2605 return nullptr;
2606}
2607
2608bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2609 const Expr *Init = getInit();
2610 assert(Init && "no initializer");
2611
2613 if (!Eval->CheckedForICEInit) {
2614 Eval->CheckedForICEInit = true;
2615 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2616 }
2617 return Eval->HasICEInit;
2618}
2619
2621 // In C, all globals and constexpr variables should have constant
2622 // initialization. For constexpr variables in C check that initializer is a
2623 // constant initializer because they can be used in constant expressions.
2625 !isConstexpr())
2626 return true;
2627
2628 // In C++, it depends on whether the evaluation at the point of definition
2629 // was evaluatable as a constant initializer.
2630 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2631 return Eval->HasConstantInitialization;
2632
2633 return false;
2634}
2635
2639 // If we ask for the value before we know whether we have a constant
2640 // initializer, we can compute the wrong value (for example, due to
2641 // std::is_constant_evaluated()).
2642 assert(!Eval->WasEvaluated &&
2643 "already evaluated var value before checking for constant init");
2644 assert((getASTContext().getLangOpts().CPlusPlus ||
2646 "only meaningful in C++/C23");
2647
2648 assert(!getInit()->isValueDependent());
2649
2650 // Evaluate the initializer to check whether it's a constant expression.
2652 evaluateValueImpl(Notes, true) && Notes.empty();
2653
2654 // If evaluation as a constant initializer failed, allow re-evaluation as a
2655 // non-constant initializer if we later find we want the value.
2656 if (!Eval->HasConstantInitialization)
2657 Eval->WasEvaluated = false;
2658
2659 return Eval->HasConstantInitialization;
2660}
2661
2663 return isa<PackExpansionType>(getType());
2664}
2665
2666template<typename DeclT>
2667static DeclT *getDefinitionOrSelf(DeclT *D) {
2668 assert(D);
2669 if (auto *Def = D->getDefinition())
2670 return Def;
2671 return D;
2672}
2673
2675 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2676}
2677
2679 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2680}
2681
2683 QualType T = getType();
2684 return T->isDependentType() || T->isUndeducedType() ||
2685 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2686 return AA->isAlignmentDependent();
2687 });
2688}
2689
2691 const VarDecl *VD = this;
2692
2693 // If this is an instantiated member, walk back to the template from which
2694 // it was instantiated.
2696 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2698 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2699 VD = NewVD;
2700 }
2701 }
2702
2703 // If it's an instantiated variable template specialization, find the
2704 // template or partial specialization from which it was instantiated.
2705 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2706 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2707 auto From = VDTemplSpec->getInstantiatedFrom();
2708 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2709 while (!VTD->isMemberSpecialization()) {
2710 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2711 if (!NewVTD)
2712 break;
2713 VTD = NewVTD;
2714 }
2715 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2716 }
2717 if (auto *VTPSD =
2718 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2719 while (!VTPSD->isMemberSpecialization()) {
2720 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2721 if (!NewVTPSD)
2722 break;
2723 VTPSD = NewVTPSD;
2724 }
2725 return getDefinitionOrSelf<VarDecl>(VTPSD);
2726 }
2727 }
2728 }
2729
2730 // If this is the pattern of a variable template, find where it was
2731 // instantiated from. FIXME: Is this necessary?
2732 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2733 while (!VarTemplate->isMemberSpecialization()) {
2734 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2735 if (!NewVT)
2736 break;
2737 VarTemplate = NewVT;
2738 }
2739
2740 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2741 }
2742
2743 if (VD == this)
2744 return nullptr;
2745 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2746}
2747
2750 return cast<VarDecl>(MSI->getInstantiatedFrom());
2751
2752 return nullptr;
2753}
2754
2756 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2757 return Spec->getSpecializationKind();
2758
2760 return MSI->getTemplateSpecializationKind();
2761
2762 return TSK_Undeclared;
2763}
2764
2768 return MSI->getTemplateSpecializationKind();
2769
2770 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2771 return Spec->getSpecializationKind();
2772
2773 return TSK_Undeclared;
2774}
2775
2777 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2778 return Spec->getPointOfInstantiation();
2779
2781 return MSI->getPointOfInstantiation();
2782
2783 return SourceLocation();
2784}
2785
2788 .dyn_cast<VarTemplateDecl *>();
2789}
2790
2793}
2794
2796 const auto &LangOpts = getASTContext().getLangOpts();
2797 // In CUDA mode without relocatable device code, variables of form 'extern
2798 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2799 // memory pool. These are never undefined variables, even if they appear
2800 // inside of an anon namespace or static function.
2801 //
2802 // With CUDA relocatable device code enabled, these variables don't get
2803 // special handling; they're treated like regular extern variables.
2804 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2805 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2806 isa<IncompleteArrayType>(getType()))
2807 return true;
2808
2809 return hasDefinition();
2810}
2811
2812bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2813 if (!hasGlobalStorage())
2814 return false;
2815 if (hasAttr<NoDestroyAttr>())
2816 return true;
2817 if (hasAttr<AlwaysDestroyAttr>())
2818 return false;
2819
2821 RSDKind K = Ctx.getLangOpts().getRegisterStaticDestructors();
2822 return K == RSDKind::None ||
2823 (K == RSDKind::ThreadLocal && getTLSKind() == TLS_None);
2824}
2825
2828 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2829 if (Eval->HasConstantDestruction)
2830 return QualType::DK_none;
2831
2832 if (isNoDestroy(Ctx))
2833 return QualType::DK_none;
2834
2835 return getType().isDestructedType();
2836}
2837
2839 assert(hasInit() && "Expect initializer to check for flexible array init");
2840 auto *Ty = getType()->getAs<RecordType>();
2841 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2842 return false;
2843 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2844 if (!List)
2845 return false;
2846 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2847 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2848 if (!InitTy)
2849 return false;
2850 return !InitTy->isZeroSize();
2851}
2852
2854 assert(hasInit() && "Expect initializer to check for flexible array init");
2855 auto *Ty = getType()->getAs<RecordType>();
2856 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2857 return CharUnits::Zero();
2858 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2859 if (!List || List->getNumInits() == 0)
2860 return CharUnits::Zero();
2861 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2862 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2863 if (!InitTy)
2864 return CharUnits::Zero();
2865 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2866 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2867 CharUnits FlexibleArrayOffset =
2869 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2870 return CharUnits::Zero();
2871 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2872}
2873
2875 if (isStaticDataMember())
2876 // FIXME: Remove ?
2877 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2879 .dyn_cast<MemberSpecializationInfo *>();
2880 return nullptr;
2881}
2882
2884 SourceLocation PointOfInstantiation) {
2885 assert((isa<VarTemplateSpecializationDecl>(this) ||
2887 "not a variable or static data member template specialization");
2888
2890 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2891 Spec->setSpecializationKind(TSK);
2892 if (TSK != TSK_ExplicitSpecialization &&
2893 PointOfInstantiation.isValid() &&
2894 Spec->getPointOfInstantiation().isInvalid()) {
2895 Spec->setPointOfInstantiation(PointOfInstantiation);
2897 L->InstantiationRequested(this);
2898 }
2900 MSI->setTemplateSpecializationKind(TSK);
2901 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2902 MSI->getPointOfInstantiation().isInvalid()) {
2903 MSI->setPointOfInstantiation(PointOfInstantiation);
2905 L->InstantiationRequested(this);
2906 }
2907 }
2908}
2909
2910void
2913 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2914 "Previous template or instantiation?");
2916}
2917
2918//===----------------------------------------------------------------------===//
2919// ParmVarDecl Implementation
2920//===----------------------------------------------------------------------===//
2921
2923 SourceLocation StartLoc, SourceLocation IdLoc,
2924 const IdentifierInfo *Id, QualType T,
2925 TypeSourceInfo *TInfo, StorageClass S,
2926 Expr *DefArg) {
2927 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2928 S, DefArg);
2929}
2930
2933 QualType T = TSI ? TSI->getType() : getType();
2934 if (const auto *DT = dyn_cast<DecayedType>(T))
2935 return DT->getOriginalType();
2936 return T;
2937}
2938
2940 return new (C, ID)
2941 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2942 nullptr, QualType(), nullptr, SC_None, nullptr);
2943}
2944
2946 if (!hasInheritedDefaultArg()) {
2947 SourceRange ArgRange = getDefaultArgRange();
2948 if (ArgRange.isValid())
2949 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2950 }
2951
2952 // DeclaratorDecl considers the range of postfix types as overlapping with the
2953 // declaration name, but this is not the case with parameters in ObjC methods.
2954 if (isa<ObjCMethodDecl>(getDeclContext()))
2956
2958}
2959
2961 // ns_consumed only affects code generation in ARC
2962 if (hasAttr<NSConsumedAttr>())
2963 return getASTContext().getLangOpts().ObjCAutoRefCount;
2964
2965 // FIXME: isParamDestroyedInCallee() should probably imply
2966 // isDestructedType()
2967 const auto *RT = getType()->getAs<RecordType>();
2968 if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2970 return true;
2971
2972 return false;
2973}
2974
2976 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2977 assert(!hasUninstantiatedDefaultArg() &&
2978 "Default argument is not yet instantiated!");
2979
2980 Expr *Arg = getInit();
2981 if (auto *E = dyn_cast_if_present<FullExpr>(Arg))
2982 return E->getSubExpr();
2983
2984 return Arg;
2985}
2986
2988 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2989 Init = defarg;
2990}
2991
2993 switch (ParmVarDeclBits.DefaultArgKind) {
2994 case DAK_None:
2995 case DAK_Unparsed:
2996 // Nothing we can do here.
2997 return SourceRange();
2998
2999 case DAK_Uninstantiated:
3001
3002 case DAK_Normal:
3003 if (const Expr *E = getInit())
3004 return E->getSourceRange();
3005
3006 // Missing an actual expression, may be invalid.
3007 return SourceRange();
3008 }
3009 llvm_unreachable("Invalid default argument kind.");
3010}
3011
3013 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
3014 Init = arg;
3015}
3016
3018 assert(hasUninstantiatedDefaultArg() &&
3019 "Wrong kind of initialization expression!");
3020 return cast_if_present<Expr>(cast<Stmt *>(Init));
3021}
3022
3024 // FIXME: We should just return false for DAK_None here once callers are
3025 // prepared for the case that we encountered an invalid default argument and
3026 // were unable to even build an invalid expression.
3028 !Init.isNull();
3029}
3030
3031void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
3032 getASTContext().setParameterIndex(this, parameterIndex);
3033 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
3034}
3035
3036unsigned ParmVarDecl::getParameterIndexLarge() const {
3037 return getASTContext().getParameterIndex(this);
3038}
3039
3040//===----------------------------------------------------------------------===//
3041// FunctionDecl Implementation
3042//===----------------------------------------------------------------------===//
3043
3045 SourceLocation StartLoc,
3046 const DeclarationNameInfo &NameInfo, QualType T,
3047 TypeSourceInfo *TInfo, StorageClass S,
3048 bool UsesFPIntrin, bool isInlineSpecified,
3049 ConstexprSpecKind ConstexprKind,
3050 Expr *TrailingRequiresClause)
3051 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
3052 StartLoc),
3053 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
3054 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
3055 assert(T.isNull() || T->isFunctionType());
3056 FunctionDeclBits.SClass = S;
3058 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
3059 FunctionDeclBits.IsVirtualAsWritten = false;
3060 FunctionDeclBits.IsPureVirtual = false;
3061 FunctionDeclBits.HasInheritedPrototype = false;
3062 FunctionDeclBits.HasWrittenPrototype = true;
3063 FunctionDeclBits.IsDeleted = false;
3064 FunctionDeclBits.IsTrivial = false;
3065 FunctionDeclBits.IsTrivialForCall = false;
3066 FunctionDeclBits.IsDefaulted = false;
3067 FunctionDeclBits.IsExplicitlyDefaulted = false;
3068 FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3069 FunctionDeclBits.IsIneligibleOrNotSelected = false;
3070 FunctionDeclBits.HasImplicitReturnZero = false;
3071 FunctionDeclBits.IsLateTemplateParsed = false;
3072 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
3073 FunctionDeclBits.BodyContainsImmediateEscalatingExpression = false;
3074 FunctionDeclBits.InstantiationIsPending = false;
3075 FunctionDeclBits.UsesSEHTry = false;
3076 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
3077 FunctionDeclBits.HasSkippedBody = false;
3078 FunctionDeclBits.WillHaveBody = false;
3079 FunctionDeclBits.IsMultiVersion = false;
3080 FunctionDeclBits.DeductionCandidateKind =
3081 static_cast<unsigned char>(DeductionCandidate::Normal);
3082 FunctionDeclBits.HasODRHash = false;
3083 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3084 if (TrailingRequiresClause)
3085 setTrailingRequiresClause(TrailingRequiresClause);
3086}
3087
3089 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3092 if (TemplateArgs)
3093 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
3094}
3095
3097 if (const auto *FT = getType()->getAs<FunctionProtoType>())
3098 return FT->isVariadic();
3099 return false;
3100}
3101
3104 ASTContext &Context, ArrayRef<DeclAccessPair> Lookups,
3105 StringLiteral *DeletedMessage) {
3106 static constexpr size_t Alignment =
3107 std::max({alignof(DefaultedOrDeletedFunctionInfo),
3108 alignof(DeclAccessPair), alignof(StringLiteral *)});
3109 size_t Size = totalSizeToAlloc<DeclAccessPair, StringLiteral *>(
3110 Lookups.size(), DeletedMessage != nullptr);
3111
3113 new (Context.Allocate(Size, Alignment)) DefaultedOrDeletedFunctionInfo;
3114 Info->NumLookups = Lookups.size();
3115 Info->HasDeletedMessage = DeletedMessage != nullptr;
3116
3117 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
3118 Info->getTrailingObjects<DeclAccessPair>());
3119 if (DeletedMessage)
3120 *Info->getTrailingObjects<StringLiteral *>() = DeletedMessage;
3121 return Info;
3122}
3123
3126 assert(!FunctionDeclBits.HasDefaultedOrDeletedInfo && "already have this");
3127 assert(!Body && "can't replace function body with defaulted function info");
3128
3129 FunctionDeclBits.HasDefaultedOrDeletedInfo = true;
3131}
3132
3134 FunctionDeclBits.IsDeleted = D;
3135
3136 if (Message) {
3137 assert(isDeletedAsWritten() && "Function must be deleted");
3138 if (FunctionDeclBits.HasDefaultedOrDeletedInfo)
3140 else
3142 getASTContext(), /*Lookups=*/{}, Message));
3143 }
3144}
3145
3147 StringLiteral *Message) {
3148 // We should never get here with the DefaultedOrDeletedInfo populated, but
3149 // no space allocated for the deleted message, since that would require
3150 // recreating this, but setDefaultedOrDeletedInfo() disallows overwriting
3151 // an already existing DefaultedOrDeletedFunctionInfo.
3152 assert(HasDeletedMessage &&
3153 "No space to store a delete message in this DefaultedOrDeletedInfo");
3154 *getTrailingObjects<StringLiteral *>() = Message;
3155}
3156
3159 return FunctionDeclBits.HasDefaultedOrDeletedInfo ? DefaultedOrDeletedInfo
3160 : nullptr;
3161}
3162
3164 for (const auto *I : redecls()) {
3165 if (I->doesThisDeclarationHaveABody()) {
3166 Definition = I;
3167 return true;
3168 }
3169 }
3170
3171 return false;
3172}
3173
3175 const Stmt *S = getBody();
3176 if (!S) {
3177 // Since we don't have a body for this function, we don't know if it's
3178 // trivial or not.
3179 return false;
3180 }
3181
3182 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3183 return true;
3184 return false;
3185}
3186
3188 if (!getFriendObjectKind())
3189 return false;
3190
3191 // Check for a friend function instantiated from a friend function
3192 // definition in a templated class.
3193 if (const FunctionDecl *InstantiatedFrom =
3195 return InstantiatedFrom->getFriendObjectKind() &&
3196 InstantiatedFrom->isThisDeclarationADefinition();
3197
3198 // Check for a friend function template instantiated from a friend
3199 // function template definition in a templated class.
3200 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3201 if (const FunctionTemplateDecl *InstantiatedFrom =
3203 return InstantiatedFrom->getFriendObjectKind() &&
3204 InstantiatedFrom->isThisDeclarationADefinition();
3205 }
3206
3207 return false;
3208}
3209
3211 bool CheckForPendingFriendDefinition) const {
3212 for (const FunctionDecl *FD : redecls()) {
3213 if (FD->isThisDeclarationADefinition()) {
3214 Definition = FD;
3215 return true;
3216 }
3217
3218 // If this is a friend function defined in a class template, it does not
3219 // have a body until it is used, nevertheless it is a definition, see
3220 // [temp.inst]p2:
3221 //
3222 // ... for the purpose of determining whether an instantiated redeclaration
3223 // is valid according to [basic.def.odr] and [class.mem], a declaration that
3224 // corresponds to a definition in the template is considered to be a
3225 // definition.
3226 //
3227 // The following code must produce redefinition error:
3228 //
3229 // template<typename T> struct C20 { friend void func_20() {} };
3230 // C20<int> c20i;
3231 // void func_20() {}
3232 //
3233 if (CheckForPendingFriendDefinition &&
3234 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3235 Definition = FD;
3236 return true;
3237 }
3238 }
3239
3240 return false;
3241}
3242
3244 if (!hasBody(Definition))
3245 return nullptr;
3246
3247 assert(!Definition->FunctionDeclBits.HasDefaultedOrDeletedInfo &&
3248 "definition should not have a body");
3249 if (Definition->Body)
3250 return Definition->Body.get(getASTContext().getExternalSource());
3251
3252 return nullptr;
3253}
3254
3256 FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3257 Body = LazyDeclStmtPtr(B);
3258 if (B)
3259 EndRangeLoc = B->getEndLoc();
3260}
3261
3263 FunctionDeclBits.IsPureVirtual = P;
3264 if (P)
3265 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3266 Parent->markedVirtualFunctionPure();
3267}
3268
3269template<std::size_t Len>
3270static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3271 const IdentifierInfo *II = ND->getIdentifier();
3272 return II && II->isStr(Str);
3273}
3274
3276 // C++23 [expr.const]/p17
3277 // An immediate-escalating function is
3278 // - the call operator of a lambda that is not declared with the consteval
3279 // specifier,
3280 if (isLambdaCallOperator(this) && !isConsteval())
3281 return true;
3282 // - a defaulted special member function that is not declared with the
3283 // consteval specifier,
3284 if (isDefaulted() && !isConsteval())
3285 return true;
3286 // - a function that results from the instantiation of a templated entity
3287 // defined with the constexpr specifier.
3289 if (TK != TK_NonTemplate && TK != TK_DependentNonTemplate &&
3291 return true;
3292 return false;
3293}
3294
3296 // C++23 [expr.const]/p18
3297 // An immediate function is a function or constructor that is
3298 // - declared with the consteval specifier
3299 if (isConsteval())
3300 return true;
3301 // - an immediate-escalating function F whose function body contains an
3302 // immediate-escalating expression
3304 return true;
3305
3306 if (const auto *MD = dyn_cast<CXXMethodDecl>(this);
3307 MD && MD->isLambdaStaticInvoker())
3308 return MD->getParent()->getLambdaCallOperator()->isImmediateFunction();
3309
3310 return false;
3311}
3312
3314 return isNamed(this, "main") && !getLangOpts().Freestanding &&
3315 !getLangOpts().HLSL &&
3317 isExternC());
3318}
3319
3321 const TranslationUnitDecl *TUnit =
3322 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3323 if (!TUnit)
3324 return false;
3325
3326 // Even though we aren't really targeting MSVCRT if we are freestanding,
3327 // semantic analysis for these functions remains the same.
3328
3329 // MSVCRT entry points only exist on MSVCRT targets.
3330 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3331 return false;
3332
3333 // Nameless functions like constructors cannot be entry points.
3334 if (!getIdentifier())
3335 return false;
3336
3337 return llvm::StringSwitch<bool>(getName())
3338 .Cases("main", // an ANSI console app
3339 "wmain", // a Unicode console App
3340 "WinMain", // an ANSI GUI app
3341 "wWinMain", // a Unicode GUI app
3342 "DllMain", // a DLL
3343 true)
3344 .Default(false);
3345}
3346
3348 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3349 return false;
3350 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3351 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3352 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3353 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3354 return false;
3355
3357 return false;
3358
3359 const auto *proto = getType()->castAs<FunctionProtoType>();
3360 if (proto->getNumParams() != 2 || proto->isVariadic())
3361 return false;
3362
3363 const ASTContext &Context =
3364 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3365 ->getASTContext();
3366
3367 // The result type and first argument type are constant across all
3368 // these operators. The second argument must be exactly void*.
3369 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3370}
3371
3373 std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3374 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3375 return false;
3376 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3377 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3378 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3379 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3380 return false;
3381
3382 if (isa<CXXRecordDecl>(getDeclContext()))
3383 return false;
3384
3385 // This can only fail for an invalid 'operator new' declaration.
3387 return false;
3388
3389 const auto *FPT = getType()->castAs<FunctionProtoType>();
3390 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 4 || FPT->isVariadic())
3391 return false;
3392
3393 // If this is a single-parameter function, it must be a replaceable global
3394 // allocation or deallocation function.
3395 if (FPT->getNumParams() == 1)
3396 return true;
3397
3398 unsigned Params = 1;
3399 QualType Ty = FPT->getParamType(Params);
3400 const ASTContext &Ctx = getASTContext();
3401
3402 auto Consume = [&] {
3403 ++Params;
3404 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3405 };
3406
3407 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3408 bool IsSizedDelete = false;
3409 if (Ctx.getLangOpts().SizedDeallocation &&
3410 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3411 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3412 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3413 IsSizedDelete = true;
3414 Consume();
3415 }
3416
3417 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3418 // new/delete.
3419 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3420 Consume();
3421 if (AlignmentParam)
3422 *AlignmentParam = Params;
3423 }
3424
3425 // If this is not a sized delete, the next parameter can be a
3426 // 'const std::nothrow_t&'.
3427 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3428 Ty = Ty->getPointeeType();
3430 return false;
3431 if (Ty->isNothrowT()) {
3432 if (IsNothrow)
3433 *IsNothrow = true;
3434 Consume();
3435 }
3436 }
3437
3438 // Finally, recognize the not yet standard versions of new that take a
3439 // hot/cold allocation hint (__hot_cold_t). These are currently supported by
3440 // tcmalloc (see
3441 // https://github.com/google/tcmalloc/blob/220043886d4e2efff7a5702d5172cb8065253664/tcmalloc/malloc_extension.h#L53).
3442 if (!IsSizedDelete && !Ty.isNull() && Ty->isEnumeralType()) {
3443 QualType T = Ty;
3444 while (const auto *TD = T->getAs<TypedefType>())
3445 T = TD->getDecl()->getUnderlyingType();
3446 const IdentifierInfo *II =
3447 T->castAs<EnumType>()->getDecl()->getIdentifier();
3448 if (II && II->isStr("__hot_cold_t"))
3449 Consume();
3450 }
3451
3452 return Params == FPT->getNumParams();
3453}
3454
3456 if (!getBuiltinID())
3457 return false;
3458
3459 const FunctionDecl *Definition;
3460 if (!hasBody(Definition))
3461 return false;
3462
3463 if (!Definition->isInlineSpecified() ||
3464 !Definition->hasAttr<AlwaysInlineAttr>())
3465 return false;
3466
3467 ASTContext &Context = getASTContext();
3468 switch (Context.GetGVALinkageForFunction(Definition)) {
3469 case GVA_Internal:
3470 case GVA_DiscardableODR:
3471 case GVA_StrongODR:
3472 return false;
3474 case GVA_StrongExternal:
3475 return true;
3476 }
3477 llvm_unreachable("Unknown GVALinkage");
3478}
3479
3481 // C++ P0722:
3482 // Within a class C, a single object deallocation function with signature
3483 // (T, std::destroying_delete_t, <more params>)
3484 // is a destroying operator delete.
3485 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3486 getNumParams() < 2)
3487 return false;
3488
3489 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3490 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3491 RD->getIdentifier()->isStr("destroying_delete_t");
3492}
3493
3495 return getDeclLanguageLinkage(*this);
3496}
3497
3499 return isDeclExternC(*this);
3500}
3501
3503 if (hasAttr<OpenCLKernelAttr>())
3504 return true;
3506}
3507
3510}
3511
3513 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3514 return Method->isStatic();
3515
3517 return false;
3518
3519 for (const DeclContext *DC = getDeclContext();
3520 DC->isNamespace();
3521 DC = DC->getParent()) {
3522 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3523 if (!Namespace->getDeclName())
3524 return false;
3525 }
3526 }
3527
3528 return true;
3529}
3530
3532 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3533 hasAttr<C11NoReturnAttr>())
3534 return true;
3535
3536 if (auto *FnTy = getType()->getAs<FunctionType>())
3537 return FnTy->getNoReturnAttr();
3538
3539 return false;
3540}
3541
3543 // C++20 [temp.friend]p9:
3544 // A non-template friend declaration with a requires-clause [or]
3545 // a friend function template with a constraint that depends on a template
3546 // parameter from an enclosing template [...] does not declare the same
3547 // function or function template as a declaration in any other scope.
3548
3549 // If this isn't a friend then it's not a member-like constrained friend.
3550 if (!getFriendObjectKind()) {
3551 return false;
3552 }
3553
3555 // If these friends don't have constraints, they aren't constrained, and
3556 // thus don't fall under temp.friend p9. Else the simple presence of a
3557 // constraint makes them unique.
3559 }
3560
3562}
3563
3565 if (hasAttr<TargetAttr>())
3567 if (hasAttr<TargetVersionAttr>())
3569 if (hasAttr<CPUDispatchAttr>())
3571 if (hasAttr<CPUSpecificAttr>())
3573 if (hasAttr<TargetClonesAttr>())
3576}
3577
3579 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3580}
3581
3583 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3584}
3585
3587 return isMultiVersion() &&
3588 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3589}
3590
3592 if (!isMultiVersion())
3593 return false;
3594 if (hasAttr<TargetAttr>())
3595 return getAttr<TargetAttr>()->isDefaultVersion();
3596 return hasAttr<TargetVersionAttr>() &&
3597 getAttr<TargetVersionAttr>()->isDefaultVersion();
3598}
3599
3601 return isMultiVersion() && hasAttr<TargetClonesAttr>();
3602}
3603
3605 return isMultiVersion() && hasAttr<TargetVersionAttr>();
3606}
3607
3608void
3611
3613 FunctionTemplateDecl *PrevFunTmpl
3614 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3615 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3616 FunTmpl->setPreviousDecl(PrevFunTmpl);
3617 }
3618
3619 if (PrevDecl && PrevDecl->isInlined())
3620 setImplicitlyInline(true);
3621}
3622
3624
3625/// Returns a value indicating whether this function corresponds to a builtin
3626/// function.
3627///
3628/// The function corresponds to a built-in function if it is declared at
3629/// translation scope or within an extern "C" block and its name matches with
3630/// the name of a builtin. The returned value will be 0 for functions that do
3631/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3632/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3633/// value.
3634///
3635/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3636/// functions as their wrapped builtins. This shouldn't be done in general, but
3637/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3638unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3639 unsigned BuiltinID = 0;
3640
3641 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3642 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3643 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3644 BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3645 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3646 BuiltinID = A->getID();
3647 }
3648
3649 if (!BuiltinID)
3650 return 0;
3651
3652 // If the function is marked "overloadable", it has a different mangled name
3653 // and is not the C library function.
3654 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3655 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3656 return 0;
3657
3659 BuiltinID == Builtin::BI__builtin_counted_by_ref)
3660 return 0;
3661
3662 const ASTContext &Context = getASTContext();
3663 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3664 return BuiltinID;
3665
3666 // This function has the name of a known C library
3667 // function. Determine whether it actually refers to the C library
3668 // function or whether it just has the same name.
3669
3670 // If this is a static function, it's not a builtin.
3671 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3672 return 0;
3673
3674 // OpenCL v1.2 s6.9.f - The library functions defined in
3675 // the C99 standard headers are not available.
3676 if (Context.getLangOpts().OpenCL &&
3677 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3678 return 0;
3679
3680 // CUDA does not have device-side standard library. printf and malloc are the
3681 // only special cases that are supported by device-side runtime.
3682 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3683 !hasAttr<CUDAHostAttr>() &&
3684 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3685 return 0;
3686
3687 // As AMDGCN implementation of OpenMP does not have a device-side standard
3688 // library, none of the predefined library functions except printf and malloc
3689 // should be treated as a builtin i.e. 0 should be returned for them.
3690 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3691 Context.getLangOpts().OpenMPIsTargetDevice &&
3692 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3693 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3694 return 0;
3695
3696 return BuiltinID;
3697}
3698
3699/// getNumParams - Return the number of parameters this function must have
3700/// based on its FunctionType. This is the length of the ParamInfo array
3701/// after it has been created.
3703 const auto *FPT = getType()->getAs<FunctionProtoType>();
3704 return FPT ? FPT->getNumParams() : 0;
3705}
3706
3707void FunctionDecl::setParams(ASTContext &C,
3708 ArrayRef<ParmVarDecl *> NewParamInfo) {
3709 assert(!ParamInfo && "Already has param info!");
3710 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3711
3712 // Zero params -> null pointer.
3713 if (!NewParamInfo.empty()) {
3714 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3715 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3716 }
3717}
3718
3719/// getMinRequiredArguments - Returns the minimum number of arguments
3720/// needed to call this function. This may be fewer than the number of
3721/// function parameters, if some of the parameters have default
3722/// arguments (in C++) or are parameter packs (C++11).
3725 return getNumParams();
3726
3727 // Note that it is possible for a parameter with no default argument to
3728 // follow a parameter with a default argument.
3729 unsigned NumRequiredArgs = 0;
3730 unsigned MinParamsSoFar = 0;
3731 for (auto *Param : parameters()) {
3732 if (!Param->isParameterPack()) {
3733 ++MinParamsSoFar;
3734 if (!Param->hasDefaultArg())
3735 NumRequiredArgs = MinParamsSoFar;
3736 }
3737 }
3738 return NumRequiredArgs;
3739}
3740
3743}
3744
3746 return getNumParams() -
3747 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3748}
3749
3751 return getMinRequiredArguments() -
3752 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3753}
3754
3756 return getNumParams() == 1 ||
3757 (getNumParams() > 1 &&
3758 llvm::all_of(llvm::drop_begin(parameters()),
3759 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3760}
3761
3762/// The combination of the extern and inline keywords under MSVC forces
3763/// the function to be required.
3764///
3765/// Note: This function assumes that we will only get called when isInlined()
3766/// would return true for this FunctionDecl.
3768 assert(isInlined() && "expected to get called on an inlined function!");
3769
3770 const ASTContext &Context = getASTContext();
3771 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3772 !hasAttr<DLLExportAttr>())
3773 return false;
3774
3775 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3776 FD = FD->getPreviousDecl())
3777 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3778 return true;
3779
3780 return false;
3781}
3782
3783static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3784 if (Redecl->getStorageClass() != SC_Extern)
3785 return false;
3786
3787 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3788 FD = FD->getPreviousDecl())
3789 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3790 return false;
3791
3792 return true;
3793}
3794
3795static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3796 // Only consider file-scope declarations in this test.
3797 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3798 return false;
3799
3800 // Only consider explicit declarations; the presence of a builtin for a
3801 // libcall shouldn't affect whether a definition is externally visible.
3802 if (Redecl->isImplicit())
3803 return false;
3804
3805 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3806 return true; // Not an inline definition
3807
3808 return false;
3809}
3810
3811/// For a function declaration in C or C++, determine whether this
3812/// declaration causes the definition to be externally visible.
3813///
3814/// For instance, this determines if adding the current declaration to the set
3815/// of redeclarations of the given functions causes
3816/// isInlineDefinitionExternallyVisible to change from false to true.
3818 assert(!doesThisDeclarationHaveABody() &&
3819 "Must have a declaration without a body.");
3820
3821 const ASTContext &Context = getASTContext();
3822
3823 if (Context.getLangOpts().MSVCCompat) {
3824 const FunctionDecl *Definition;
3825 if (hasBody(Definition) && Definition->isInlined() &&
3826 redeclForcesDefMSVC(this))
3827 return true;
3828 }
3829
3830 if (Context.getLangOpts().CPlusPlus)
3831 return false;
3832
3833 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3834 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3835 // an externally visible definition.
3836 //
3837 // FIXME: What happens if gnu_inline gets added on after the first
3838 // declaration?
3840 return false;
3841
3842 const FunctionDecl *Prev = this;
3843 bool FoundBody = false;
3844 while ((Prev = Prev->getPreviousDecl())) {
3845 FoundBody |= Prev->doesThisDeclarationHaveABody();
3846
3847 if (Prev->doesThisDeclarationHaveABody()) {
3848 // If it's not the case that both 'inline' and 'extern' are
3849 // specified on the definition, then it is always externally visible.
3850 if (!Prev->isInlineSpecified() ||
3851 Prev->getStorageClass() != SC_Extern)
3852 return false;
3853 } else if (Prev->isInlineSpecified() &&
3854 Prev->getStorageClass() != SC_Extern) {
3855 return false;
3856 }
3857 }
3858 return FoundBody;
3859 }
3860
3861 // C99 6.7.4p6:
3862 // [...] If all of the file scope declarations for a function in a
3863 // translation unit include the inline function specifier without extern,
3864 // then the definition in that translation unit is an inline definition.
3866 return false;
3867 const FunctionDecl *Prev = this;
3868 bool FoundBody = false;
3869 while ((Prev = Prev->getPreviousDecl())) {
3870 FoundBody |= Prev->doesThisDeclarationHaveABody();
3871 if (RedeclForcesDefC99(Prev))
3872 return false;
3873 }
3874 return FoundBody;
3875}
3876
3878 const TypeSourceInfo *TSI = getTypeSourceInfo();
3879 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3880 : FunctionTypeLoc();
3881}
3882
3885 if (!FTL)
3886 return SourceRange();
3887
3888 // Skip self-referential return types.
3890 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3891 SourceLocation Boundary = getNameInfo().getBeginLoc();
3892 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3893 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3894 return SourceRange();
3895
3896 return RTRange;
3897}
3898
3900 unsigned NP = getNumParams();
3901 SourceLocation EllipsisLoc = getEllipsisLoc();
3902
3903 if (NP == 0 && EllipsisLoc.isInvalid())
3904 return SourceRange();
3905
3907 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3908 SourceLocation End = EllipsisLoc.isValid()
3909 ? EllipsisLoc
3910 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3911
3912 return SourceRange(Begin, End);
3913}
3914
3917 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3918}
3919
3920/// For an inline function definition in C, or for a gnu_inline function
3921/// in C++, determine whether the definition will be externally visible.
3922///
3923/// Inline function definitions are always available for inlining optimizations.
3924/// However, depending on the language dialect, declaration specifiers, and
3925/// attributes, the definition of an inline function may or may not be
3926/// "externally" visible to other translation units in the program.
3927///
3928/// In C99, inline definitions are not externally visible by default. However,
3929/// if even one of the global-scope declarations is marked "extern inline", the
3930/// inline definition becomes externally visible (C99 6.7.4p6).
3931///
3932/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3933/// definition, we use the GNU semantics for inline, which are nearly the
3934/// opposite of C99 semantics. In particular, "inline" by itself will create
3935/// an externally visible symbol, but "extern inline" will not create an
3936/// externally visible symbol.
3939 hasAttr<AliasAttr>()) &&
3940 "Must be a function definition");
3941 assert(isInlined() && "Function must be inline");
3942 ASTContext &Context = getASTContext();
3943
3944 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3945 // Note: If you change the logic here, please change
3946 // doesDeclarationForceExternallyVisibleDefinition as well.
3947 //
3948 // If it's not the case that both 'inline' and 'extern' are
3949 // specified on the definition, then this inline definition is
3950 // externally visible.
3951 if (Context.getLangOpts().CPlusPlus)
3952 return false;
3954 return true;
3955
3956 // If any declaration is 'inline' but not 'extern', then this definition
3957 // is externally visible.
3958 for (auto *Redecl : redecls()) {
3959 if (Redecl->isInlineSpecified() &&
3960 Redecl->getStorageClass() != SC_Extern)
3961 return true;
3962 }
3963
3964 return false;
3965 }
3966
3967 // The rest of this function is C-only.
3968 assert(!Context.getLangOpts().CPlusPlus &&
3969 "should not use C inline rules in C++");
3970
3971 // C99 6.7.4p6:
3972 // [...] If all of the file scope declarations for a function in a
3973 // translation unit include the inline function specifier without extern,
3974 // then the definition in that translation unit is an inline definition.
3975 for (auto *Redecl : redecls()) {
3976 if (RedeclForcesDefC99(Redecl))
3977 return true;
3978 }
3979
3980 // C99 6.7.4p6:
3981 // An inline definition does not provide an external definition for the
3982 // function, and does not forbid an external definition in another
3983 // translation unit.
3984 return false;
3985}
3986
3987/// getOverloadedOperator - Which C++ overloaded operator this
3988/// function represents, if any.
3990 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3992 return OO_None;
3993}
3994
3995/// getLiteralIdentifier - The literal suffix identifier this function
3996/// represents, if any.
4000 return nullptr;
4001}
4002
4004 if (TemplateOrSpecialization.isNull())
4005 return TK_NonTemplate;
4006 if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
4007 if (isa<FunctionDecl>(ND))
4009 assert(isa<FunctionTemplateDecl>(ND) &&
4010 "No other valid types in NamedDecl");
4011 return TK_FunctionTemplate;
4012 }
4013 if (isa<MemberSpecializationInfo *>(TemplateOrSpecialization))
4015 if (isa<FunctionTemplateSpecializationInfo *>(TemplateOrSpecialization))
4017 if (isa<DependentFunctionTemplateSpecializationInfo *>(
4018 TemplateOrSpecialization))
4020
4021 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
4022}
4023
4026 return cast<FunctionDecl>(Info->getInstantiatedFrom());
4027
4028 return nullptr;
4029}
4030
4032 if (auto *MSI =
4033 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4034 return MSI;
4035 if (auto *FTSI = TemplateOrSpecialization
4036 .dyn_cast<FunctionTemplateSpecializationInfo *>())
4037 return FTSI->getMemberSpecializationInfo();
4038 return nullptr;
4039}
4040
4041void
4042FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
4043 FunctionDecl *FD,
4045 assert(TemplateOrSpecialization.isNull() &&
4046 "Member function is already a specialization");
4048 = new (C) MemberSpecializationInfo(FD, TSK);
4049 TemplateOrSpecialization = Info;
4050}
4051
4053 return dyn_cast_if_present<FunctionTemplateDecl>(
4054 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4055}
4056
4058 FunctionTemplateDecl *Template) {
4059 assert(TemplateOrSpecialization.isNull() &&
4060 "Member function is already a specialization");
4061 TemplateOrSpecialization = Template;
4062}
4063
4065 return isa<FunctionTemplateSpecializationInfo *>(TemplateOrSpecialization) ||
4066 isa<DependentFunctionTemplateSpecializationInfo *>(
4067 TemplateOrSpecialization);
4068}
4069
4071 assert(TemplateOrSpecialization.isNull() &&
4072 "Function is already a specialization");
4073 TemplateOrSpecialization = FD;
4074}
4075
4077 return dyn_cast_if_present<FunctionDecl>(
4078 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4079}
4080
4082 // If the function is invalid, it can't be implicitly instantiated.
4083 if (isInvalidDecl())
4084 return false;
4085
4087 case TSK_Undeclared:
4090 return false;
4091
4093 return true;
4094
4096 // Handled below.
4097 break;
4098 }
4099
4100 // Find the actual template from which we will instantiate.
4101 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
4102 bool HasPattern = false;
4103 if (PatternDecl)
4104 HasPattern = PatternDecl->hasBody(PatternDecl);
4105
4106 // C++0x [temp.explicit]p9:
4107 // Except for inline functions, other explicit instantiation declarations
4108 // have the effect of suppressing the implicit instantiation of the entity
4109 // to which they refer.
4110 if (!HasPattern || !PatternDecl)
4111 return true;
4112
4113 return PatternDecl->isInlined();
4114}
4115
4117 // FIXME: Remove this, it's not clear what it means. (Which template
4118 // specialization kind?)
4120}
4121
4124 // If this is a generic lambda call operator specialization, its
4125 // instantiation pattern is always its primary template's pattern
4126 // even if its primary template was instantiated from another
4127 // member template (which happens with nested generic lambdas).
4128 // Since a lambda's call operator's body is transformed eagerly,
4129 // we don't have to go hunting for a prototype definition template
4130 // (i.e. instantiated-from-member-template) to use as an instantiation
4131 // pattern.
4132
4134 dyn_cast<CXXMethodDecl>(this))) {
4135 assert(getPrimaryTemplate() && "not a generic lambda call operator?");
4136 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
4137 }
4138
4139 // Check for a declaration of this function that was instantiated from a
4140 // friend definition.
4141 const FunctionDecl *FD = nullptr;
4142 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
4143 FD = this;
4144
4146 if (ForDefinition &&
4148 return nullptr;
4149 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
4150 }
4151
4152 if (ForDefinition &&
4154 return nullptr;
4155
4156 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
4157 // If we hit a point where the user provided a specialization of this
4158 // template, we're done looking.
4159 while (!ForDefinition || !Primary->isMemberSpecialization()) {
4160 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
4161 if (!NewPrimary)
4162 break;
4163 Primary = NewPrimary;
4164 }
4165
4166 return getDefinitionOrSelf(Primary->getTemplatedDecl());
4167 }
4168
4169 return nullptr;
4170}
4171
4174 = TemplateOrSpecialization
4175 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4176 return Info->getTemplate();
4177 }
4178 return nullptr;
4179}
4180
4183 return TemplateOrSpecialization
4185}
4186
4190 = TemplateOrSpecialization
4191 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4192 return Info->TemplateArguments;
4193 }
4194 return nullptr;
4195}
4196
4200 = TemplateOrSpecialization
4201 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4202 return Info->TemplateArgumentsAsWritten;
4203 }
4205 TemplateOrSpecialization
4206 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>()) {
4207 return Info->TemplateArgumentsAsWritten;
4208 }
4209 return nullptr;
4210}
4211
4212void FunctionDecl::setFunctionTemplateSpecialization(
4213 ASTContext &C, FunctionTemplateDecl *Template,
4214 TemplateArgumentList *TemplateArgs, void *InsertPos,
4216 const TemplateArgumentListInfo *TemplateArgsAsWritten,
4217 SourceLocation PointOfInstantiation) {
4218 assert((TemplateOrSpecialization.isNull() ||
4219 isa<MemberSpecializationInfo *>(TemplateOrSpecialization)) &&
4220 "Member function is already a specialization");
4221 assert(TSK != TSK_Undeclared &&
4222 "Must specify the type of function template specialization");
4223 assert((TemplateOrSpecialization.isNull() ||
4226 "Member specialization must be an explicit specialization");
4229 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
4230 PointOfInstantiation,
4231 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
4232 TemplateOrSpecialization = Info;
4233 Template->addSpecialization(Info, InsertPos);
4234}
4235
4237 ASTContext &Context, const UnresolvedSetImpl &Templates,
4238 const TemplateArgumentListInfo *TemplateArgs) {
4239 assert(TemplateOrSpecialization.isNull());
4242 TemplateArgs);
4243 TemplateOrSpecialization = Info;
4244}
4245
4248 return TemplateOrSpecialization
4250}
4251
4254 ASTContext &Context, const UnresolvedSetImpl &Candidates,
4255 const TemplateArgumentListInfo *TArgs) {
4256 const auto *TArgsWritten =
4257 TArgs ? ASTTemplateArgumentListInfo::Create(Context, *TArgs) : nullptr;
4258 return new (Context.Allocate(
4259 totalSizeToAlloc<FunctionTemplateDecl *>(Candidates.size())))
4260 DependentFunctionTemplateSpecializationInfo(Candidates, TArgsWritten);
4261}
4262
4263DependentFunctionTemplateSpecializationInfo::
4264 DependentFunctionTemplateSpecializationInfo(
4265 const UnresolvedSetImpl &Candidates,
4266 const ASTTemplateArgumentListInfo *TemplateArgsWritten)
4267 : NumCandidates(Candidates.size()),
4268 TemplateArgumentsAsWritten(TemplateArgsWritten) {
4269 std::transform(Candidates.begin(), Candidates.end(),
4270 getTrailingObjects<FunctionTemplateDecl *>(),
4271 [](NamedDecl *ND) {
4272 return cast<FunctionTemplateDecl>(ND->getUnderlyingDecl());
4273 });
4274}
4275
4277 // For a function template specialization, query the specialization
4278 // information object.
4280 TemplateOrSpecialization
4281 .dyn_cast<FunctionTemplateSpecializationInfo *>())
4282 return FTSInfo->getTemplateSpecializationKind();
4283
4284 if (MemberSpecializationInfo *MSInfo =
4285 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4286 return MSInfo->getTemplateSpecializationKind();
4287
4288 // A dependent function template specialization is an explicit specialization,
4289 // except when it's a friend declaration.
4290 if (isa<DependentFunctionTemplateSpecializationInfo *>(
4291 TemplateOrSpecialization) &&
4294
4295 return TSK_Undeclared;
4296}
4297
4300 // This is the same as getTemplateSpecializationKind(), except that for a
4301 // function that is both a function template specialization and a member
4302 // specialization, we prefer the member specialization information. Eg:
4303 //
4304 // template<typename T> struct A {
4305 // template<typename U> void f() {}
4306 // template<> void f<int>() {}
4307 // };
4308 //
4309 // Within the templated CXXRecordDecl, A<T>::f<int> is a dependent function
4310 // template specialization; both getTemplateSpecializationKind() and
4311 // getTemplateSpecializationKindForInstantiation() will return
4312 // TSK_ExplicitSpecialization.
4313 //
4314 // For A<int>::f<int>():
4315 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4316 // * getTemplateSpecializationKindForInstantiation() will return
4317 // TSK_ImplicitInstantiation
4318 //
4319 // This reflects the facts that A<int>::f<int> is an explicit specialization
4320 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4321 // from A::f<int> if a definition is needed.
4323 TemplateOrSpecialization
4324 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4325 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4326 return MSInfo->getTemplateSpecializationKind();
4327 return FTSInfo->getTemplateSpecializationKind();
4328 }
4329
4330 if (MemberSpecializationInfo *MSInfo =
4331 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4332 return MSInfo->getTemplateSpecializationKind();
4333
4334 if (isa<DependentFunctionTemplateSpecializationInfo *>(
4335 TemplateOrSpecialization) &&
4338
4339 return TSK_Undeclared;
4340}
4341
4342void
4344 SourceLocation PointOfInstantiation) {
4346 = TemplateOrSpecialization.dyn_cast<
4348 FTSInfo->setTemplateSpecializationKind(TSK);
4349 if (TSK != TSK_ExplicitSpecialization &&
4350 PointOfInstantiation.isValid() &&
4351 FTSInfo->getPointOfInstantiation().isInvalid()) {
4352 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4354 L->InstantiationRequested(this);
4355 }
4356 } else if (MemberSpecializationInfo *MSInfo
4357 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4358 MSInfo->setTemplateSpecializationKind(TSK);
4359 if (TSK != TSK_ExplicitSpecialization &&
4360 PointOfInstantiation.isValid() &&
4361 MSInfo->getPointOfInstantiation().isInvalid()) {
4362 MSInfo->setPointOfInstantiation(PointOfInstantiation);
4364 L->InstantiationRequested(this);
4365 }
4366 } else
4367 llvm_unreachable("Function cannot have a template specialization kind");
4368}
4369
4372 = TemplateOrSpecialization.dyn_cast<
4374 return FTSInfo->getPointOfInstantiation();
4375 if (MemberSpecializationInfo *MSInfo =
4376 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4377 return MSInfo->getPointOfInstantiation();
4378
4379 return SourceLocation();
4380}
4381
4383 if (Decl::isOutOfLine())
4384 return true;
4385
4386 // If this function was instantiated from a member function of a
4387 // class template, check whether that member function was defined out-of-line.
4389 const FunctionDecl *Definition;
4390 if (FD->hasBody(Definition))
4391 return Definition->isOutOfLine();
4392 }
4393
4394 // If this function was instantiated from a function template,
4395 // check whether that function template was defined out-of-line.
4396 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4397 const FunctionDecl *Definition;
4398 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4399 return Definition->isOutOfLine();
4400 }
4401
4402 return false;
4403}
4404
4406 return SourceRange(getOuterLocStart(), EndRangeLoc);
4407}
4408
4410 IdentifierInfo *FnInfo = getIdentifier();
4411
4412 if (!FnInfo)
4413 return 0;
4414
4415 // Builtin handling.
4416 switch (getBuiltinID()) {
4417 case Builtin::BI__builtin_memset:
4418 case Builtin::BI__builtin___memset_chk:
4419 case Builtin::BImemset:
4420 return Builtin::BImemset;
4421
4422 case Builtin::BI__builtin_memcpy:
4423 case Builtin::BI__builtin___memcpy_chk:
4424 case Builtin::BImemcpy:
4425 return Builtin::BImemcpy;
4426
4427 case Builtin::BI__builtin_mempcpy:
4428 case Builtin::BI__builtin___mempcpy_chk:
4429 case Builtin::BImempcpy:
4430 return Builtin::BImempcpy;
4431
4432 case Builtin::BI__builtin_memmove:
4433 case Builtin::BI__builtin___memmove_chk:
4434 case Builtin::BImemmove:
4435 return Builtin::BImemmove;
4436
4437 case Builtin::BIstrlcpy:
4438 case Builtin::BI__builtin___strlcpy_chk:
4439 return Builtin::BIstrlcpy;
4440
4441 case Builtin::BIstrlcat:
4442 case Builtin::BI__builtin___strlcat_chk:
4443 return Builtin::BIstrlcat;
4444
4445 case Builtin::BI__builtin_memcmp:
4446 case Builtin::BImemcmp:
4447 return Builtin::BImemcmp;
4448
4449 case Builtin::BI__builtin_bcmp:
4450 case Builtin::BIbcmp:
4451 return Builtin::BIbcmp;
4452
4453 case Builtin::BI__builtin_strncpy:
4454 case Builtin::BI__builtin___strncpy_chk:
4455 case Builtin::BIstrncpy:
4456 return Builtin::BIstrncpy;
4457
4458 case Builtin::BI__builtin_strncmp:
4459 case Builtin::BIstrncmp:
4460 return Builtin::BIstrncmp;
4461
4462 case Builtin::BI__builtin_strncasecmp:
4463 case Builtin::BIstrncasecmp:
4464 return Builtin::BIstrncasecmp;
4465
4466 case Builtin::BI__builtin_strncat:
4467 case Builtin::BI__builtin___strncat_chk:
4468 case Builtin::BIstrncat:
4469 return Builtin::BIstrncat;
4470
4471 case Builtin::BI__builtin_strndup:
4472 case Builtin::BIstrndup:
4473 return Builtin::BIstrndup;
4474
4475 case Builtin::BI__builtin_strlen:
4476 case Builtin::BIstrlen:
4477 return Builtin::BIstrlen;
4478
4479 case Builtin::BI__builtin_bzero:
4480 case Builtin::BIbzero:
4481 return Builtin::BIbzero;
4482
4483 case Builtin::BI__builtin_bcopy:
4484 case Builtin::BIbcopy:
4485 return Builtin::BIbcopy;
4486
4487 case Builtin::BIfree:
4488 return Builtin::BIfree;
4489
4490 default:
4491 if (isExternC()) {
4492 if (FnInfo->isStr("memset"))
4493 return Builtin::BImemset;
4494 if (FnInfo->isStr("memcpy"))
4495 return Builtin::BImemcpy;
4496 if (FnInfo->isStr("mempcpy"))
4497 return Builtin::BImempcpy;
4498 if (FnInfo->isStr("memmove"))
4499 return Builtin::BImemmove;
4500 if (FnInfo->isStr("memcmp"))
4501 return Builtin::BImemcmp;
4502 if (FnInfo->isStr("bcmp"))
4503 return Builtin::BIbcmp;
4504 if (FnInfo->isStr("strncpy"))
4505 return Builtin::BIstrncpy;
4506 if (FnInfo->isStr("strncmp"))
4507 return Builtin::BIstrncmp;
4508 if (FnInfo->isStr("strncasecmp"))
4509 return Builtin::BIstrncasecmp;
4510 if (FnInfo->isStr("strncat"))
4511 return Builtin::BIstrncat;
4512 if (FnInfo->isStr("strndup"))
4513 return Builtin::BIstrndup;
4514 if (FnInfo->isStr("strlen"))
4515 return Builtin::BIstrlen;
4516 if (FnInfo->isStr("bzero"))
4517 return Builtin::BIbzero;
4518 if (FnInfo->isStr("bcopy"))
4519 return Builtin::BIbcopy;
4520 } else if (isInStdNamespace()) {
4521 if (FnInfo->isStr("free"))
4522 return Builtin::BIfree;
4523 }
4524 break;
4525 }
4526 return 0;
4527}
4528
4530 assert(hasODRHash());
4531 return ODRHash;
4532}
4533
4535 if (hasODRHash())
4536 return ODRHash;
4537
4538 if (auto *FT = getInstantiatedFromMemberFunction()) {
4539 setHasODRHash(true);
4540 ODRHash = FT->getODRHash();
4541 return ODRHash;
4542 }
4543
4544 class ODRHash Hash;
4545 Hash.AddFunctionDecl(this);
4546 setHasODRHash(true);
4547 ODRHash = Hash.CalculateHash();
4548 return ODRHash;
4549}
4550
4551//===----------------------------------------------------------------------===//
4552// FieldDecl Implementation
4553//===----------------------------------------------------------------------===//
4554
4556 SourceLocation StartLoc, SourceLocation IdLoc,
4557 const IdentifierInfo *Id, QualType T,
4558 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4559 InClassInitStyle InitStyle) {
4560 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4561 BW, Mutable, InitStyle);
4562}
4563
4565 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4566 SourceLocation(), nullptr, QualType(), nullptr,
4567 nullptr, false, ICIS_NoInit);
4568}
4569
4571 if (!isImplicit() || getDeclName())
4572 return false;
4573
4574 if (const auto *Record = getType()->getAs<RecordType>())
4575 return Record->getDecl()->isAnonymousStructOrUnion();
4576
4577 return false;
4578}
4579
4581 if (!hasInClassInitializer())
4582 return nullptr;
4583
4584 LazyDeclStmtPtr InitPtr = BitField ? InitAndBitWidth->Init : Init;
4585 return cast_if_present<Expr>(
4586 InitPtr.isOffset() ? InitPtr.get(getASTContext().getExternalSource())
4587 : InitPtr.get(nullptr));
4588}
4589
4591 setLazyInClassInitializer(LazyDeclStmtPtr(NewInit));
4592}
4593
4594void FieldDecl::setLazyInClassInitializer(LazyDeclStmtPtr NewInit) {
4596 if (BitField)
4597 InitAndBitWidth->Init = NewInit;
4598 else
4599 Init = NewInit;
4600}
4601
4602unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4603 assert(isBitField() && "not a bitfield");
4604 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4605}
4606
4609 getBitWidthValue(Ctx) == 0;
4610}
4611
4612bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4613 if (isZeroLengthBitField(Ctx))
4614 return true;
4615
4616 // C++2a [intro.object]p7:
4617 // An object has nonzero size if it
4618 // -- is not a potentially-overlapping subobject, or
4619 if (!hasAttr<NoUniqueAddressAttr>())
4620 return false;
4621
4622 // -- is not of class type, or
4623 const auto *RT = getType()->getAs<RecordType>();
4624 if (!RT)
4625 return false;
4626 const RecordDecl *RD = RT->getDecl()->getDefinition();
4627 if (!RD) {
4628 assert(isInvalidDecl() && "valid field has incomplete type");
4629 return false;
4630 }
4631
4632 // -- [has] virtual member functions or virtual base classes, or
4633 // -- has subobjects of nonzero size or bit-fields of nonzero length
4634 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4635 if (!CXXRD->isEmpty())
4636 return false;
4637
4638 // Otherwise, [...] the circumstances under which the object has zero size
4639 // are implementation-defined.
4640 if (!Ctx.getTargetInfo().getCXXABI().isMicrosoft())
4641 return true;
4642
4643 // MS ABI: has nonzero size if it is a class type with class type fields,
4644 // whether or not they have nonzero size
4645 return !llvm::any_of(CXXRD->fields(), [](const FieldDecl *Field) {
4646 return Field->getType()->getAs<RecordType>();
4647 });
4648}
4649
4651 return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl();
4652}
4653
4655 const FieldDecl *Canonical = getCanonicalDecl();
4656 if (Canonical != this)
4657 return Canonical->getFieldIndex();
4658
4659 if (CachedFieldIndex) return CachedFieldIndex - 1;
4660
4661 unsigned Index = 0;
4662 const RecordDecl *RD = getParent()->getDefinition();
4663 assert(RD && "requested index for field of struct with no definition");
4664
4665 for (auto *Field : RD->fields()) {
4666 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4667 assert(Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 &&
4668 "overflow in field numbering");
4669 ++Index;
4670 }
4671
4672 assert(CachedFieldIndex && "failed to find field in parent");
4673 return CachedFieldIndex - 1;
4674}
4675
4677 const Expr *FinalExpr = getInClassInitializer();
4678 if (!FinalExpr)
4679 FinalExpr = getBitWidth();
4680 if (FinalExpr)
4681 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4683}
4684
4686 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4687 "capturing type in non-lambda or captured record.");
4688 assert(StorageKind == ISK_NoInit && !BitField &&
4689 "bit-field or field with default member initializer cannot capture "
4690 "VLA type");
4691 StorageKind = ISK_CapturedVLAType;
4692 CapturedVLAType = VLAType;
4693}
4694
4695void FieldDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4696 // Print unnamed members using name of their type.
4698 this->getType().print(OS, Policy);
4699 return;
4700 }
4701 // Otherwise, do the normal printing.
4702 DeclaratorDecl::printName(OS, Policy);
4703}
4704
4706 const auto *CAT = getType()->getAs<CountAttributedType>();
4707 if (!CAT)
4708 return nullptr;
4709
4710 const auto *CountDRE = cast<DeclRefExpr>(CAT->getCountExpr());
4711 const auto *CountDecl = CountDRE->getDecl();
4712 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(CountDecl))
4713 CountDecl = IFD->getAnonField();
4714
4715 return dyn_cast<FieldDecl>(CountDecl);
4716}
4717
4718//===----------------------------------------------------------------------===//
4719// TagDecl Implementation
4720//===----------------------------------------------------------------------===//
4721
4723 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4724 SourceLocation StartL)
4725 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4726 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4727 assert((DK != Enum || TK == TagTypeKind::Enum) &&
4728 "EnumDecl not matched with TagTypeKind::Enum");
4729 setPreviousDecl(PrevDecl);
4730 setTagKind(TK);
4731 setCompleteDefinition(false);
4732 setBeingDefined(false);
4734 setFreeStanding(false);
4736 TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4737}
4738
4740 return getTemplateOrInnerLocStart(this);
4741}
4742
4744 SourceLocation RBraceLoc = BraceRange.getEnd();
4745 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4746 return SourceRange(getOuterLocStart(), E);
4747}
4748
4750
4752 TypedefNameDeclOrQualifier = TDD;
4753 if (const Type *T = getTypeForDecl()) {
4754 (void)T;
4755 assert(T->isLinkageValid());
4756 }
4757 assert(isLinkageValid());
4758}
4759
4761 setBeingDefined(true);
4762
4763 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4764 struct CXXRecordDecl::DefinitionData *Data =
4765 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4766 for (auto *I : redecls())
4767 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4768 }
4769}
4770
4772 assert((!isa<CXXRecordDecl>(this) ||
4773 cast<CXXRecordDecl>(this)->hasDefinition()) &&
4774 "definition completed but not started");
4775
4777 setBeingDefined(false);
4778
4780 L->CompletedTagDefinition(this);
4781}
4782
4785 return const_cast<TagDecl *>(this);
4786
4787 // If it's possible for us to have an out-of-date definition, check now.
4788 if (mayHaveOutOfDateDef()) {
4789 if (IdentifierInfo *II = getIdentifier()) {
4790 if (II->isOutOfDate()) {
4791 updateOutOfDate(*II);
4792 }
4793 }
4794 }
4795
4796 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4797 return CXXRD->getDefinition();
4798
4799 for (auto *R : redecls())
4800 if (R->isCompleteDefinition())
4801 return R;
4802
4803 return nullptr;
4804}
4805
4807 if (QualifierLoc) {
4808 // Make sure the extended qualifier info is allocated.
4809 if (!hasExtInfo())
4810 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4811 // Set qualifier info.
4812 getExtInfo()->QualifierLoc = QualifierLoc;
4813 } else {
4814 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4815 if (hasExtInfo()) {
4816 if (getExtInfo()->NumTemplParamLists == 0) {
4817 getASTContext().Deallocate(getExtInfo());
4818 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4819 }
4820 else
4821 getExtInfo()->QualifierLoc = QualifierLoc;
4822 }
4823 }
4824}
4825
4826void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4828 // If the name is supposed to have an identifier but does not have one, then
4829 // the tag is anonymous and we should print it differently.
4830 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4831 // If the caller wanted to print a qualified name, they've already printed
4832 // the scope. And if the caller doesn't want that, the scope information
4833 // is already printed as part of the type.
4834 PrintingPolicy Copy(Policy);
4835 Copy.SuppressScope = true;
4837 return;
4838 }
4839 // Otherwise, do the normal printing.
4840 Name.print(OS, Policy);
4841}
4842
4845 assert(!TPLists.empty());
4846 // Make sure the extended decl info is allocated.
4847 if (!hasExtInfo())
4848 // Allocate external info struct.
4849 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4850 // Set the template parameter lists info.
4851 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4852}
4853
4854//===----------------------------------------------------------------------===//
4855// EnumDecl Implementation
4856//===----------------------------------------------------------------------===//
4857
4858EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4859 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4860 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4861 : TagDecl(Enum, TagTypeKind::Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4862 assert(Scoped || !ScopedUsingClassTag);
4863 IntegerType = nullptr;
4864 setNumPositiveBits(0);
4865 setNumNegativeBits(0);
4866 setScoped(Scoped);
4867 setScopedUsingClassTag(ScopedUsingClassTag);
4868 setFixed(Fixed);
4869 setHasODRHash(false);
4870 ODRHash = 0;
4871}
4872
4873void EnumDecl::anchor() {}
4874
4876 SourceLocation StartLoc, SourceLocation IdLoc,
4878 EnumDecl *PrevDecl, bool IsScoped,
4879 bool IsScopedUsingClassTag, bool IsFixed) {
4880 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4881 IsScoped, IsScopedUsingClassTag, IsFixed);
4882 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4883 C.getTypeDeclType(Enum, PrevDecl);
4884 return Enum;
4885}
4886
4888 EnumDecl *Enum =
4889 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4890 nullptr, nullptr, false, false, false);
4891 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4892 return Enum;
4893}
4894
4896 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4897 return TI->getTypeLoc().getSourceRange();
4898 return SourceRange();
4899}
4900
4902 QualType NewPromotionType,
4903 unsigned NumPositiveBits,
4904 unsigned NumNegativeBits) {
4905 assert(!isCompleteDefinition() && "Cannot redefine enums!");
4906 if (!IntegerType)
4907 IntegerType = NewType.getTypePtr();
4908 PromotionType = NewPromotionType;
4909 setNumPositiveBits(NumPositiveBits);
4910 setNumNegativeBits(NumNegativeBits);
4912}
4913
4915 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4916 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4917 return true;
4918}
4919
4921 return isClosed() && hasAttr<FlagEnumAttr>();
4922}
4923
4925 return isClosed() && !hasAttr<FlagEnumAttr>();
4926}
4927
4930 return MSI->getTemplateSpecializationKind();
4931
4932 return TSK_Undeclared;
4933}
4934
4936 SourceLocation PointOfInstantiation) {
4938 assert(MSI && "Not an instantiated member enumeration?");
4940 if (TSK != TSK_ExplicitSpecialization &&
4941 PointOfInstantiation.isValid() &&
4943 MSI->setPointOfInstantiation(PointOfInstantiation);
4944}
4945
4948 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4950 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4951 ED = NewED;
4952 return getDefinitionOrSelf(ED);
4953 }
4954 }
4955
4957 "couldn't find pattern for enum instantiation");
4958 return nullptr;
4959}
4960
4962 if (SpecializationInfo)
4963 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4964
4965 return nullptr;
4966}
4967
4968void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4970 assert(!SpecializationInfo && "Member enum is already a specialization");
4971 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4972}
4973
4975 if (hasODRHash())
4976 return ODRHash;
4977
4978 class ODRHash Hash;
4979 Hash.AddEnumDecl(this);
4980 setHasODRHash(true);
4981 ODRHash = Hash.CalculateHash();
4982 return ODRHash;
4983}
4984
4986 auto Res = TagDecl::getSourceRange();
4987 // Set end-point to enum-base, e.g. enum foo : ^bar
4988 if (auto *TSI = getIntegerTypeSourceInfo()) {
4989 // TagDecl doesn't know about the enum base.
4990 if (!getBraceRange().getEnd().isValid())
4991 Res.setEnd(TSI->getTypeLoc().getEndLoc());
4992 }
4993 return Res;
4994}
4995
4996void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
4997 unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType());
4998 unsigned NumNegativeBits = getNumNegativeBits();
4999 unsigned NumPositiveBits = getNumPositiveBits();
5000
5001 if (NumNegativeBits) {
5002 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
5003 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
5004 Min = -Max;
5005 } else {
5006 Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
5007 Min = llvm::APInt::getZero(Bitwidth);
5008 }
5009}
5010
5011//===----------------------------------------------------------------------===//
5012// RecordDecl Implementation
5013//===----------------------------------------------------------------------===//
5014
5016 DeclContext *DC, SourceLocation StartLoc,
5018 RecordDecl *PrevDecl)
5019 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
5020 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
5023 setHasObjectMember(false);
5024 setHasVolatileMember(false);
5034 setIsRandomized(false);
5035 setODRHash(0);
5036}
5037
5039 SourceLocation StartLoc, SourceLocation IdLoc,
5040 IdentifierInfo *Id, RecordDecl* PrevDecl) {
5041 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
5042 StartLoc, IdLoc, Id, PrevDecl);
5043 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5044
5045 C.getTypeDeclType(R, PrevDecl);
5046 return R;
5047}
5048
5050 GlobalDeclID ID) {
5051 RecordDecl *R = new (C, ID)
5053 SourceLocation(), nullptr, nullptr);
5054 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5055 return R;
5056}
5057
5059 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
5060 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
5061}
5062
5064 if (auto RD = dyn_cast<CXXRecordDecl>(this))
5065 return RD->isLambda();
5066 return false;
5067}
5068
5070 return hasAttr<CapturedRecordAttr>();
5071}
5072
5074 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
5075}
5076
5078 if (isUnion())
5079 return true;
5080
5081 if (const RecordDecl *Def = getDefinition()) {
5082 for (const FieldDecl *FD : Def->fields()) {
5083 const RecordType *RT = FD->getType()->getAs<RecordType>();
5084 if (RT && RT->getDecl()->isOrContainsUnion())
5085 return true;
5086 }
5087 }
5088
5089 return false;
5090}
5091
5094 LoadFieldsFromExternalStorage();
5095 // This is necessary for correctness for C++ with modules.
5096 // FIXME: Come up with a test case that breaks without definition.
5097 if (RecordDecl *D = getDefinition(); D && D != this)
5098 return D->field_begin();
5100}
5101
5102/// completeDefinition - Notes that the definition of this type is now
5103/// complete.
5105 assert(!isCompleteDefinition() && "Cannot redefine record!");
5107
5108 ASTContext &Ctx = getASTContext();
5109
5110 // Layouts are dumped when computed, so if we are dumping for all complete
5111 // types, we need to force usage to get types that wouldn't be used elsewhere.
5112 //
5113 // If the type is dependent, then we can't compute its layout because there
5114 // is no way for us to know the size or alignment of a dependent type. Also
5115 // ignore declarations marked as invalid since 'getASTRecordLayout()' asserts
5116 // on that.
5117 if (Ctx.getLangOpts().DumpRecordLayoutsComplete && !isDependentType() &&
5118 !isInvalidDecl())
5119 (void)Ctx.getASTRecordLayout(this);
5120}
5121
5122/// isMsStruct - Get whether or not this record uses ms_struct layout.
5123/// This which can be turned on with an attribute, pragma, or the
5124/// -mms-bitfields command-line option.
5126 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
5127}
5128
5130 std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
5131 LastDecl->NextInContextAndBits.setPointer(nullptr);
5132 setIsRandomized(true);
5133}
5134
5135void RecordDecl::LoadFieldsFromExternalStorage() const {
5137 assert(hasExternalLexicalStorage() && Source && "No external storage?");
5138
5139 // Notify that we have a RecordDecl doing some initialization.
5140 ExternalASTSource::Deserializing TheFields(Source);
5141
5144 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
5146 }, Decls);
5147
5148#ifndef NDEBUG
5149 // Check that all decls we got were FieldDecls.
5150 for (unsigned i=0, e=Decls.size(); i != e; ++i)
5151 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
5152#endif
5153
5154 if (Decls.empty())
5155 return;
5156
5157 auto [ExternalFirst, ExternalLast] =
5158 BuildDeclChain(Decls,
5159 /*FieldsAlreadyLoaded=*/false);
5160 ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
5161 FirstDecl = ExternalFirst;
5162 if (!LastDecl)
5163 LastDecl = ExternalLast;
5164}
5165
5166bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
5167 ASTContext &Context = getASTContext();
5168 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
5169 (SanitizerKind::Address | SanitizerKind::KernelAddress);
5170 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
5171 return false;
5172 const auto &NoSanitizeList = Context.getNoSanitizeList();
5173 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
5174 // We may be able to relax some of these requirements.
5175 int ReasonToReject = -1;
5176 if (!CXXRD || CXXRD->isExternCContext())
5177 ReasonToReject = 0; // is not C++.
5178 else if (CXXRD->hasAttr<PackedAttr>())
5179 ReasonToReject = 1; // is packed.
5180 else if (CXXRD->isUnion())
5181 ReasonToReject = 2; // is a union.
5182 else if (CXXRD->isTriviallyCopyable())
5183 ReasonToReject = 3; // is trivially copyable.
5184 else if (CXXRD->hasTrivialDestructor())
5185 ReasonToReject = 4; // has trivial destructor.
5186 else if (CXXRD->isStandardLayout())
5187 ReasonToReject = 5; // is standard layout.
5188 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
5189 "field-padding"))
5190 ReasonToReject = 6; // is in an excluded file.
5192 EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
5193 ReasonToReject = 7; // The type is excluded.
5194
5195 if (EmitRemark) {
5196 if (ReasonToReject >= 0)
5197 Context.getDiagnostics().Report(
5198 getLocation(),
5199 diag::remark_sanitize_address_insert_extra_padding_rejected)
5200 << getQualifiedNameAsString() << ReasonToReject;
5201 else
5202 Context.getDiagnostics().Report(
5203 getLocation(),
5204 diag::remark_sanitize_address_insert_extra_padding_accepted)
5206 }
5207 return ReasonToReject < 0;
5208}
5209
5211 for (const auto *I : fields()) {
5212 if (I->getIdentifier())
5213 return I;
5214
5215 if (const auto *RT = I->getType()->getAs<RecordType>())
5216 if (const FieldDecl *NamedDataMember =
5217 RT->getDecl()->findFirstNamedDataMember())
5218 return NamedDataMember;
5219 }
5220
5221 // We didn't find a named data member.
5222 return nullptr;
5223}
5224
5226 if (hasODRHash())
5227 return RecordDeclBits.ODRHash;
5228
5229 // Only calculate hash on first call of getODRHash per record.
5230 ODRHash Hash;
5231 Hash.AddRecordDecl(this);
5232 // For RecordDecl the ODRHash is stored in the remaining 26
5233 // bit of RecordDeclBits, adjust the hash to accomodate.
5234 setODRHash(Hash.CalculateHash() >> 6);
5235 return RecordDeclBits.ODRHash;
5236}
5237
5238//===----------------------------------------------------------------------===//
5239// BlockDecl Implementation
5240//===----------------------------------------------------------------------===//
5241
5243 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
5244 setIsVariadic(false);
5245 setCapturesCXXThis(false);
5248 setDoesNotEscape(false);
5249 setCanAvoidCopyToHeap(false);
5250}
5251
5253 assert(!ParamInfo && "Already has param info!");
5254
5255 // Zero params -> null pointer.
5256 if (!NewParamInfo.empty()) {
5257 NumParams = NewParamInfo.size();
5258 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
5259 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
5260 }
5261}
5262
5264 bool CapturesCXXThis) {
5265 this->setCapturesCXXThis(CapturesCXXThis);
5266 this->NumCaptures = Captures.size();
5267
5268 if (Captures.empty()) {
5269 this->Captures = nullptr;
5270 return;
5271 }
5272
5273 this->Captures = Captures.copy(Context).data();
5274}
5275
5276bool BlockDecl::capturesVariable(const VarDecl *variable) const {
5277 for (const auto &I : captures())
5278 // Only auto vars can be captured, so no redeclaration worries.
5279 if (I.getVariable() == variable)
5280 return true;
5281
5282 return false;
5283}
5284
5286 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
5287}
5288
5289//===----------------------------------------------------------------------===//
5290// Other Decl Allocation/Deallocation Method Implementations
5291//===----------------------------------------------------------------------===//
5292
5293void TranslationUnitDecl::anchor() {}
5294
5296 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
5297}
5298
5300 AnonymousNamespace = D;
5301
5302 if (ASTMutationListener *Listener = Ctx.getASTMutationListener())
5303 Listener->AddedAnonymousNamespace(this, D);
5304}
5305
5306void PragmaCommentDecl::anchor() {}
5307
5310 SourceLocation CommentLoc,
5311 PragmaMSCommentKind CommentKind,
5312 StringRef Arg) {
5313 PragmaCommentDecl *PCD =
5314 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
5315 PragmaCommentDecl(DC, CommentLoc, CommentKind);
5316 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
5317 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
5318 return PCD;
5319}
5320
5323 unsigned ArgSize) {
5324 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
5326}
5327
5328void PragmaDetectMismatchDecl::anchor() {}
5329
5332 SourceLocation Loc, StringRef Name,
5333 StringRef Value) {
5334 size_t ValueStart = Name.size() + 1;
5336 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
5337 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
5338 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
5339 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
5340 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
5341 Value.size());
5342 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
5343 return PDMD;
5344}
5345
5348 unsigned NameValueSize) {
5349 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
5351}
5352
5353void ExternCContextDecl::anchor() {}
5354
5356 TranslationUnitDecl *DC) {
5357 return new (C, DC) ExternCContextDecl(DC);
5358}
5359
5360void LabelDecl::anchor() {}
5361
5363 SourceLocation IdentL, IdentifierInfo *II) {
5364 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
5365}
5366
5368 SourceLocation IdentL, IdentifierInfo *II,
5369 SourceLocation GnuLabelL) {
5370 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
5371 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
5372}
5373
5375 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
5376 SourceLocation());
5377}
5378
5379void LabelDecl::setMSAsmLabel(StringRef Name) {
5380char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
5381 memcpy(Buffer, Name.data(), Name.size());
5382 Buffer[Name.size()] = '\0';
5383 MSAsmName = Buffer;
5384}
5385
5386void ValueDecl::anchor() {}
5387
5388bool ValueDecl::isWeak() const {
5389 auto *MostRecent = getMostRecentDecl();
5390 return MostRecent->hasAttr<WeakAttr>() ||
5391 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
5392}
5393
5395 if (auto *Var = llvm::dyn_cast<VarDecl>(this))
5396 return Var->isInitCapture();
5397 return false;
5398}
5399
5400void ImplicitParamDecl::anchor() {}
5401
5403 SourceLocation IdLoc,
5405 ImplicitParamKind ParamKind) {
5406 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
5407}
5408
5410 ImplicitParamKind ParamKind) {
5411 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
5412}
5413
5415 GlobalDeclID ID) {
5417}
5418
5421 const DeclarationNameInfo &NameInfo, QualType T,
5422 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
5423 bool isInlineSpecified, bool hasWrittenPrototype,
5424 ConstexprSpecKind ConstexprKind,
5425 Expr *TrailingRequiresClause) {
5426 FunctionDecl *New = new (C, DC) FunctionDecl(
5427 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
5428 isInlineSpecified, ConstexprKind, TrailingRequiresClause);
5430 return New;
5431}
5432
5434 return new (C, ID) FunctionDecl(
5436 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
5437}
5438
5440 return new (C, DC) BlockDecl(DC, L);
5441}
5442
5444 return new (C, ID) BlockDecl(nullptr, SourceLocation());
5445}
5446
5447CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5448 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5449 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5450
5452 unsigned NumParams) {
5453 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5454 CapturedDecl(DC, NumParams);
5455}
5456
5458 unsigned NumParams) {
5459 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5460 CapturedDecl(nullptr, NumParams);
5461}
5462
5463Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
5464void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5465
5466bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5467void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5468
5471 QualType T, Expr *E, const llvm::APSInt &V)
5472 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt *)E) {
5473 setInitVal(C, V);
5474}
5475
5479 Expr *E, const llvm::APSInt &V) {
5480 return new (C, CD) EnumConstantDecl(C, CD, L, Id, T, E, V);
5481}
5482
5484 GlobalDeclID ID) {
5485 return new (C, ID) EnumConstantDecl(C, nullptr, SourceLocation(), nullptr,
5486 QualType(), nullptr, llvm::APSInt());
5487}
5488
5489void IndirectFieldDecl::anchor() {}
5490
5491IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5493 QualType T,
5495 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5496 ChainingSize(CH.size()) {
5497 // In C++, indirect field declarations conflict with tag declarations in the
5498 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5499 if (C.getLangOpts().CPlusPlus)
5501}
5502
5505 const IdentifierInfo *Id, QualType T,
5507 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5508}
5509
5511 GlobalDeclID ID) {
5512 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
5513 DeclarationName(), QualType(), {});
5514}
5515
5518 if (Init)
5519 End = Init->getEndLoc();
5520 return SourceRange(getLocation(), End);
5521}
5522
5523void TypeDecl::anchor() {}
5524
5526 SourceLocation StartLoc, SourceLocation IdLoc,
5527 const IdentifierInfo *Id,
5528 TypeSourceInfo *TInfo) {
5529 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5530}
5531
5532void TypedefNameDecl::anchor() {}
5533
5535 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5536 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5537 auto *ThisTypedef = this;
5538 if (AnyRedecl && OwningTypedef) {
5539 OwningTypedef = OwningTypedef->getCanonicalDecl();
5540 ThisTypedef = ThisTypedef->getCanonicalDecl();
5541 }
5542 if (OwningTypedef == ThisTypedef)
5543 return TT->getDecl();
5544 }
5545
5546 return nullptr;
5547}
5548
5549bool TypedefNameDecl::isTransparentTagSlow() const {
5550 auto determineIsTransparent = [&]() {
5551 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5552 if (auto *TD = TT->getDecl()) {
5553 if (TD->getName() != getName())
5554 return false;
5555 SourceLocation TTLoc = getLocation();
5556 SourceLocation TDLoc = TD->getLocation();
5557 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5558 return false;
5560 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5561 }
5562 }
5563 return false;
5564 };
5565
5566 bool isTransparent = determineIsTransparent();
5567 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5568 return isTransparent;
5569}
5570
5572 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5573 nullptr, nullptr);
5574}
5575
5577 SourceLocation StartLoc,
5578 SourceLocation IdLoc,
5579 const IdentifierInfo *Id,
5580 TypeSourceInfo *TInfo) {
5581 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5582}
5583
5585 GlobalDeclID ID) {
5586 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5587 SourceLocation(), nullptr, nullptr);
5588}
5589
5591 SourceLocation RangeEnd = getLocation();
5592 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5593 if (typeIsPostfix(TInfo->getType()))
5594 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5595 }
5596 return SourceRange(getBeginLoc(), RangeEnd);
5597}
5598
5600 SourceLocation RangeEnd = getBeginLoc();
5601 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5602 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5603 return SourceRange(getBeginLoc(), RangeEnd);
5604}
5605
5606void FileScopeAsmDecl::anchor() {}
5607
5609 StringLiteral *Str,
5610 SourceLocation AsmLoc,
5611 SourceLocation RParenLoc) {
5612 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5613}
5614
5616 GlobalDeclID ID) {
5617 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5618 SourceLocation());
5619}
5620
5621void TopLevelStmtDecl::anchor() {}
5622
5624 assert(C.getLangOpts().IncrementalExtensions &&
5625 "Must be used only in incremental mode");
5626
5627 SourceLocation Loc = Statement ? Statement->getBeginLoc() : SourceLocation();
5628 DeclContext *DC = C.getTranslationUnitDecl();
5629
5630 return new (C, DC) TopLevelStmtDecl(DC, Loc, Statement);
5631}
5632
5634 GlobalDeclID ID) {
5635 return new (C, ID)
5636 TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr);
5637}
5638
5640 return SourceRange(getLocation(), Statement->getEndLoc());
5641}
5642
5644 assert(S);
5645 Statement = S;
5646 setLocation(Statement->getBeginLoc());
5647}
5648
5649void EmptyDecl::anchor() {}
5650
5652 return new (C, DC) EmptyDecl(DC, L);
5653}
5654
5656 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5657}
5658
5659HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer,
5661 SourceLocation IDLoc, SourceLocation LBrace)
5662 : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)),
5663 DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc),
5664 IsCBuffer(CBuffer) {}
5665
5667 DeclContext *LexicalParent, bool CBuffer,
5669 SourceLocation IDLoc,
5670 SourceLocation LBrace) {
5671 // For hlsl like this
5672 // cbuffer A {
5673 // cbuffer B {
5674 // }
5675 // }
5676 // compiler should treat it as
5677 // cbuffer A {
5678 // }
5679 // cbuffer B {
5680 // }
5681 // FIXME: support nested buffers if required for back-compat.
5682 DeclContext *DC = LexicalParent;
5684 new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace);
5685 return Result;
5686}
5687
5689 GlobalDeclID ID) {
5690 return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr,
5692}
5693
5694//===----------------------------------------------------------------------===//
5695// ImportDecl Implementation
5696//===----------------------------------------------------------------------===//
5697
5698/// Retrieve the number of module identifiers needed to name the given
5699/// module.
5700static unsigned getNumModuleIdentifiers(Module *Mod) {
5701 unsigned Result = 1;
5702 while (Mod->Parent) {
5703 Mod = Mod->Parent;
5704 ++Result;
5705 }
5706 return Result;
5707}
5708
5709ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5710 Module *Imported,
5711 ArrayRef<SourceLocation> IdentifierLocs)
5712 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5713 NextLocalImportAndComplete(nullptr, true) {
5714 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5715 auto *StoredLocs = getTrailingObjects<SourceLocation>();
5716 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5717 StoredLocs);
5718}
5719
5720ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5721 Module *Imported, SourceLocation EndLoc)
5722 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5723 NextLocalImportAndComplete(nullptr, false) {
5724 *getTrailingObjects<SourceLocation>() = EndLoc;
5725}
5726
5728 SourceLocation StartLoc, Module *Imported,
5729 ArrayRef<SourceLocation> IdentifierLocs) {
5730 return new (C, DC,
5731 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5732 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5733}
5734
5736 SourceLocation StartLoc,
5737 Module *Imported,
5738 SourceLocation EndLoc) {
5739 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5740 ImportDecl(DC, StartLoc, Imported, EndLoc);
5741 Import->setImplicit();
5742 return Import;
5743}
5744
5746 unsigned NumLocations) {
5747 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5749}
5750
5752 if (!isImportComplete())
5753 return {};
5754
5755 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5756 return llvm::ArrayRef(StoredLocs,
5758}
5759
5761 if (!isImportComplete())
5762 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5763
5764 return SourceRange(getLocation(), getIdentifierLocs().back());
5765}
5766
5767//===----------------------------------------------------------------------===//
5768// ExportDecl Implementation
5769//===----------------------------------------------------------------------===//
5770
5771void ExportDecl::anchor() {}
5772
5774 SourceLocation ExportLoc) {
5775 return new (C, DC) ExportDecl(DC, ExportLoc);
5776}
5777
5779 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5780}
5781
5783 bool IncludeLocallyStreaming) {
5784 if (IncludeLocallyStreaming)
5785 if (FD->hasAttr<ArmLocallyStreamingAttr>())
5786 return true;
5787
5788 if (const Type *Ty = FD->getType().getTypePtrOrNull())
5789 if (const auto *FPT = Ty->getAs<FunctionProtoType>())
5790 if (FPT->getAArch64SMEAttributes() &
5792 return true;
5793
5794 return false;
5795}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3443
NodeId Parent
Definition: ASTDiff.cpp:191
This file provides some common utility functions for processing Lambda related AST Constructs.
StringRef P
static char ID
Definition: Arena.cpp:183
#define SM(sm)
Definition: Cuda.cpp:84
Defines enum values for all the target-independent builtin functions.
const Decl * D
Expr * E
enum clang::sema::@1718::IndirectLocalPathEntry::EntryKind Kind
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the C++ template declaration subclasses.
static bool isFirstInExternCContext(T *D)
Definition: Decl.cpp:574
static bool isRedeclarableImpl(Redeclarable< T > *)
Definition: Decl.cpp:1827
static bool isDeclExternC(const T &D)
Definition: Decl.cpp:2218
static bool hasExplicitVisibilityAlready(LVComputationKind computation)
Does this computation kind permit us to consider additional visibility settings from attributes and t...
Definition: Decl.cpp:159
static bool RedeclForcesDefC99(const FunctionDecl *Redecl)
Definition: Decl.cpp:3795
static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D)
Definition: Decl.cpp:1184
static bool isRedeclarable(Decl::Kind K)
Definition: Decl.cpp:1831
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl)
Definition: Decl.cpp:3783
static bool usesTypeVisibility(const NamedDecl *D)
Is the given declaration a "type" or a "value" for the purposes of visibility computation?
Definition: Decl.cpp:180
static std::optional< Visibility > getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind)
Return the explicit visibility of the given declaration.
Definition: Decl.cpp:222
static LanguageLinkage getDeclLanguageLinkage(const T &D)
Definition: Decl.cpp:2191
static LVComputationKind withExplicitVisibilityAlready(LVComputationKind Kind)
Given an LVComputationKind, return one of the same type/value sort that records that it already has e...
Definition: Decl.cpp:166
static std::enable_if_t<!std::is_base_of_v< RedeclarableTemplateDecl, T >, bool > isExplicitMemberSpecialization(const T *D)
Does the given declaration have member specialization information, and if so, is it an explicit speci...
Definition: Decl.cpp:190
static unsigned getNumModuleIdentifiers(Module *Mod)
Retrieve the number of module identifiers needed to name the given module.
Definition: Decl.cpp:5700
static bool isSingleLineLanguageLinkage(const Decl &D)
Definition: Decl.cpp:579
static bool useInlineVisibilityHidden(const NamedDecl *D)
Definition: Decl.cpp:546
static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, const FunctionTemplateSpecializationInfo *specInfo)
Definition: Decl.cpp:373
static bool hasDirectVisibilityAttribute(const NamedDecl *D, LVComputationKind computation)
Does the given declaration have a direct visibility attribute that would match the given rules?
Definition: Decl.cpp:419
static DeclT * getDefinitionOrSelf(DeclT *D)
Definition: Decl.cpp:2667
static Visibility getVisibilityFromAttr(const T *attr)
Given a visibility attribute, return the explicit visibility associated with it.
Definition: Decl.cpp:208
static const Decl * getOutermostFuncOrBlockContext(const Decl *D)
Definition: Decl.cpp:302
static bool typeIsPostfix(QualType QT)
Definition: Decl.cpp:2045
static LinkageInfo getExternalLinkageFor(const NamedDecl *D)
Definition: Decl.cpp:586
static StorageClass getStorageClass(const Decl *D)
Definition: Decl.cpp:590
static std::optional< Visibility > getExplicitVisibilityAux(const NamedDecl *ND, NamedDecl::ExplicitVisibilityKind kind, bool IsMostRecent)
Definition: Decl.cpp:1225
static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl)
Definition: Decl.cpp:1971
static bool isNamed(const NamedDecl *ND, const char(&Str)[Len])
Definition: Decl.cpp:3270
static std::optional< Visibility > getExplicitVisibility(const NamedDecl *D, LVComputationKind kind)
Definition: Decl.cpp:171
static bool hasDefinition(const ObjCObjectPointerType *ObjPtr)
Defines the clang::Expr interface and subclasses for C++ expressions.
Defines the clang::IdentifierInfo, clang::IdentifierTable, and clang::Selector interfaces.
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified.
Defines the clang::LangOptions interface.
llvm::MachO::Record Record
Definition: MachO.h:31
Defines the clang::Module class, which describes a module in the source code.
This file contains the declaration of the ODRHash class, which calculates a hash based on AST nodes,...
Implements a partial diagnostic that can be emitted anwyhere in a DiagnosticBuilder stream.
static std::string getName(const CallEvent &Call)
Defines the clang::SanitizerKind enum.
uint32_t Id
Definition: SemaARM.cpp:1134
SourceLocation Loc
Definition: SemaObjC.cpp:759
Defines the clang::SourceLocation class and associated facilities.
Defines the SourceManager interface.
Defines various enumerations that describe declaration and type specifiers.
Defines the TargetCXXABI class, which abstracts details of the C++ ABI that we're targeting.
Defines the clang::TypeLoc interface and its subclasses.
C Language Family Type Representation.
static const TypeInfo & getInfo(unsigned id)
Definition: Types.cpp:44
SourceLocation Begin
Defines the clang::Visibility enumeration and various utility functions.
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition: APValue.h:122
bool isAbsent() const
Definition: APValue.h:439
bool needsCleanup() const
Returns whether the object performed allocations.
Definition: APValue.cpp:431
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
SourceManager & getSourceManager()
Definition: ASTContext.h:741
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2915
unsigned getIntWidth(QualType T) const
TemplateOrSpecializationInfo getTemplateOrSpecializationInfo(const VarDecl *Var)
void setTemplateOrSpecializationInfo(VarDecl *Inst, TemplateOrSpecializationInfo TSI)
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl.
ASTMutationListener * getASTMutationListener() const
Retrieve a pointer to the AST mutation listener associated with this AST context, if any.
Definition: ASTContext.h:1289
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2732
CanQualType VoidPtrTy
Definition: ASTContext.h:1187
void Deallocate(void *Ptr) const
Definition: ASTContext.h:760
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:682
const LangOptions & getLangOpts() const
Definition: ASTContext.h:834
void setParameterIndex(const ParmVarDecl *D, unsigned index)
Used by ParmVarDecl to store on the side the index of the parameter when it exceeds the size of the n...
Decl * getPrimaryMergedDecl(Decl *D)
Definition: ASTContext.h:1097
const NoSanitizeList & getNoSanitizeList() const
Definition: ASTContext.h:844
GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:733
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
void * Allocate(size_t Size, unsigned Align=8) const
Definition: ASTContext.h:754
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Note that the static data member Inst is an instantiation of the static data member template Tmpl of ...
DiagnosticsEngine & getDiagnostics() const
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
void addDestruction(T *Ptr) const
If T isn't trivially destructible, calls AddDeallocation to register it for destruction.
Definition: ASTContext.h:3261
ExternalASTSource * getExternalSource() const
Retrieve a pointer to the external AST source associated with this AST context, if any.
Definition: ASTContext.h:1274
NestedNameSpecifier * getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const
Retrieves the "canonical" nested name specifier for a given nested name specifier.
unsigned getParameterIndex(const ParmVarDecl *D) const
Used by ParmVarDecl to retrieve on the side the index of the parameter when it exceeds the size of th...
An abstract interface that should be implemented by listeners that want to be notified when an AST en...
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
CharUnits getSize() const
getSize - Get the record size in characters.
Definition: RecordLayout.h:193
unsigned getFieldCount() const
getFieldCount - Get the number of fields in the layout.
Definition: RecordLayout.h:196
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:200
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:4474
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
Definition: Decl.cpp:5242
void setParams(ArrayRef< ParmVarDecl * > NewParamInfo)
Definition: Decl.cpp:5252
void setDoesNotEscape(bool B=true)
Definition: Decl.h:4626
void setCapturesCXXThis(bool B=true)
Definition: Decl.h:4607
void setCanAvoidCopyToHeap(bool B=true)
Definition: Decl.h:4631
void setIsConversionFromLambda(bool val=true)
Definition: Decl.h:4621
void setBlockMissingReturnType(bool val=true)
Definition: Decl.h:4613
ArrayRef< Capture > captures() const
Definition: Decl.h:4601
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:5285
static BlockDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5443
void setIsVariadic(bool value)
Definition: Decl.h:4550
bool capturesVariable(const VarDecl *var) const
Definition: Decl.cpp:5276
void setCaptures(ASTContext &Context, ArrayRef< Capture > Captures, bool CapturesCXXThis)
Definition: Decl.cpp:5263
static BlockDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L)
Definition: Decl.cpp:5439
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc",...
Definition: Builtins.h:158
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
CXXRecordDecl * getInstantiatedFromMemberClass() const
If this record is an instantiation of a member class, retrieves the member class from which it was in...
Definition: DeclCXX.cpp:1970
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4673
void setBody(Stmt *B)
Definition: Decl.cpp:5464
static CapturedDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID, unsigned NumParams)
Definition: Decl.cpp:5457
bool isNothrow() const
Definition: Decl.cpp:5466
void setNothrow(bool Nothrow=true)
Definition: Decl.cpp:5467
static CapturedDecl * Create(ASTContext &C, DeclContext *DC, unsigned NumParams)
Definition: Decl.cpp:5451
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:5463
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
Declaration of a class template.
CXXRecordDecl * getTemplatedDecl() const
Get the underlying class declarations of the template.
Represents a class template specialization, which refers to a class template with a given set of temp...
ClassTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration,...
bool isZeroSize() const
Return true if the size is zero.
Definition: Type.h:3685
Represents a sugar type with __counted_by or __sized_by annotations, including their _or_null variant...
Definition: Type.h:3306
A POD class for pairing a NamedDecl* with an access specifier.
decl_iterator - Iterates through the declarations stored within this context.
Definition: DeclBase.h:2306
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2369
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1435
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:2089
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC.
Definition: DeclBase.h:2218
FunctionDeclBitfields FunctionDeclBits
Definition: DeclBase.h:2024
bool isFileContext() const
Definition: DeclBase.h:2160
static std::pair< Decl *, Decl * > BuildDeclChain(ArrayRef< Decl * > Decls, bool FieldsAlreadyLoaded)
Build up a chain of declarations.
Definition: DeclBase.cpp:1525
TagDeclBitfields TagDeclBits
Definition: DeclBase.h:2020
bool isExternCXXContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1400
bool isNamespace() const
Definition: DeclBase.h:2178
bool isTranslationUnit() const
Definition: DeclBase.h:2165
bool isRecord() const
Definition: DeclBase.h:2169
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1990
RecordDeclBitfields RecordDeclBits
Definition: DeclBase.h:2022
Decl * FirstDecl
FirstDecl - The first declaration stored within this declaration context.
Definition: DeclBase.h:2059
bool hasExternalLexicalStorage() const
Whether this DeclContext has external storage containing additional declarations that are lexically i...
Definition: DeclBase.h:2664
Decl * LastDecl
LastDecl - The last declaration stored within this declaration context.
Definition: DeclBase.h:2065
bool isInlineNamespace() const
Definition: DeclBase.cpp:1313
bool isFunctionOrMethod() const
Definition: DeclBase.h:2141
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1385
Decl::Kind getDeclKind() const
Definition: DeclBase.h:2082
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
Decl * getPreviousDecl()
Retrieve the previous declaration that declares the same entity as this declaration,...
Definition: DeclBase.h:1050
bool isInStdNamespace() const
Definition: DeclBase.cpp:422
FriendObjectKind getFriendObjectKind() const
Determines whether this declaration is the object of a friend declaration and, if so,...
Definition: DeclBase.h:1215
T * getAttr() const
Definition: DeclBase.h:576
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:520
void addAttr(Attr *A)
Definition: DeclBase.cpp:1010
bool isImplicit() const
isImplicit - Indicates whether the declaration was implicitly generated by the implementation.
Definition: DeclBase.h:596
bool isInNamedModule() const
Whether this declaration comes from a named module.
Definition: DeclBase.cpp:1164
virtual bool isOutOfLine() const
Determine whether this declaration is declared out of line (outside its semantic context).
Definition: Decl.cpp:99
bool isWeakImported() const
Determine whether this is a weak-imported symbol.
Definition: DeclBase.cpp:840
ModuleOwnershipKind getModuleOwnershipKind() const
Get the kind of module ownership for this declaration.
Definition: DeclBase.h:865
ASTMutationListener * getASTMutationListener() const
Definition: DeclBase.cpp:530
bool hasCachedLinkage() const
Definition: DeclBase.h:424
Kind
Lists the kind of concrete classes of Decl.
Definition: DeclBase.h:89
@ FOK_None
Not a friend object.
Definition: DeclBase.h:1206
bool isCanonicalDecl() const
Whether this particular Decl is a canonical one.
Definition: DeclBase.h:973
llvm::PointerIntPair< Decl *, 3, ModuleOwnershipKind > NextInContextAndBits
The next declaration within the same lexical DeclContext.
Definition: DeclBase.h:249
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:835
FunctionDecl * getAsFunction() LLVM_READONLY
Returns the function itself, or the templated function if this is a function template.
Definition: DeclBase.cpp:246
bool isFromASTFile() const
Determine whether this declaration came from an AST file (such as a precompiled header or module) rat...
Definition: DeclBase.h:786
Linkage getCachedLinkage() const
Definition: DeclBase.h:416
bool isTemplateParameter() const
isTemplateParameter - Determines whether this declaration is a template parameter.
Definition: DeclBase.h:2766
bool isInvalidDecl() const
Definition: DeclBase.h:591
bool hasDefiningAttr() const
Return true if this declaration has an attribute which acts as definition of the entity,...
Definition: DeclBase.cpp:607
SourceLocation getLocation() const
Definition: DeclBase.h:442
IdentifierNamespace
IdentifierNamespace - The different namespaces in which declarations may appear.
Definition: DeclBase.h:115
@ IDNS_Tag
Tags, declared with 'struct foo;' and referenced with 'struct foo'.
Definition: DeclBase.h:125
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition: DeclBase.h:1038
void setLocation(SourceLocation L)
Definition: DeclBase.h:443
DeclContext * getDeclContext()
Definition: DeclBase.h:451
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:412
void setCachedLinkage(Linkage L) const
Definition: DeclBase.h:420
friend class RecordDecl
Definition: DeclBase.h:330
void updateOutOfDate(IdentifierInfo &II) const
Update a potentially out-of-date declaration.
Definition: DeclBase.cpp:60
Module * getOwningModuleForLinkage() const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1624
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC).
Definition: DeclBase.h:907
bool hasAttr() const
Definition: DeclBase.h:580
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:967
@ VisibleWhenImported
This declaration has an owning module, and is visible when that module is imported.
@ Unowned
This declaration is not owned by a module.
@ ReachableWhenImported
This declaration has an owning module, and is visible to lookups that occurs within that module.
@ ModulePrivate
This declaration has an owning module, but is only visible to lookups that occur within that module.
@ Visible
This declaration has an owning module, but is globally visible (typically because its owning module i...
Kind getKind() const
Definition: DeclBase.h:445
const LangOptions & getLangOpts() const LLVM_READONLY
Helper to get the language options from the ASTContext.
Definition: DeclBase.cpp:526
The name of a declaration.
void print(raw_ostream &OS, const PrintingPolicy &Policy) const
const IdentifierInfo * getCXXLiteralIdentifier() const
If this name is the name of a literal operator, retrieve the identifier associated with it.
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
Represents a ValueDecl that came out of a declarator.
Definition: Decl.h:735
SourceLocation getTypeSpecEndLoc() const
Definition: Decl.cpp:1983
SourceLocation getInnerLocStart() const
Return start of source range ignoring outer template declarations.
Definition: Decl.h:777
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations.
Definition: Decl.cpp:2039
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:2079
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1977
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:786
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)
Definition: Decl.cpp:1989
void setTrailingRequiresClause(Expr *TrailingRequiresClause)
Definition: Decl.cpp:2008
Expr * getTrailingRequiresClause()
Get the constraint-expression introduced by the trailing requires-clause in the function/member decla...
Definition: Decl.h:810
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:764
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList * > TPLists)
Definition: Decl.cpp:2023
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:694
static DependentFunctionTemplateSpecializationInfo * Create(ASTContext &Context, const UnresolvedSetImpl &Candidates, const TemplateArgumentListInfo *TemplateArgs)
Definition: Decl.cpp:4253
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1493
Represents an empty-declaration.
Definition: Decl.h:4912
static EmptyDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L)
Definition: Decl.cpp:5651
static EmptyDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5655
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:3277
EnumConstantDecl(const ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V)
Definition: Decl.cpp:5469
static EnumConstantDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5483
void setInitVal(const ASTContext &C, const llvm::APSInt &V)
Definition: Decl.h:3302
static EnumConstantDecl * Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V)
Definition: Decl.cpp:5476
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:5516
Represents an enum.
Definition: Decl.h:3847
MemberSpecializationInfo * getMemberSpecializationInfo() const
If this enumeration is an instantiation of a member enumeration of a class template specialization,...
Definition: Decl.h:4106
unsigned getNumNegativeBits() const
Returns the width in bits required to store all the negative enumerators of this enum.
Definition: Decl.h:4044
unsigned getODRHash()
Definition: Decl.cpp:4974
void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
For an enumeration member that was instantiated from a member enumeration of a templated class,...
Definition: Decl.cpp:4935
static EnumDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool IsScoped, bool IsScopedUsingClassTag, bool IsFixed)
Definition: Decl.cpp:4875
TypeSourceInfo * getIntegerTypeSourceInfo() const
Return the type source info for the underlying integer type, if no type source info exists,...
Definition: Decl.h:4023
static EnumDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:4887
bool isClosedFlag() const
Returns true if this enum is annotated with flag_enum and isn't annotated with enum_extensibility(ope...
Definition: Decl.cpp:4920
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:4895
SourceRange getSourceRange() const override LLVM_READONLY
Overrides to provide correct range when there's an enum-base specifier with forward declarations.
Definition: Decl.cpp:4985
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:4007
EnumDecl * getInstantiatedFromMemberEnum() const
Returns the enumeration (declared within the template) from which this enumeration type was instantia...
Definition: Decl.cpp:4961
unsigned getNumPositiveBits() const
Returns the width in bits required to store all the non-negative enumerators of this enum.
Definition: Decl.h:4033
TemplateSpecializationKind getTemplateSpecializationKind() const
If this enumeration is a member of a specialization of a templated class, determine what kind of temp...
Definition: Decl.cpp:4928
bool isClosed() const
Returns true if this enum is either annotated with enum_extensibility(closed) or isn't annotated with...
Definition: Decl.cpp:4914
EnumDecl * getTemplateInstantiationPattern() const
Retrieve the enum definition from which this enumeration could be instantiated, if it is an instantia...
Definition: Decl.cpp:4946
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4924
void getValueRange(llvm::APInt &Max, llvm::APInt &Min) const
Calculates the [Min,Max) values the enum can store based on the NumPositiveBits and NumNegativeBits.
Definition: Decl.cpp:4996
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums.
Definition: Type.h:6098
Represents a standard C++ module export declaration.
Definition: Decl.h:4865
static ExportDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation ExportLoc)
Definition: Decl.cpp:5773
static ExportDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5778
This represents one expression.
Definition: Expr.h:110
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition: Expr.h:175
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
QualType getType() const
Definition: Expr.h:142
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:226
static ExternCContextDecl * Create(const ASTContext &C, TranslationUnitDecl *TU)
Definition: Decl.cpp:5355
RAII class for safely pairing a StartedDeserializing call with FinishedDeserializing.
Abstract interface for external sources of AST nodes.
virtual void FindExternalLexicalDecls(const DeclContext *DC, llvm::function_ref< bool(Decl::Kind)> IsKindWeWant, SmallVectorImpl< Decl * > &Result)
Finds all declarations lexically contained within the given DeclContext, after applying an optional f...
Represents a member of a struct/union/class.
Definition: Decl.h:3033
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set.
Definition: Decl.cpp:4580
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:3124
bool hasInClassInitializer() const
Determine whether this member has a C++11 default member initializer.
Definition: Decl.h:3194
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:4654
LazyDeclStmtPtr Init
Definition: Decl.h:3083
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:4570
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4676
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren't really bit-fields at all and instead act as a...
Definition: Decl.cpp:4607
static FieldDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:4564
unsigned getBitWidthValue(const ASTContext &Ctx) const
Computes the bit width of this field, if this is a bit field.
Definition: Decl.cpp:4602
void setInClassInitializer(Expr *NewInit)
Set the C++11 in-class initializer for this member.
Definition: Decl.cpp:4590
const RecordDecl * getParent() const
Returns the parent of this field declaration, which is the struct in which this field is defined.
Definition: Decl.h:3250
bool isZeroSize(const ASTContext &Ctx) const
Determine if this field is a subobject of zero size, that is, either a zero-length bit-field or a fie...
Definition: Decl.cpp:4612
InitAndBitWidthStorage * InitAndBitWidth
Definition: Decl.h:3087
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:4555
FieldDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this field.
Definition: Decl.h:3261
static bool classofKind(Kind K)
Definition: Decl.h:3266
bool isUnnamedBitField() const
Determines whether this is an unnamed bitfield.
Definition: Decl.h:3127
Expr * getBitWidth() const
Returns the expression that represents the bit width, if this field is a bit field.
Definition: Decl.h:3137
void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override
Pretty-print the unqualified name of this declaration.
Definition: Decl.cpp:4695
const FieldDecl * findCountedByField() const
Find the FieldDecl specified in a FAM's "counted_by" attribute.
Definition: Decl.cpp:4705
bool isPotentiallyOverlapping() const
Determine if this field is of potentially-overlapping class type, that is, subobject with the [[no_un...
Definition: Decl.cpp:4650
void setCapturedVLAType(const VariableArrayType *VLAType)
Set the captured variable length array type for this field.
Definition: Decl.cpp:4685
const VariableArrayType * CapturedVLAType
Definition: Decl.h:3089
static FileScopeAsmDecl * Create(ASTContext &C, DeclContext *DC, StringLiteral *Str, SourceLocation AsmLoc, SourceLocation RParenLoc)
Definition: Decl.cpp:5608
static FileScopeAsmDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5615
Stashed information about a defaulted/deleted function body.
Definition: Decl.h:1963
static DefaultedOrDeletedFunctionInfo * Create(ASTContext &Context, ArrayRef< DeclAccessPair > Lookups, StringLiteral *DeletedMessage=nullptr)
Definition: Decl.cpp:3103
void setDeletedMessage(StringLiteral *Message)
Definition: Decl.cpp:3146
Represents a function declaration or definition.
Definition: Decl.h:1935
unsigned getMemoryFunctionKind() const
Identify a memory copying or setting function.
Definition: Decl.cpp:4409
bool isTargetClonesMultiVersion() const
True if this function is a multiversioned dispatch function as a part of the target-clones functional...
Definition: Decl.cpp:3600
bool isMultiVersion() const
True if this function is considered a multiversioned function.
Definition: Decl.h:2565
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2672
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen.
Definition: Decl.cpp:3174
unsigned getMinRequiredArguments() const
Returns the minimum number of arguments needed to call this function.
Definition: Decl.cpp:3723
bool isFunctionTemplateSpecialization() const
Determine whether this function is a function template specialization.
Definition: Decl.cpp:4064
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:3609
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template)
Definition: Decl.cpp:4057
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:4052
void setIsPureVirtual(bool P=true)
Definition: Decl.cpp:3262
bool isImmediateFunction() const
Definition: Decl.cpp:3295
void setDefaultedOrDeletedInfo(DefaultedOrDeletedFunctionInfo *Info)
Definition: Decl.cpp:3124
SourceLocation getEllipsisLoc() const
Returns the location of the ellipsis of a variadic function.
Definition: Decl.h:2158
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type.
Definition: Decl.cpp:3883
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:3480
static FunctionDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5433
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition: Decl.cpp:3638
SourceLocation getPointOfInstantiation() const
Retrieve the (first) point of instantiation of a function template specialization or a member of a cl...
Definition: Decl.cpp:4370
bool isMemberLikeConstrainedFriend() const
Determine whether a function is a friend function that cannot be redeclared outside of its class,...
Definition: Decl.cpp:3542
bool hasCXXExplicitFunctionObjectParameter() const
Definition: Decl.cpp:3741
bool isInlined() const
Determine whether this function should be inlined, because it is either marked "inline" or "constexpr...
Definition: Decl.h:2796
bool UsesFPIntrin() const
Determine whether the function was declared in source context that requires constrained FP intrinsics...
Definition: Decl.h:2784
void setHasWrittenPrototype(bool P=true)
State that this function has a written prototype.
Definition: Decl.h:2381
bool isNoReturn() const
Determines whether this function is known to be 'noreturn', through an attribute on its declaration o...
Definition: Decl.cpp:3531
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2649
bool isCPUSpecificMultiVersion() const
True if this function is a multiversioned processor specific function as a part of the cpu_specific/c...
Definition: Decl.cpp:3582
FunctionDecl * getTemplateInstantiationPattern(bool ForDefinition=true) const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition: Decl.cpp:4123
bool isMSExternInline() const
The combination of the extern and inline keywords under MSVC forces the function to be required.
Definition: Decl.cpp:3767
unsigned getMinRequiredExplicitArguments() const
Returns the minimum number of non-object arguments needed to call this function.
Definition: Decl.cpp:3750
bool BodyContainsImmediateEscalatingExpressions() const
Definition: Decl.h:2418
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:3494
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:4172
bool hasWrittenPrototype() const
Whether this function has a written prototype.
Definition: Decl.h:2376
MemberSpecializationInfo * getMemberSpecializationInfo() const
If this function is an instantiation of a member function of a class template specialization,...
Definition: Decl.cpp:4031
FunctionTemplateSpecializationInfo * getTemplateSpecializationInfo() const
If this function is actually a function template specialization, retrieve information about this func...
Definition: Decl.cpp:4182
FunctionDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:3623
FunctionTypeLoc getFunctionTypeLoc() const
Find the source location information for how the type of this function was written.
Definition: Decl.cpp:3877
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:3096
bool doesThisDeclarationHaveABody() const
Returns whether this specific declaration of the function has a body.
Definition: Decl.h:2261
bool isConstexprSpecified() const
Definition: Decl.h:2407
DependentFunctionTemplateSpecializationInfo * getDependentSpecializationInfo() const
Definition: Decl.cpp:4247
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:4188
SourceRange getExceptionSpecSourceRange() const
Attempt to compute an informative source range covering the function exception specification,...
Definition: Decl.cpp:3915
bool hasBody() const override
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: Decl.h:2188
bool isMSVCRTEntryPoint() const
Determines whether this function is a MSVCRT user defined entry point.
Definition: Decl.cpp:3320
unsigned getODRHash()
Returns ODRHash of the function.
Definition: Decl.cpp:4534
TemplateSpecializationKind getTemplateSpecializationKindForInstantiation() const
Determine the kind of template specialization this function represents for the purpose of template in...
Definition: Decl.cpp:4299
bool isTemplateInstantiation() const
Determines if the given function was instantiated from a function template.
Definition: Decl.cpp:4116
unsigned getNumNonObjectParams() const
Definition: Decl.cpp:3745
TemplatedKind
The kind of templated function a FunctionDecl can be.
Definition: Decl.h:1940
@ TK_MemberSpecialization
Definition: Decl.h:1947
@ TK_DependentNonTemplate
Definition: Decl.h:1956
@ TK_FunctionTemplateSpecialization
Definition: Decl.h:1951
@ TK_DependentFunctionTemplateSpecialization
Definition: Decl.h:1954
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:2763
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function.
Definition: Decl.cpp:4382
bool isInlineBuiltinDeclaration() const
Determine if this function provides an inline implementation of a builtin.
Definition: Decl.cpp:3455
bool FriendConstraintRefersToEnclosingTemplate() const
Definition: Decl.h:2583
TemplatedKind getTemplatedKind() const
What kind of templated function this is.
Definition: Decl.cpp:4003
void setInstantiatedFromDecl(FunctionDecl *FD)
Specify that this function declaration was instantiated from a FunctionDecl FD.
Definition: Decl.cpp:4070
bool isDeletedAsWritten() const
Definition: Decl.h:2472
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:3347
void setDependentTemplateSpecialization(ASTContext &Context, const UnresolvedSetImpl &Templates, const TemplateArgumentListInfo *TemplateArgs)
Specifies that this function declaration is actually a dependent function template specialization.
Definition: Decl.cpp:4236
bool isInExternCContext() const
Determines whether this function's context is, or is nested within, a C++ extern "C" linkage spec.
Definition: Decl.cpp:3502
FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin, bool isInlineSpecified, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause=nullptr)
Definition: Decl.cpp:3044
bool isImplicitlyInstantiable() const
Determines whether this function is a function template specialization or a member of a class templat...
Definition: Decl.cpp:4081
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:3498
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.h:2235
bool isDefined() const
Definition: Decl.h:2211
LazyDeclStmtPtr Body
The body of the function.
Definition: Decl.h:2001
bool isImmediateEscalating() const
Definition: Decl.cpp:3275
DefaultedOrDeletedFunctionInfo * DefaultedOrDeletedInfo
Information about a future defaulted function definition.
Definition: Decl.h:2003
bool isInExternCXXContext() const
Determines whether this function's context is, or is nested within, a C++ extern "C++" linkage spec.
Definition: Decl.cpp:3508
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program.
Definition: Decl.cpp:3313
void setImplicitlyInline(bool I=true)
Flag that this function is implicitly inline.
Definition: Decl.h:2791
bool isTargetVersionMultiVersion() const
True if this function is a multiversioned dispatch function as a part of the target-version functiona...
Definition: Decl.cpp:3604
bool isReplaceableGlobalAllocationFunction(std::optional< unsigned > *AlignmentParam=nullptr, bool *IsNothrow=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:3372
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin=false, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=ConstexprSpecKind::Unspecified, Expr *TrailingRequiresClause=nullptr)
Definition: Decl.h:2124
bool isThisDeclarationInstantiatedFromAFriendDefinition() const
Determine whether this specific declaration of the function is a friend declaration that was instanti...
Definition: Decl.cpp:3187
bool isCPUDispatchMultiVersion() const
True if this function is a multiversioned dispatch function as a part of the cpu_specific/cpu_dispatc...
Definition: Decl.cpp:3578
bool isDefaulted() const
Whether this function is defaulted.
Definition: Decl.h:2313
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4405
FunctionDecl * getInstantiatedFromDecl() const
Definition: Decl.cpp:4076
void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Determine what kind of template instantiation this function represents.
Definition: Decl.cpp:4343
const IdentifierInfo * getLiteralIdentifier() const
getLiteralIdentifier - The literal suffix identifier this function represents, if any.
Definition: Decl.cpp:3997
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any.
Definition: Decl.cpp:3989
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template instantiation this function represents.
Definition: Decl.cpp:4276
bool doesDeclarationForceExternallyVisibleDefinition() const
For a function declaration in C or C++, determine whether this declaration causes the definition to b...
Definition: Decl.cpp:3817
bool isConsteval() const
Definition: Decl.h:2410
bool isTargetMultiVersion() const
True if this function is a multiversioned dispatch function as a part of the target functionality.
Definition: Decl.cpp:3586
void setBody(Stmt *B)
Definition: Decl.cpp:3255
bool isGlobal() const
Determines whether this is a global function.
Definition: Decl.cpp:3512
bool hasOneParamOrDefaultArgs() const
Determine whether this function has a single parameter, or multiple parameters where all but the firs...
Definition: Decl.cpp:3755
void setDeletedAsWritten(bool D=true, StringLiteral *Message=nullptr)
Definition: Decl.cpp:3133
bool isTargetMultiVersionDefault() const
True if this function is the default version of a multiversioned dispatch function as a part of the t...
Definition: Decl.cpp:3591
FunctionDecl * getInstantiatedFromMemberFunction() const
If this function is an instantiation of a member function of a class template specialization,...
Definition: Decl.cpp:4024
bool isInlineDefinitionExternallyVisible() const
For an inline function definition in C, or for a gnu_inline function in C++, determine whether the de...
Definition: Decl.cpp:3937
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3702
DeclarationNameInfo getNameInfo() const
Definition: Decl.h:2146
bool hasBody(const FunctionDecl *&Definition) const
Returns true if the function has a body.
Definition: Decl.cpp:3163
SourceRange getParametersSourceRange() const
Attempt to compute an informative source range covering the function parameters, including the ellips...
Definition: Decl.cpp:3899
bool isInlineSpecified() const
Determine whether the "inline" keyword was specified for this function.
Definition: Decl.h:2774
MultiVersionKind getMultiVersionKind() const
Gets the kind of multiversioning attribute this declaration has.
Definition: Decl.cpp:3564
DefaultedOrDeletedFunctionInfo * getDefalutedOrDeletedInfo() const
Definition: Decl.cpp:3158
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:3088
bool willHaveBody() const
True if this function will eventually have a body, once it's fully parsed.
Definition: Decl.h:2561
const ASTTemplateArgumentListInfo * getTemplateSpecializationArgsAsWritten() const
Retrieve the template argument list as written in the sources, if any.
Definition: Decl.cpp:4198
Represents a prototype with parameter type info, e.g.
Definition: Type.h:5102
unsigned getNumParams() const
Definition: Type.h:5355
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:5479
Declaration of a template function.
Definition: DeclTemplate.h:959
void addSpecialization(FunctionTemplateSpecializationInfo *Info, void *InsertPos)
Add a specialization of this function template.
FunctionTemplateDecl * getInstantiatedFromMemberTemplate() const
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:472
TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:486
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:527
static FunctionTemplateSpecializationInfo * Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template, TemplateSpecializationKind TSK, TemplateArgumentList *TemplateArgs, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation POI, MemberSpecializationInfo *MSInfo)
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration,...
Definition: DeclTemplate.h:541
Wrapper for source info for functions.
Definition: TypeLoc.h:1459
SourceRange getExceptionSpecRange() const
Definition: TypeLoc.h:1511
TypeLoc getReturnLoc() const
Definition: TypeLoc.h:1540
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:4321
@ SME_PStateSMEnabledMask
Definition: Type.h:4587
HLSLBufferDecl - Represent a cbuffer or tbuffer declaration.
Definition: Decl.h:4927
static HLSLBufferDecl * Create(ASTContext &C, DeclContext *LexicalParent, bool CBuffer, SourceLocation KwLoc, IdentifierInfo *ID, SourceLocation IDLoc, SourceLocation LBrace)
Definition: Decl.cpp:5666
static HLSLBufferDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5688
One of these records is kept for each identifier that is lexed.
ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const
Determine whether this is a name reserved for the implementation (C99 7.1.3, C++ [lib....
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition: Decl.cpp:5402
static ImplicitParamDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5414
Describes a module import declaration, which makes the contents of the named module visible in the cu...
Definition: Decl.h:4786
static ImportDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef< SourceLocation > IdentifierLocs)
Create a new module import declaration.
Definition: Decl.cpp:5727
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:5760
static ImportDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID, unsigned NumLocations)
Create a new, deserialized module import declaration.
Definition: Decl.cpp:5745
ArrayRef< SourceLocation > getIdentifierLocs() const
Retrieves the locations of each of the identifiers that make up the complete module name in the impor...
Definition: Decl.cpp:5751
Module * getImportedModule() const
Retrieve the module that was imported by the import declaration.
Definition: Decl.h:4844
static ImportDecl * CreateImplicit(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc)
Create a new module import declaration for an implicitly-generated import.
Definition: Decl.cpp:5735
Represents a field injected from an anonymous union/struct into the parent scope.
Definition: Decl.h:3321
static bool classofKind(Kind K)
Definition: Decl.h:3366
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, const IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl * > CH)
Definition: Decl.cpp:5504
static IndirectFieldDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5510
Represents the declaration of a label.
Definition: Decl.h:503
void setMSAsmLabel(StringRef Name)
Definition: Decl.cpp:5379
static LabelDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II)
Definition: Decl.cpp:5362
static LabelDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5374
RegisterStaticDestructorsKind
Controls which variables have static destructors registered.
Definition: LangOptions.h:473
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:499
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:505
LinkageInfo getTypeLinkageAndVisibility(const Type *T)
Definition: Type.cpp:4750
LinkageInfo computeLVForDecl(const NamedDecl *D, LVComputationKind computation, bool IgnoreVarTypeLinkage=false)
Definition: Decl.cpp:1450
LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation)
getLVForDecl - Get the linkage and visibility for the given declaration.
Definition: Decl.cpp:1568
LinkageInfo getDeclLinkageAndVisibility(const NamedDecl *D)
Definition: Decl.cpp:1614
Visibility getVisibility() const
Definition: Visibility.h:89
static LinkageInfo external()
Definition: Visibility.h:72
static LinkageInfo none()
Definition: Visibility.h:81
void setLinkage(Linkage L)
Definition: Visibility.h:92
void mergeExternalVisibility(Linkage L)
Definition: Visibility.h:101
void mergeMaybeWithVisibility(LinkageInfo other, bool withVis)
Merge linkage and conditionally merge visibility.
Definition: Visibility.h:143
Linkage getLinkage() const
Definition: Visibility.h:88
static LinkageInfo internal()
Definition: Visibility.h:75
static LinkageInfo visible_none()
Definition: Visibility.h:84
static LinkageInfo uniqueExternal()
Definition: Visibility.h:78
void mergeVisibility(Visibility newVis, bool newExplicit)
Merge in the visibility 'newVis'.
Definition: Visibility.h:116
bool isVisibilityExplicit() const
Definition: Visibility.h:90
void merge(LinkageInfo other)
Merge both linkage and visibility.
Definition: Visibility.h:137
Provides information a specialization of a member of a class template, which may be a member function...
Definition: DeclTemplate.h:620
void setTemplateSpecializationKind(TemplateSpecializationKind TSK)
Set the template specialization kind.
Definition: DeclTemplate.h:651
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:642
SourceLocation getPointOfInstantiation() const
Retrieve the first point of instantiation of this member.
Definition: DeclTemplate.h:660
void setPointOfInstantiation(SourceLocation POI)
Set the first point of instantiation.
Definition: DeclTemplate.h:665
NamedDecl * getInstantiatedFrom() const
Retrieve the member declaration from which this member was instantiated.
Definition: DeclTemplate.h:639
Describes a module or submodule.
Definition: Module.h:115
Module * Parent
The parent of this module.
Definition: Module.h:164
ModuleKind Kind
The kind of this module.
Definition: Module.h:160
@ ModuleImplementationUnit
This is a C++20 module implementation unit.
Definition: Module.h:138
@ ModuleMapModule
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:129
@ ImplicitGlobalModuleFragment
This is an implicit fragment of the global module which contains only language linkage declarations (...
Definition: Module.h:156
@ ModulePartitionInterface
This is a C++20 module partition interface.
Definition: Module.h:141
@ ModuleInterfaceUnit
This is a C++20 module interface unit.
Definition: Module.h:135
@ ModuleHeaderUnit
This is a C++20 header unit.
Definition: Module.h:132
@ ModulePartitionImplementation
This is a C++20 module partition implementation.
Definition: Module.h:144
@ PrivateModuleFragment
This is the private module fragment within some C++ module.
Definition: Module.h:151
@ ExplicitGlobalModuleFragment
This is the explicit Global Module Fragment of a modular TU.
Definition: Module.h:148
This represents a decl that may have a name.
Definition: Decl.h:253
ExplicitVisibilityKind
Kinds of explicit visibility.
Definition: Decl.h:431
@ VisibilityForValue
Do an LV computation for, ultimately, a non-type declaration.
Definition: Decl.h:440
@ VisibilityForType
Do an LV computation for, ultimately, a type.
Definition: Decl.h:435
Linkage getLinkageInternal() const
Determine what kind of linkage this entity has.
Definition: Decl.cpp:1176
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:274
LinkageInfo getLinkageAndVisibility() const
Determines the linkage and visibility of this entity.
Definition: Decl.cpp:1220
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1079
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:280
bool isPlaceholderVar(const LangOptions &LangOpts) const
Definition: Decl.cpp:1089
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:319
std::string getQualifiedNameAsString() const
Definition: Decl.cpp:1668
std::optional< Visibility > getExplicitVisibility(ExplicitVisibilityKind kind) const
If visibility was explicitly specified for this declaration, return that visibility.
Definition: Decl.cpp:1304
NamedDecl * getMostRecentDecl()
Definition: Decl.h:480
virtual void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:1818
bool declarationReplaces(const NamedDecl *OldD, bool IsKnownNewer=true) const
Determine whether this declaration, if known to be well-formed within its context,...
Definition: Decl.cpp:1842
ObjCStringFormatFamily getObjCFStringFormattingFamily() const
Definition: Decl.cpp:1163
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.cpp:1200
void printQualifiedName(raw_ostream &OS) const
Returns a human-readable qualified name for this declaration, like A::B::i, for i being member of nam...
Definition: Decl.cpp:1675
virtual void printName(raw_ostream &OS, const PrintingPolicy &Policy) const
Pretty-print the unqualified name of this declaration.
Definition: Decl.cpp:1660
bool isCXXInstanceMember() const
Determine whether the given declaration is an instance member of a C++ class.
Definition: Decl.cpp:1951
bool hasLinkage() const
Determine whether this declaration has linkage.
Definition: Decl.cpp:1919
ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const
Determine if the declaration obeys the reserved identifier rules of the given language.
Definition: Decl.cpp:1126
bool isCXXClassMember() const
Determine whether this declaration is a C++ class member.
Definition: Decl.h:376
void printNestedNameSpecifier(raw_ostream &OS) const
Print only the nested name specifier part of a fully-qualified name, including the '::' at the end.
Definition: Decl.cpp:1702
Represent a C++ namespace.
Definition: Decl.h:551
A C++ nested-name-specifier augmented with source location information.
bool containsType(SanitizerMask Mask, StringRef MangledTypeName, StringRef Category=StringRef()) const
bool containsLocation(SanitizerMask Mask, SourceLocation Loc, StringRef Category=StringRef()) const
void AddEnumDecl(const EnumDecl *Enum)
Definition: ODRHash.cpp:755
void AddFunctionDecl(const FunctionDecl *Function, bool SkipBody=false)
Definition: ODRHash.cpp:662
void AddRecordDecl(const RecordDecl *Record)
Definition: ODRHash.cpp:617
unsigned CalculateHash()
Definition: ODRHash.cpp:226
Represents a parameter to a function.
Definition: Decl.h:1725
void setDefaultArg(Expr *defarg)
Definition: Decl.cpp:2987
static ParmVarDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:2939
bool hasUnparsedDefaultArg() const
Determines whether this parameter has a default argument that has not yet been parsed.
Definition: Decl.h:1854
SourceRange getDefaultArgRange() const
Retrieve the source range that covers the entire default argument.
Definition: Decl.cpp:2992
void setUninstantiatedDefaultArg(Expr *arg)
Definition: Decl.cpp:3012
bool hasUninstantiatedDefaultArg() const
Definition: Decl.h:1858
bool isDestroyedInCallee() const
Determines whether this parameter is destroyed in the callee function.
Definition: Decl.cpp:2960
bool hasInheritedDefaultArg() const
Definition: Decl.h:1870
bool isExplicitObjectParameter() const
Definition: Decl.h:1813
QualType getOriginalType() const
Definition: Decl.cpp:2931
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2922
Expr * getDefaultArg()
Definition: Decl.cpp:2975
Expr * getUninstantiatedDefaultArg()
Definition: Decl.cpp:3017
bool hasDefaultArg() const
Determines whether this parameter has a default argument, either parsed or not.
Definition: Decl.cpp:3023
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:2945
Represents a #pragma comment line.
Definition: Decl.h:146
static PragmaCommentDecl * Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg)
Definition: Decl.cpp:5308
static PragmaCommentDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID, unsigned ArgSize)
Definition: Decl.cpp:5321
Represents a #pragma detect_mismatch line.
Definition: Decl.h:180
static PragmaDetectMismatchDecl * Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation Loc, StringRef Name, StringRef Value)
Definition: Decl.cpp:5331
static PragmaDetectMismatchDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID, unsigned NameValueSize)
Definition: Decl.cpp:5347
void print(raw_ostream &OS) const override
Definition: Decl.cpp:80
A (possibly-)qualified type.
Definition: Type.h:929
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:996
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:7931
void print(raw_ostream &OS, const PrintingPolicy &Policy, const Twine &PlaceHolder=Twine(), unsigned Indentation=0) const
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after.
Definition: Type.h:1531
unsigned getCVRQualifiers() const
Retrieve the set of CVR (const-volatile-restrict) qualifiers applied to this type.
Definition: Type.h:7977
const Type * getTypePtrOrNull() const
Definition: Type.h:7935
Represents a struct/union/class.
Definition: Decl.h:4148
bool hasLoadedFieldsFromExternalStorage() const
Definition: Decl.h:4217
unsigned getODRHash()
Get precomputed ODRHash or add a new one.
Definition: Decl.cpp:5225
bool isLambda() const
Determine whether this record is a class describing a lambda function object.
Definition: Decl.cpp:5063
bool isMsStruct(const ASTContext &C) const
Get whether or not this is an ms_struct which can be turned on with an attribute, pragma,...
Definition: Decl.cpp:5125
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:4204
const FieldDecl * findFirstNamedDataMember() const
Finds the first data member which has a name.
Definition: Decl.cpp:5210
void setArgPassingRestrictions(RecordArgPassingKind Kind)
Definition: Decl.h:4286
void setNonTrivialToPrimitiveCopy(bool V)
Definition: Decl.h:4238
bool isCapturedRecord() const
Determine whether this record is a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:5069
void setHasNonTrivialToPrimitiveCopyCUnion(bool V)
Definition: Decl.h:4270
field_range fields() const
Definition: Decl.h:4354
void setHasNonTrivialToPrimitiveDestructCUnion(bool V)
Definition: Decl.h:4262
void setHasFlexibleArrayMember(bool V)
Definition: Decl.h:4185
void setParamDestroyedInCallee(bool V)
Definition: Decl.h:4294
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:4246
void setHasObjectMember(bool val)
Definition: Decl.h:4209
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:5038
bool isInjectedClassName() const
Determines whether this declaration represents the injected class name.
Definition: Decl.cpp:5058
void setHasVolatileMember(bool val)
Definition: Decl.h:4213
void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V)
Definition: Decl.h:4254
void reorderDecls(const SmallVectorImpl< Decl * > &Decls)
Definition: Decl.cpp:5129
void setIsRandomized(bool V)
Definition: Decl.h:4300
static RecordDecl * CreateDeserialized(const ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5049
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:5166
static bool classof(const Decl *D)
Definition: Decl.h:4369
bool isOrContainsUnion() const
Returns whether this record is a union, or contains (at any nesting level) a union member.
Definition: Decl.cpp:5077
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:5104
RecordDecl * getDefinition() const
Returns the RecordDecl that actually defines this struct/union/class.
Definition: Decl.h:4339
void setCapturedRecord()
Mark the record as a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:5073
specific_decl_iterator< FieldDecl > field_iterator
Definition: Decl.h:4351
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:4230
void setHasLoadedFieldsFromExternalStorage(bool val) const
Definition: Decl.h:4221
field_iterator field_begin() const
Definition: Decl.cpp:5092
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:6072
RecordDecl * getDecl() const
Definition: Type.h:6082
Declaration of a redeclarable template.
Definition: DeclTemplate.h:721
Provides common interface for the Decls that can be redeclared.
Definition: Redeclarable.h:84
VarDecl * getFirstDecl()
Return the first declaration of this declaration or itself if this is the only declaration.
Definition: Redeclarable.h:215
decl_type * getPreviousDecl()
Return the previous declaration of this declaration or NULL if this is the first declaration.
Definition: Redeclarable.h:203
VarDecl * getMostRecentDecl()
Returns the most recent (re)declaration of this declaration.
Definition: Redeclarable.h:225
void setPreviousDecl(FunctionDecl *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4981
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition: Redeclarable.h:295
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
void print(raw_ostream &OS, const SourceManager &SM) const
This class handles loading and caching of source files into memory.
A trivial tuple used to represent a source range.
bool isInvalid() const
SourceLocation getEnd() const
SourceLocation getBegin() const
bool isValid() const
Stmt - This represents one statement.
Definition: Stmt.h:84
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:357
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:333
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:345
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1778
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3564
void setTagKind(TagKind TK)
Definition: Decl.h:3763
void setCompleteDefinitionRequired(bool V=true)
True if this complete decl is required to be complete for some existing use.
Definition: Decl.h:3682
SourceRange getBraceRange() const
Definition: Decl.h:3643
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:4783
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3697
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3667
void setMayHaveOutOfDateDef(bool V=true)
Indicates whether it is possible for declarations of this kind to have an out-of-date definition.
Definition: Decl.h:3625
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3792
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:4760
TagDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:4749
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:4751
bool mayHaveOutOfDateDef() const
Indicates whether it is possible for declarations of this kind to have an out-of-date definition.
Definition: Decl.h:3713
SourceLocation getOuterLocStart() const
Return SourceLocation representing start of source range taking into account any outer template decla...
Definition: Decl.cpp:4739
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4743
bool isUnion() const
Definition: Decl.h:3770
void setBeingDefined(bool V=true)
True if this decl is currently being defined.
Definition: Decl.h:3619
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)
Definition: Decl.cpp:4806
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList * > TPLists)
Definition: Decl.cpp:4843
void completeDefinition()
Completes the definition of this tag declaration.
Definition: Decl.cpp:4771
void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override
Pretty-print the unqualified name of this declaration.
Definition: Decl.cpp:4826
void setFreeStanding(bool isFreeStanding=true)
True if this tag is free standing, e.g. "struct foo;".
Definition: Decl.h:3705
bool isDependentType() const
Whether this declaration declares a type that is dependent, i.e., a type that somehow depends on temp...
Definition: Decl.h:3718
TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, SourceLocation StartL)
Definition: Decl.cpp:4722
void setCompleteDefinition(bool V=true)
True if this decl has its body fully specified.
Definition: Decl.h:3670
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:136
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1262
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1333
A convenient class for passing around template argument information.
Definition: TemplateBase.h:632
A template argument list.
Definition: DeclTemplate.h:250
ArrayRef< TemplateArgument > asArray() const
Produce this as an array ref.
Definition: DeclTemplate.h:280
Represents a template argument.
Definition: TemplateBase.h:61
@ Declaration
The template argument is a declaration that was provided for a pointer, reference,...
Definition: TemplateBase.h:74
@ Template
The template argument is a template name that was provided for a template template parameter.
Definition: TemplateBase.h:93
@ StructuralValue
The template argument is a non-type template argument that can't be represented by the special-case D...
Definition: TemplateBase.h:89
@ Pack
The template argument is actually a parameter pack.
Definition: TemplateBase.h:107
@ TemplateExpansion
The template argument is a pack expansion of a template name that was provided for a template templat...
Definition: TemplateBase.h:97
@ NullPtr
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:78
@ Type
The template argument is a type.
Definition: TemplateBase.h:70
@ Null
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:67
@ Integral
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:82
@ Expression
The template argument is an expression, and we've not resolved it to one of the other forms yet,...
Definition: TemplateBase.h:103
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:399
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:418
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:73
A declaration that models statements at global scope.
Definition: Decl.h:4437
static TopLevelStmtDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5633
static TopLevelStmtDecl * Create(ASTContext &C, Stmt *Statement)
Definition: Decl.cpp:5623
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:5639
void setStmt(Stmt *S)
Definition: Decl.cpp:5643
The top declaration context.
Definition: Decl.h:84
static TranslationUnitDecl * Create(ASTContext &C)
Definition: Decl.cpp:5295
ASTContext & getASTContext() const
Definition: Decl.h:120
void setAnonymousNamespace(NamespaceDecl *D)
Definition: Decl.cpp:5299
Represents the declaration of a typedef-name via a C++11 alias-declaration.
Definition: Decl.h:3535
static TypeAliasDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5584
static TypeAliasDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, TypeSourceInfo *TInfo)
Definition: Decl.cpp:5576
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:5599
Represents a declaration of a type.
Definition: Decl.h:3370
const Type * getTypeForDecl() const
Definition: Decl.h:3395
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:3398
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:89
TypeLoc IgnoreParens() const
Definition: TypeLoc.h:1256
SourceRange getSourceRange() const LLVM_READONLY
Get the full source range.
Definition: TypeLoc.h:153
SourceLocation getEndLoc() const
Get the end source location.
Definition: TypeLoc.cpp:235
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:192
A container of type source information.
Definition: Type.h:7902
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:256
QualType getType() const
Return the type wrapped by this type source info.
Definition: Type.h:7913
The base class of the type hierarchy.
Definition: Type.h:1828
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1916
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Type.cpp:4740
bool isNothrowT() const
Definition: Type.cpp:3106
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8800
bool isReferenceType() const
Definition: Type.h:8204
bool isEnumeralType() const
Definition: Type.h:8290
bool isAlignValT() const
Definition: Type.cpp:3115
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2706
DeducedType * getContainedDeducedType() const
Get the DeducedType whose type will be deduced for a variable with an initializer of this type.
Definition: Type.cpp:2045
bool isUndeducedType() const
Determine whether this type is an undeduced type, meaning that it somehow involves a C++11 'auto' typ...
Definition: Type.h:8644
bool isFunctionType() const
Definition: Type.h:8182
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:4648
TypeClass getTypeClass() const
Definition: Type.h:2341
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8731
Represents the declaration of a typedef-name via the 'typedef' type specifier.
Definition: Decl.h:3514
static TypedefDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, TypeSourceInfo *TInfo)
Definition: Decl.cpp:5525
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:5590
static TypedefDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:5571
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:3413
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:3463
QualType getUnderlyingType() const
Definition: Decl.h:3468
TypedefNameDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this typedef-name.
Definition: Decl.h:3484
TagDecl * getAnonDeclWithTypedefName(bool AnyRedecl=false) const
Retrieves the tag declaration for which this is the typedef name for linkage purposes,...
Definition: Decl.cpp:5534
A set of unresolved declarations.
Definition: UnresolvedSet.h:62
unsigned size() const
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:671
QualType getType() const
Definition: Decl.h:682
bool isWeak() const
Determine whether this symbol is weakly-imported, or declared with the weak or weak-ref attr.
Definition: Decl.cpp:5388
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition: Decl.cpp:5394
Represents a variable declaration or definition.
Definition: Decl.h:882
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2786
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:2140
Stmt ** getInitAddress()
Retrieve the address of the initializer expression.
Definition: Decl.cpp:2411
DefinitionKind isThisDeclarationADefinition() const
Definition: Decl.h:1259
bool isConstexpr() const
Whether this variable is (C++11) constexpr.
Definition: Decl.h:1513
void setInstantiationOfStaticDataMember(VarDecl *VD, TemplateSpecializationKind TSK)
Specify that this variable is an instantiation of the static data member VD.
Definition: Decl.cpp:2911
TLSKind getTLSKind() const
Definition: Decl.cpp:2157
@ DAK_Unparsed
Definition: Decl.h:958
@ DAK_Normal
Definition: Decl.h:960
@ DAK_Uninstantiated
Definition: Decl.h:959
bool hasInit() const
Definition: Decl.cpp:2387
bool hasICEInitializer(const ASTContext &Context) const
Determine whether the initializer of this variable is an integer constant expression.
Definition: Decl.cpp:2608
ParmVarDeclBitfields ParmVarDeclBits
Definition: Decl.h:1075
DefinitionKind hasDefinition() const
Definition: Decl.h:1265
static const char * getStorageClassSpecifierString(StorageClass SC)
Return the string used to specify the storage class SC.
Definition: Decl.cpp:2110
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:2179
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a static data member.
Definition: Decl.cpp:2433
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:2246
bool hasFlexibleArrayInit(const ASTContext &Ctx) const
Whether this variable has a flexible array member initialized with one or more elements.
Definition: Decl.cpp:2838
bool isNoDestroy(const ASTContext &) const
Is destruction of this variable entirely suppressed? If so, the variable need not have a usable destr...
Definition: Decl.cpp:2812
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition: Decl.h:1522
void setStorageClass(StorageClass SC)
Definition: Decl.cpp:2152
APValue * evaluateValue() const
Attempt to evaluate the value of the initializer attached to this declaration, and produce notes expl...
Definition: Decl.cpp:2547
bool isStaticDataMember() const
Determines whether this is a static data member.
Definition: Decl.h:1234
static VarDecl * CreateDeserialized(ASTContext &C, GlobalDeclID ID)
Definition: Decl.cpp:2146
VarDecl * getTemplateInstantiationPattern() const
Retrieve the variable declaration from which this variable could be instantiated, if it is an instant...
Definition: Decl.cpp:2690
bool hasGlobalStorage() const
Returns true for all variables that do not have local storage.
Definition: Decl.h:1177
VarDeclBitfields VarDeclBits
Definition: Decl.h:1074
CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const
If hasFlexibleArrayInit is true, compute the number of additional bytes necessary to store those elem...
Definition: Decl.cpp:2853
bool hasConstantInitialization() const
Determine whether this variable has constant initialization.
Definition: Decl.cpp:2620
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2230
unsigned AllBits
Definition: Decl.h:1073
EvaluatedStmt * getEvaluatedStmt() const
Definition: Decl.cpp:2543
bool mightBeUsableInConstantExpressions(const ASTContext &C) const
Determine whether this variable's value might be usable in a constant expression, according to the re...
Definition: Decl.cpp:2458
EvaluatedStmt * ensureEvaluatedStmt() const
Convert the initializer for this declaration to the elaborated EvaluatedStmt form,...
Definition: Decl.cpp:2529
VarDecl * getInstantiatedFromStaticDataMember() const
If this variable is an instantiated static data member of a class template specialization,...
Definition: Decl.cpp:2748
bool isFileVarDecl() const
Returns true for file scoped variable declaration.
Definition: Decl.h:1293
void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
For a static data member that was instantiated from a static data member of a class template,...
Definition: Decl.cpp:2883
QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const
Would the destruction of this variable have any effect, and if so, what kind?
Definition: Decl.cpp:2827
bool checkForConstantInitialization(SmallVectorImpl< PartialDiagnosticAt > &Notes) const
Evaluate the initializer of this variable to determine whether it's a constant initializer.
Definition: Decl.cpp:2636
bool isInline() const
Whether this variable is (C++1z) inline.
Definition: Decl.h:1495
const Expr * getInit() const
Definition: Decl.h:1319
bool isNonEscapingByref() const
Indicates the capture is a __block variable that is never captured by an escaping block.
Definition: Decl.cpp:2678
bool isInExternCContext() const
Determines whether this variable's context is, or is nested within, a C++ extern "C" linkage spec.
Definition: Decl.cpp:2238
NonParmVarDeclBitfields NonParmVarDeclBits
Definition: Decl.h:1076
bool hasExternalStorage() const
Returns true if a variable has extern or private_extern storage.
Definition: Decl.h:1168
InitType Init
The initializer for this variable or, for a ParmVarDecl, the C++ default argument.
Definition: Decl.h:928
APValue * getEvaluatedValue() const
Return the already-evaluated value of this variable's initializer, or NULL if the value is not yet kn...
Definition: Decl.cpp:2600
VarDecl * getInitializingDeclaration()
Get the initializing declaration of this variable, if any.
Definition: Decl.cpp:2418
TLSKind
Kinds of thread-local storage.
Definition: Decl.h:900
@ TLS_Static
TLS with a known-constant initializer.
Definition: Decl.h:905
@ TLS_Dynamic
TLS with a dynamic initializer.
Definition: Decl.h:908
@ TLS_None
Not a TLS variable.
Definition: Decl.h:902
void setInit(Expr *I)
Definition: Decl.cpp:2449
VarDecl * getActingDefinition()
Get the tentative definition that acts as the real definition in a TU.
Definition: Decl.cpp:2334
@ TentativeDefinition
This declaration is a tentative definition.
Definition: Decl.h:1249
@ DeclarationOnly
This declaration is only a declaration.
Definition: Decl.h:1246
@ Definition
This declaration is definitely a definition.
Definition: Decl.h:1252
void setDescribedVarTemplate(VarTemplateDecl *Template)
Definition: Decl.cpp:2791
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:2234
VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass SC)
Definition: Decl.cpp:2123
StorageDuration getStorageDuration() const
Get the storage duration of this variable, per C++ [basic.stc].
Definition: Decl.h:1180
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:1119
bool isEscapingByref() const
Indicates the capture is a __block variable that is captured by a block that can potentially escape (...
Definition: Decl.cpp:2674
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1420
bool isUsableInConstantExpressions(const ASTContext &C) const
Determine whether this variable's value can be used in a constant expression, according to the releva...
Definition: Decl.cpp:2500
bool isInExternCXXContext() const
Determines whether this variable's context is, or is nested within, a C++ extern "C++" linkage spec.
Definition: Decl.cpp:2242
SourceLocation getPointOfInstantiation() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2776
bool hasDependentAlignment() const
Determines if this variable's alignment is dependent.
Definition: Decl.cpp:2682
TemplateSpecializationKind getTemplateSpecializationKindForInstantiation() const
Get the template specialization kind of this variable for the purposes of template instantiation.
Definition: Decl.cpp:2766
VarDecl * getDefinition()
Definition: Decl.h:1281
TemplateSpecializationKind getTemplateSpecializationKind() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2755
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to.
Definition: Decl.h:1309
bool isKnownToBeDefined() const
Definition: Decl.cpp:2795
bool isParameterPack() const
Determine whether this variable is actually a function parameter pack or init-capture pack.
Definition: Decl.cpp:2662
MemberSpecializationInfo * getMemberSpecializationInfo() const
If this variable is an instantiation of a static data member of a class template specialization,...
Definition: Decl.cpp:2874
Declaration of a variable template.
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
Represents a variable template specialization, which refers to a variable template with a given set o...
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the variable template specialization.
VarTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration,...
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:3808
Defines the Linkage enumeration and various utility functions.
Defines the clang::TargetInfo interface.
const internal::VariadicAllOfMatcher< Attr > attr
Matches attributes.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
The JSON file list parser is used to communicate input to InstallAPI.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
@ OO_None
Not an overloaded operator.
Definition: OperatorKinds.h:22
bool isTemplateInstantiation(TemplateSpecializationKind Kind)
Determine whether this template specialization kind refers to an instantiation of an entity (as oppos...
Definition: Specifiers.h:212
ObjCStringFormatFamily
@ CPlusPlus
Definition: LangStandard.h:55
@ GVA_StrongODR
Definition: Linkage.h:77
@ GVA_StrongExternal
Definition: Linkage.h:76
@ GVA_AvailableExternally
Definition: Linkage.h:74
@ GVA_DiscardableODR
Definition: Linkage.h:75
@ GVA_Internal
Definition: Linkage.h:73
bool isReservedInAllContexts(ReservedIdentifierStatus Status)
Determine whether an identifier is reserved in all contexts.
PragmaMSCommentKind
Definition: PragmaKinds.h:14
@ PCK_Unknown
Definition: PragmaKinds.h:15
ConstexprSpecKind
Define the kind of constexpr specifier.
Definition: Specifiers.h:35
Decl * getPrimaryMergedDecl(Decl *D)
Get the primary declaration for a declaration from an AST file.
Definition: Decl.cpp:76
InClassInitStyle
In-class initialization styles for non-static data members.
Definition: Specifiers.h:271
@ ICIS_NoInit
No in-class initializer.
Definition: Specifiers.h:272
LazyOffsetPtr< Stmt, uint64_t, &ExternalASTSource::GetExternalDeclStmt > LazyDeclStmtPtr
A lazy pointer to a statement.
Linkage getFormalLinkage(Linkage L)
Definition: Linkage.h:106
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have.
Definition: Linkage.h:63
@ CLanguageLinkage
Definition: Linkage.h:64
@ CXXLanguageLinkage
Definition: Linkage.h:65
@ NoLanguageLinkage
Definition: Linkage.h:66
StorageClass
Storage classes.
Definition: Specifiers.h:248
@ SC_Auto
Definition: Specifiers.h:256
@ SC_PrivateExtern
Definition: Specifiers.h:253
@ SC_Extern
Definition: Specifiers.h:251
@ SC_Register
Definition: Specifiers.h:257
@ SC_Static
Definition: Specifiers.h:252
@ SC_None
Definition: Specifiers.h:250
@ TSCS_thread_local
C++11 thread_local.
Definition: Specifiers.h:241
@ TSCS_unspecified
Definition: Specifiers.h:236
@ TSCS__Thread_local
C11 _Thread_local.
Definition: Specifiers.h:244
@ TSCS___thread
GNU __thread.
Definition: Specifiers.h:238
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have.
Definition: Linkage.h:24
@ VisibleNone
No linkage according to the standard, but is visible from other translation units because of types de...
@ None
No linkage, which means that the entity is unique and can only be referred to from within its scope.
@ UniqueExternal
External linkage within a unique namespace.
@ Internal
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
@ External
External linkage, which indicates that the entity can be referred to from other translation units.
@ Module
Module linkage, which indicates that the entity can be referred to from other translation units withi...
@ SD_Automatic
Automatic storage duration (most local variables).
Definition: Specifiers.h:329
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition: ASTLambda.h:27
@ Result
The result type of a method or function.
TagTypeKind
The kind of a tag type.
Definition: Type.h:6871
@ Struct
The "struct" keyword.
@ Enum
The "enum" keyword.
@ CanPassInRegs
The argument of this type can be passed directly in registers.
bool isLegalForVariable(StorageClass SC)
Checks whether the given storage class is legal for variables.
Definition: Specifiers.h:266
const FunctionProtoType * T
MultiVersionKind
Definition: Decl.h:1914
void printTemplateArgumentList(raw_ostream &OS, ArrayRef< TemplateArgument > Args, const PrintingPolicy &Policy, const TemplateParameterList *TPL=nullptr)
Print a template argument list, including the '<' and '>' enclosing the template arguments.
bool isReservedAtGlobalScope(ReservedIdentifierStatus Status)
Determine whether an identifier is reserved for use as a name at global scope.
bool isExternalFormalLinkage(Linkage L)
Definition: Linkage.h:117
TemplateSpecializationKind
Describes the kind of template specialization that a particular template specialization declaration r...
Definition: Specifiers.h:188
@ TSK_ExplicitInstantiationDefinition
This template specialization was instantiated from a template due to an explicit instantiation defini...
Definition: Specifiers.h:206
@ TSK_ExplicitInstantiationDeclaration
This template specialization was instantiated from a template due to an explicit instantiation declar...
Definition: Specifiers.h:202
@ TSK_ExplicitSpecialization
This template specialization was declared or defined by an explicit specialization (C++ [temp....
Definition: Specifiers.h:198
@ TSK_ImplicitInstantiation
This template specialization was implicitly instantiated from a template.
Definition: Specifiers.h:194
@ TSK_Undeclared
This template specialization was formed from a template-id but has not yet been declared,...
Definition: Specifiers.h:191
@ Enum
The "enum" keyword introduces the elaborated-type-specifier.
bool IsArmStreamingFunction(const FunctionDecl *FD, bool IncludeLocallyStreaming)
Returns whether the given FunctionDecl has an __arm[_locally]_streaming attribute.
Definition: Decl.cpp:5782
ReservedIdentifierStatus
bool isExternallyVisible(Linkage L)
Definition: Linkage.h:90
ImplicitParamKind
Defines the kind of the implicit parameter: is this an implicit parameter with pointer to 'this',...
Definition: Decl.h:1661
@ Other
Other implicit parameter.
Visibility
Describes the different kinds of visibility that a declaration may have.
Definition: Visibility.h:34
@ HiddenVisibility
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:37
@ ProtectedVisibility
Objects with "protected" visibility are seen by the dynamic linker but always dynamically resolve to ...
Definition: Visibility.h:42
@ DefaultVisibility
Objects with "default" visibility are seen by the dynamic linker and act like normal objects.
Definition: Visibility.h:46
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:53
#define true
Definition: stdbool.h:25
#define false
Definition: stdbool.h:26
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:676
static const ASTTemplateArgumentListInfo * Create(const ASTContext &C, const TemplateArgumentListInfo &List)
A placeholder type used to construct an empty shell of a decl-derived type that will be filled in lat...
Definition: DeclBase.h:102
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspon...
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
Structure used to store a statement, the constant value to which it was evaluated (if any),...
Definition: Decl.h:847
bool HasConstantDestruction
Whether this variable is known to have constant destruction.
Definition: Decl.h:865
bool WasEvaluated
Whether this statement was already evaluated.
Definition: Decl.h:849
bool CheckedForICEInit
Definition: Decl.h:870
LazyDeclStmtPtr Value
Definition: Decl.h:872
APValue Evaluated
Definition: Decl.h:873
bool IsEvaluating
Whether this statement is being evaluated.
Definition: Decl.h:852
bool HasConstantInitialization
Whether this variable is known to have constant initialization.
Definition: Decl.h:858
bool HasICEInit
In C++98, whether the initializer is an ICE.
Definition: Decl.h:869
Kinds of LV computation.
Definition: Linkage.h:29
bool isTypeVisibility() const
Definition: Linkage.h:53
unsigned IgnoreExplicitVisibility
Whether explicit visibility attributes should be ignored.
Definition: Linkage.h:37
unsigned IgnoreAllVisibility
Whether all visibility should be ignored.
Definition: Linkage.h:41
static LVComputationKind forLinkageOnly()
Do an LV computation when we only care about the linkage.
Definition: Linkage.h:61
bool isValueVisibility() const
Definition: Linkage.h:56
bool isOffset() const
Whether this pointer is currently stored as an offset.
T * get(ExternalASTSource *Source) const
Retrieve the pointer to the AST node that this lazy pointer points to.
Describes how types, statements, expressions, and declarations should be printed.
Definition: PrettyPrinter.h:57
A struct with extended info about a syntactic name qualifier, to be used for the case of out-of-line ...
Definition: Decl.h:708
TemplateParameterList ** TemplParamLists
A new-allocated array of size NumTemplParamLists, containing pointers to the "outer" template paramet...
Definition: Decl.h:722
NestedNameSpecifierLoc QualifierLoc
Definition: Decl.h:709
unsigned NumTemplParamLists
The number of "outer" template parameter lists.
Definition: Decl.h:715
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList * > TPLists)
Sets info about "outer" template parameter lists.
Definition: Decl.cpp:2090
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:182