clang 20.0.0git
CGExprConstant.cpp
Go to the documentation of this file.
1//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Constant Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ABIInfoImpl.h"
14#include "CGCXXABI.h"
15#include "CGObjCRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "TargetInfo.h"
21#include "clang/AST/APValue.h"
23#include "clang/AST/Attr.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/Sequence.h"
29#include "llvm/Analysis/ConstantFolding.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GlobalVariable.h"
34#include <optional>
35using namespace clang;
36using namespace CodeGen;
37
38//===----------------------------------------------------------------------===//
39// ConstantAggregateBuilder
40//===----------------------------------------------------------------------===//
41
42namespace {
43class ConstExprEmitter;
44
45llvm::Constant *getPadding(const CodeGenModule &CGM, CharUnits PadSize) {
46 llvm::Type *Ty = CGM.CharTy;
47 if (PadSize > CharUnits::One())
48 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
49 if (CGM.shouldZeroInitPadding()) {
50 return llvm::Constant::getNullValue(Ty);
51 }
52 return llvm::UndefValue::get(Ty);
53}
54
55struct ConstantAggregateBuilderUtils {
56 CodeGenModule &CGM;
57
58 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
59
60 CharUnits getAlignment(const llvm::Constant *C) const {
62 CGM.getDataLayout().getABITypeAlign(C->getType()));
63 }
64
65 CharUnits getSize(llvm::Type *Ty) const {
66 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
67 }
68
69 CharUnits getSize(const llvm::Constant *C) const {
70 return getSize(C->getType());
71 }
72
73 llvm::Constant *getPadding(CharUnits PadSize) const {
74 return ::getPadding(CGM, PadSize);
75 }
76
77 llvm::Constant *getZeroes(CharUnits ZeroSize) const {
78 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
79 return llvm::ConstantAggregateZero::get(Ty);
80 }
81};
82
83/// Incremental builder for an llvm::Constant* holding a struct or array
84/// constant.
85class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
86 /// The elements of the constant. These two arrays must have the same size;
87 /// Offsets[i] describes the offset of Elems[i] within the constant. The
88 /// elements are kept in increasing offset order, and we ensure that there
89 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
90 ///
91 /// This may contain explicit padding elements (in order to create a
92 /// natural layout), but need not. Gaps between elements are implicitly
93 /// considered to be filled with undef.
96
97 /// The size of the constant (the maximum end offset of any added element).
98 /// May be larger than the end of Elems.back() if we split the last element
99 /// and removed some trailing undefs.
101
102 /// This is true only if laying out Elems in order as the elements of a
103 /// non-packed LLVM struct will give the correct layout.
104 bool NaturalLayout = true;
105
106 bool split(size_t Index, CharUnits Hint);
107 std::optional<size_t> splitAt(CharUnits Pos);
108
109 static llvm::Constant *buildFrom(CodeGenModule &CGM,
111 ArrayRef<CharUnits> Offsets,
112 CharUnits StartOffset, CharUnits Size,
113 bool NaturalLayout, llvm::Type *DesiredTy,
114 bool AllowOversized);
115
116public:
117 ConstantAggregateBuilder(CodeGenModule &CGM)
118 : ConstantAggregateBuilderUtils(CGM) {}
119
120 /// Update or overwrite the value starting at \p Offset with \c C.
121 ///
122 /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
123 /// a constant that has already been added. This flag is only used to
124 /// detect bugs.
125 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
126
127 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
128 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
129
130 /// Attempt to condense the value starting at \p Offset to a constant of type
131 /// \p DesiredTy.
132 void condense(CharUnits Offset, llvm::Type *DesiredTy);
133
134 /// Produce a constant representing the entire accumulated value, ideally of
135 /// the specified type. If \p AllowOversized, the constant might be larger
136 /// than implied by \p DesiredTy (eg, if there is a flexible array member).
137 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
138 /// even if we can't represent it as that type.
139 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
140 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
141 NaturalLayout, DesiredTy, AllowOversized);
142 }
143};
144
145template<typename Container, typename Range = std::initializer_list<
146 typename Container::value_type>>
147static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
148 assert(BeginOff <= EndOff && "invalid replacement range");
149 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
150}
151
152bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
153 bool AllowOverwrite) {
154 // Common case: appending to a layout.
155 if (Offset >= Size) {
156 CharUnits Align = getAlignment(C);
157 CharUnits AlignedSize = Size.alignTo(Align);
158 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
159 NaturalLayout = false;
160 else if (AlignedSize < Offset) {
161 Elems.push_back(getPadding(Offset - Size));
162 Offsets.push_back(Size);
163 }
164 Elems.push_back(C);
165 Offsets.push_back(Offset);
166 Size = Offset + getSize(C);
167 return true;
168 }
169
170 // Uncommon case: constant overlaps what we've already created.
171 std::optional<size_t> FirstElemToReplace = splitAt(Offset);
172 if (!FirstElemToReplace)
173 return false;
174
175 CharUnits CSize = getSize(C);
176 std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
177 if (!LastElemToReplace)
178 return false;
179
180 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
181 "unexpectedly overwriting field");
182
183 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
184 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
185 Size = std::max(Size, Offset + CSize);
186 NaturalLayout = false;
187 return true;
188}
189
190bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
191 bool AllowOverwrite) {
192 const ASTContext &Context = CGM.getContext();
193 const uint64_t CharWidth = CGM.getContext().getCharWidth();
194
195 // Offset of where we want the first bit to go within the bits of the
196 // current char.
197 unsigned OffsetWithinChar = OffsetInBits % CharWidth;
198
199 // We split bit-fields up into individual bytes. Walk over the bytes and
200 // update them.
201 for (CharUnits OffsetInChars =
202 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
203 /**/; ++OffsetInChars) {
204 // Number of bits we want to fill in this char.
205 unsigned WantedBits =
206 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
207
208 // Get a char containing the bits we want in the right places. The other
209 // bits have unspecified values.
210 llvm::APInt BitsThisChar = Bits;
211 if (BitsThisChar.getBitWidth() < CharWidth)
212 BitsThisChar = BitsThisChar.zext(CharWidth);
213 if (CGM.getDataLayout().isBigEndian()) {
214 // Figure out how much to shift by. We may need to left-shift if we have
215 // less than one byte of Bits left.
216 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
217 if (Shift > 0)
218 BitsThisChar.lshrInPlace(Shift);
219 else if (Shift < 0)
220 BitsThisChar = BitsThisChar.shl(-Shift);
221 } else {
222 BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
223 }
224 if (BitsThisChar.getBitWidth() > CharWidth)
225 BitsThisChar = BitsThisChar.trunc(CharWidth);
226
227 if (WantedBits == CharWidth) {
228 // Got a full byte: just add it directly.
229 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
230 OffsetInChars, AllowOverwrite);
231 } else {
232 // Partial byte: update the existing integer if there is one. If we
233 // can't split out a 1-CharUnit range to update, then we can't add
234 // these bits and fail the entire constant emission.
235 std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
236 if (!FirstElemToUpdate)
237 return false;
238 std::optional<size_t> LastElemToUpdate =
239 splitAt(OffsetInChars + CharUnits::One());
240 if (!LastElemToUpdate)
241 return false;
242 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
243 "should have at most one element covering one byte");
244
245 // Figure out which bits we want and discard the rest.
246 llvm::APInt UpdateMask(CharWidth, 0);
247 if (CGM.getDataLayout().isBigEndian())
248 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
249 CharWidth - OffsetWithinChar);
250 else
251 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
252 BitsThisChar &= UpdateMask;
253
254 if (*FirstElemToUpdate == *LastElemToUpdate ||
255 Elems[*FirstElemToUpdate]->isNullValue() ||
256 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
257 // All existing bits are either zero or undef.
258 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
259 OffsetInChars, /*AllowOverwrite*/ true);
260 } else {
261 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
262 // In order to perform a partial update, we need the existing bitwise
263 // value, which we can only extract for a constant int.
264 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
265 if (!CI)
266 return false;
267 // Because this is a 1-CharUnit range, the constant occupying it must
268 // be exactly one CharUnit wide.
269 assert(CI->getBitWidth() == CharWidth && "splitAt failed");
270 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
271 "unexpectedly overwriting bitfield");
272 BitsThisChar |= (CI->getValue() & ~UpdateMask);
273 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
274 }
275 }
276
277 // Stop if we've added all the bits.
278 if (WantedBits == Bits.getBitWidth())
279 break;
280
281 // Remove the consumed bits from Bits.
282 if (!CGM.getDataLayout().isBigEndian())
283 Bits.lshrInPlace(WantedBits);
284 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
285
286 // The remanining bits go at the start of the following bytes.
287 OffsetWithinChar = 0;
288 }
289
290 return true;
291}
292
293/// Returns a position within Elems and Offsets such that all elements
294/// before the returned index end before Pos and all elements at or after
295/// the returned index begin at or after Pos. Splits elements as necessary
296/// to ensure this. Returns std::nullopt if we find something we can't split.
297std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
298 if (Pos >= Size)
299 return Offsets.size();
300
301 while (true) {
302 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
303 if (FirstAfterPos == Offsets.begin())
304 return 0;
305
306 // If we already have an element starting at Pos, we're done.
307 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
308 if (Offsets[LastAtOrBeforePosIndex] == Pos)
309 return LastAtOrBeforePosIndex;
310
311 // We found an element starting before Pos. Check for overlap.
312 if (Offsets[LastAtOrBeforePosIndex] +
313 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
314 return LastAtOrBeforePosIndex + 1;
315
316 // Try to decompose it into smaller constants.
317 if (!split(LastAtOrBeforePosIndex, Pos))
318 return std::nullopt;
319 }
320}
321
322/// Split the constant at index Index, if possible. Return true if we did.
323/// Hint indicates the location at which we'd like to split, but may be
324/// ignored.
325bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
326 NaturalLayout = false;
327 llvm::Constant *C = Elems[Index];
328 CharUnits Offset = Offsets[Index];
329
330 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
331 // Expand the sequence into its contained elements.
332 // FIXME: This assumes vector elements are byte-sized.
333 replace(Elems, Index, Index + 1,
334 llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
335 [&](unsigned Op) { return CA->getOperand(Op); }));
336 if (isa<llvm::ArrayType>(CA->getType()) ||
337 isa<llvm::VectorType>(CA->getType())) {
338 // Array or vector.
339 llvm::Type *ElemTy =
340 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
341 CharUnits ElemSize = getSize(ElemTy);
342 replace(
343 Offsets, Index, Index + 1,
344 llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
345 [&](unsigned Op) { return Offset + Op * ElemSize; }));
346 } else {
347 // Must be a struct.
348 auto *ST = cast<llvm::StructType>(CA->getType());
349 const llvm::StructLayout *Layout =
350 CGM.getDataLayout().getStructLayout(ST);
351 replace(Offsets, Index, Index + 1,
352 llvm::map_range(
353 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
354 return Offset + CharUnits::fromQuantity(
355 Layout->getElementOffset(Op));
356 }));
357 }
358 return true;
359 }
360
361 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
362 // Expand the sequence into its contained elements.
363 // FIXME: This assumes vector elements are byte-sized.
364 // FIXME: If possible, split into two ConstantDataSequentials at Hint.
365 CharUnits ElemSize = getSize(CDS->getElementType());
366 replace(Elems, Index, Index + 1,
367 llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
368 [&](unsigned Elem) {
369 return CDS->getElementAsConstant(Elem);
370 }));
371 replace(Offsets, Index, Index + 1,
372 llvm::map_range(
373 llvm::seq(0u, CDS->getNumElements()),
374 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
375 return true;
376 }
377
378 if (isa<llvm::ConstantAggregateZero>(C)) {
379 // Split into two zeros at the hinted offset.
380 CharUnits ElemSize = getSize(C);
381 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
382 replace(Elems, Index, Index + 1,
383 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
384 replace(Offsets, Index, Index + 1, {Offset, Hint});
385 return true;
386 }
387
388 if (isa<llvm::UndefValue>(C)) {
389 // Drop undef; it doesn't contribute to the final layout.
390 replace(Elems, Index, Index + 1, {});
391 replace(Offsets, Index, Index + 1, {});
392 return true;
393 }
394
395 // FIXME: We could split a ConstantInt if the need ever arose.
396 // We don't need to do this to handle bit-fields because we always eagerly
397 // split them into 1-byte chunks.
398
399 return false;
400}
401
402static llvm::Constant *
403EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
404 llvm::Type *CommonElementType, uint64_t ArrayBound,
406 llvm::Constant *Filler);
407
408llvm::Constant *ConstantAggregateBuilder::buildFrom(
410 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
411 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
412 ConstantAggregateBuilderUtils Utils(CGM);
413
414 if (Elems.empty())
415 return llvm::UndefValue::get(DesiredTy);
416
417 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
418
419 // If we want an array type, see if all the elements are the same type and
420 // appropriately spaced.
421 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
422 assert(!AllowOversized && "oversized array emission not supported");
423
424 bool CanEmitArray = true;
425 llvm::Type *CommonType = Elems[0]->getType();
426 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
427 CharUnits ElemSize = Utils.getSize(ATy->getElementType());
429 for (size_t I = 0; I != Elems.size(); ++I) {
430 // Skip zeroes; we'll use a zero value as our array filler.
431 if (Elems[I]->isNullValue())
432 continue;
433
434 // All remaining elements must be the same type.
435 if (Elems[I]->getType() != CommonType ||
436 Offset(I) % ElemSize != 0) {
437 CanEmitArray = false;
438 break;
439 }
440 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
441 ArrayElements.back() = Elems[I];
442 }
443
444 if (CanEmitArray) {
445 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
446 ArrayElements, Filler);
447 }
448
449 // Can't emit as an array, carry on to emit as a struct.
450 }
451
452 // The size of the constant we plan to generate. This is usually just
453 // the size of the initialized type, but in AllowOversized mode (i.e.
454 // flexible array init), it can be larger.
455 CharUnits DesiredSize = Utils.getSize(DesiredTy);
456 if (Size > DesiredSize) {
457 assert(AllowOversized && "Elems are oversized");
458 DesiredSize = Size;
459 }
460
461 // The natural alignment of an unpacked LLVM struct with the given elements.
462 CharUnits Align = CharUnits::One();
463 for (llvm::Constant *C : Elems)
464 Align = std::max(Align, Utils.getAlignment(C));
465
466 // The natural size of an unpacked LLVM struct with the given elements.
467 CharUnits AlignedSize = Size.alignTo(Align);
468
469 bool Packed = false;
470 ArrayRef<llvm::Constant*> UnpackedElems = Elems;
471 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
472 if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
473 // The natural layout would be too big; force use of a packed layout.
474 NaturalLayout = false;
475 Packed = true;
476 } else if (DesiredSize > AlignedSize) {
477 // The natural layout would be too small. Add padding to fix it. (This
478 // is ignored if we choose a packed layout.)
479 UnpackedElemStorage.assign(Elems.begin(), Elems.end());
480 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
481 UnpackedElems = UnpackedElemStorage;
482 }
483
484 // If we don't have a natural layout, insert padding as necessary.
485 // As we go, double-check to see if we can actually just emit Elems
486 // as a non-packed struct and do so opportunistically if possible.
488 if (!NaturalLayout) {
489 CharUnits SizeSoFar = CharUnits::Zero();
490 for (size_t I = 0; I != Elems.size(); ++I) {
491 CharUnits Align = Utils.getAlignment(Elems[I]);
492 CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
493 CharUnits DesiredOffset = Offset(I);
494 assert(DesiredOffset >= SizeSoFar && "elements out of order");
495
496 if (DesiredOffset != NaturalOffset)
497 Packed = true;
498 if (DesiredOffset != SizeSoFar)
499 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
500 PackedElems.push_back(Elems[I]);
501 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
502 }
503 // If we're using the packed layout, pad it out to the desired size if
504 // necessary.
505 if (Packed) {
506 assert(SizeSoFar <= DesiredSize &&
507 "requested size is too small for contents");
508 if (SizeSoFar < DesiredSize)
509 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
510 }
511 }
512
513 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
514 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
515
516 // Pick the type to use. If the type is layout identical to the desired
517 // type then use it, otherwise use whatever the builder produced for us.
518 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
519 if (DesiredSTy->isLayoutIdentical(STy))
520 STy = DesiredSTy;
521 }
522
523 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
524}
525
526void ConstantAggregateBuilder::condense(CharUnits Offset,
527 llvm::Type *DesiredTy) {
528 CharUnits Size = getSize(DesiredTy);
529
530 std::optional<size_t> FirstElemToReplace = splitAt(Offset);
531 if (!FirstElemToReplace)
532 return;
533 size_t First = *FirstElemToReplace;
534
535 std::optional<size_t> LastElemToReplace = splitAt(Offset + Size);
536 if (!LastElemToReplace)
537 return;
538 size_t Last = *LastElemToReplace;
539
540 size_t Length = Last - First;
541 if (Length == 0)
542 return;
543
544 if (Length == 1 && Offsets[First] == Offset &&
545 getSize(Elems[First]) == Size) {
546 // Re-wrap single element structs if necessary. Otherwise, leave any single
547 // element constant of the right size alone even if it has the wrong type.
548 auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
549 if (STy && STy->getNumElements() == 1 &&
550 STy->getElementType(0) == Elems[First]->getType())
551 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
552 return;
553 }
554
555 llvm::Constant *Replacement = buildFrom(
556 CGM, ArrayRef(Elems).slice(First, Length),
557 ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
558 /*known to have natural layout=*/false, DesiredTy, false);
559 replace(Elems, First, Last, {Replacement});
560 replace(Offsets, First, Last, {Offset});
561}
562
563//===----------------------------------------------------------------------===//
564// ConstStructBuilder
565//===----------------------------------------------------------------------===//
566
567class ConstStructBuilder {
568 CodeGenModule &CGM;
570 ConstantAggregateBuilder &Builder;
571 CharUnits StartOffset;
572
573public:
574 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
575 const InitListExpr *ILE,
576 QualType StructTy);
577 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
578 const APValue &Value, QualType ValTy);
579 static bool UpdateStruct(ConstantEmitter &Emitter,
580 ConstantAggregateBuilder &Const, CharUnits Offset,
581 const InitListExpr *Updater);
582
583private:
584 ConstStructBuilder(ConstantEmitter &Emitter,
585 ConstantAggregateBuilder &Builder, CharUnits StartOffset)
586 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
587 StartOffset(StartOffset) {}
588
589 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
590 llvm::Constant *InitExpr, bool AllowOverwrite = false);
591
592 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
593 bool AllowOverwrite = false);
594
595 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
596 llvm::Constant *InitExpr, bool AllowOverwrite = false);
597
598 bool Build(const InitListExpr *ILE, bool AllowOverwrite);
599 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
600 const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
601 bool DoZeroInitPadding(const ASTRecordLayout &Layout, unsigned FieldNo,
602 const FieldDecl &Field, bool AllowOverwrite,
603 CharUnits &SizeSoFar, bool &ZeroFieldSize);
604 bool DoZeroInitPadding(const ASTRecordLayout &Layout, bool AllowOverwrite,
605 CharUnits SizeSoFar);
606 llvm::Constant *Finalize(QualType Ty);
607};
608
609bool ConstStructBuilder::AppendField(
610 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
611 bool AllowOverwrite) {
612 const ASTContext &Context = CGM.getContext();
613
614 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
615
616 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
617}
618
619bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
620 llvm::Constant *InitCst,
621 bool AllowOverwrite) {
622 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
623}
624
625bool ConstStructBuilder::AppendBitField(const FieldDecl *Field,
626 uint64_t FieldOffset, llvm::Constant *C,
627 bool AllowOverwrite) {
628
629 llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C);
630 if (!CI) {
631 // Constants for long _BitInt types are sometimes split into individual
632 // bytes. Try to fold these back into an integer constant. If that doesn't
633 // work out, then we are trying to initialize a bitfield with a non-trivial
634 // constant, this must require run-time code.
635 llvm::Type *LoadType =
636 CGM.getTypes().convertTypeForLoadStore(Field->getType(), C->getType());
637 llvm::Constant *FoldedConstant = llvm::ConstantFoldLoadFromConst(
638 C, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout());
639 CI = dyn_cast_if_present<llvm::ConstantInt>(FoldedConstant);
640 if (!CI)
641 return false;
642 }
643
644 const CGRecordLayout &RL =
645 CGM.getTypes().getCGRecordLayout(Field->getParent());
646 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
647 llvm::APInt FieldValue = CI->getValue();
648
649 // Promote the size of FieldValue if necessary
650 // FIXME: This should never occur, but currently it can because initializer
651 // constants are cast to bool, and because clang is not enforcing bitfield
652 // width limits.
653 if (Info.Size > FieldValue.getBitWidth())
654 FieldValue = FieldValue.zext(Info.Size);
655
656 // Truncate the size of FieldValue to the bit field size.
657 if (Info.Size < FieldValue.getBitWidth())
658 FieldValue = FieldValue.trunc(Info.Size);
659
660 return Builder.addBits(FieldValue,
661 CGM.getContext().toBits(StartOffset) + FieldOffset,
662 AllowOverwrite);
663}
664
665static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
666 ConstantAggregateBuilder &Const,
667 CharUnits Offset, QualType Type,
668 const InitListExpr *Updater) {
669 if (Type->isRecordType())
670 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
671
672 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
673 if (!CAT)
674 return false;
675 QualType ElemType = CAT->getElementType();
676 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
677 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
678
679 llvm::Constant *FillC = nullptr;
680 if (const Expr *Filler = Updater->getArrayFiller()) {
681 if (!isa<NoInitExpr>(Filler)) {
682 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
683 if (!FillC)
684 return false;
685 }
686 }
687
688 unsigned NumElementsToUpdate =
689 FillC ? CAT->getZExtSize() : Updater->getNumInits();
690 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
691 const Expr *Init = nullptr;
692 if (I < Updater->getNumInits())
693 Init = Updater->getInit(I);
694
695 if (!Init && FillC) {
696 if (!Const.add(FillC, Offset, true))
697 return false;
698 } else if (!Init || isa<NoInitExpr>(Init)) {
699 continue;
700 } else if (const auto *ChildILE = dyn_cast<InitListExpr>(Init)) {
701 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
702 ChildILE))
703 return false;
704 // Attempt to reduce the array element to a single constant if necessary.
705 Const.condense(Offset, ElemTy);
706 } else {
707 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
708 if (!Const.add(Val, Offset, true))
709 return false;
710 }
711 }
712
713 return true;
714}
715
716bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) {
717 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
718 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
719
720 unsigned FieldNo = -1;
721 unsigned ElementNo = 0;
722
723 // Bail out if we have base classes. We could support these, but they only
724 // arise in C++1z where we will have already constant folded most interesting
725 // cases. FIXME: There are still a few more cases we can handle this way.
726 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
727 if (CXXRD->getNumBases())
728 return false;
729
730 const bool ZeroInitPadding = CGM.shouldZeroInitPadding();
731 bool ZeroFieldSize = false;
732 CharUnits SizeSoFar = CharUnits::Zero();
733
734 for (FieldDecl *Field : RD->fields()) {
735 ++FieldNo;
736
737 // If this is a union, skip all the fields that aren't being initialized.
738 if (RD->isUnion() &&
740 continue;
741
742 // Don't emit anonymous bitfields.
743 if (Field->isUnnamedBitField())
744 continue;
745
746 // Get the initializer. A struct can include fields without initializers,
747 // we just use explicit null values for them.
748 const Expr *Init = nullptr;
749 if (ElementNo < ILE->getNumInits())
750 Init = ILE->getInit(ElementNo++);
751 if (isa_and_nonnull<NoInitExpr>(Init)) {
752 if (ZeroInitPadding &&
753 !DoZeroInitPadding(Layout, FieldNo, *Field, AllowOverwrite, SizeSoFar,
754 ZeroFieldSize))
755 return false;
756 continue;
757 }
758
759 // Zero-sized fields are not emitted, but their initializers may still
760 // prevent emission of this struct as a constant.
761 if (isEmptyFieldForLayout(CGM.getContext(), Field)) {
762 if (Init && Init->HasSideEffects(CGM.getContext()))
763 return false;
764 continue;
765 }
766
767 if (ZeroInitPadding &&
768 !DoZeroInitPadding(Layout, FieldNo, *Field, AllowOverwrite, SizeSoFar,
769 ZeroFieldSize))
770 return false;
771
772 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
773 // represents additional overwriting of our current constant value, and not
774 // a new constant to emit independently.
775 if (AllowOverwrite &&
776 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
777 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
779 Layout.getFieldOffset(FieldNo));
780 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
781 Field->getType(), SubILE))
782 return false;
783 // If we split apart the field's value, try to collapse it down to a
784 // single value now.
785 Builder.condense(StartOffset + Offset,
786 CGM.getTypes().ConvertTypeForMem(Field->getType()));
787 continue;
788 }
789 }
790
791 llvm::Constant *EltInit =
792 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
793 : Emitter.emitNullForMemory(Field->getType());
794 if (!EltInit)
795 return false;
796
797 if (ZeroInitPadding && ZeroFieldSize)
798 SizeSoFar += CharUnits::fromQuantity(
799 CGM.getDataLayout().getTypeAllocSize(EltInit->getType()));
800
801 if (!Field->isBitField()) {
802 // Handle non-bitfield members.
803 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
804 AllowOverwrite))
805 return false;
806 // After emitting a non-empty field with [[no_unique_address]], we may
807 // need to overwrite its tail padding.
808 if (Field->hasAttr<NoUniqueAddressAttr>())
809 AllowOverwrite = true;
810 } else {
811 // Otherwise we have a bitfield.
812 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), EltInit,
813 AllowOverwrite))
814 return false;
815 }
816 }
817
818 if (ZeroInitPadding && !DoZeroInitPadding(Layout, AllowOverwrite, SizeSoFar))
819 return false;
820
821 return true;
822}
823
824namespace {
825struct BaseInfo {
826 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
827 : Decl(Decl), Offset(Offset), Index(Index) {
828 }
829
830 const CXXRecordDecl *Decl;
831 CharUnits Offset;
832 unsigned Index;
833
834 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
835};
836}
837
838bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
839 bool IsPrimaryBase,
840 const CXXRecordDecl *VTableClass,
841 CharUnits Offset) {
842 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
843
844 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
845 // Add a vtable pointer, if we need one and it hasn't already been added.
846 if (Layout.hasOwnVFPtr()) {
847 llvm::Constant *VTableAddressPoint =
849 VTableClass);
850 if (auto Authentication = CGM.getVTablePointerAuthentication(CD)) {
851 VTableAddressPoint = Emitter.tryEmitConstantSignedPointer(
852 VTableAddressPoint, *Authentication);
853 if (!VTableAddressPoint)
854 return false;
855 }
856 if (!AppendBytes(Offset, VTableAddressPoint))
857 return false;
858 }
859
860 // Accumulate and sort bases, in order to visit them in address order, which
861 // may not be the same as declaration order.
863 Bases.reserve(CD->getNumBases());
864 unsigned BaseNo = 0;
865 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
866 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
867 assert(!Base->isVirtual() && "should not have virtual bases here");
868 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
869 CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
870 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
871 }
872 llvm::stable_sort(Bases);
873
874 for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
875 BaseInfo &Base = Bases[I];
876
877 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
878 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
879 VTableClass, Offset + Base.Offset);
880 }
881 }
882
883 unsigned FieldNo = 0;
884 uint64_t OffsetBits = CGM.getContext().toBits(Offset);
885 const bool ZeroInitPadding = CGM.shouldZeroInitPadding();
886 bool ZeroFieldSize = false;
887 CharUnits SizeSoFar = CharUnits::Zero();
888
889 bool AllowOverwrite = false;
890 for (RecordDecl::field_iterator Field = RD->field_begin(),
891 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
892 // If this is a union, skip all the fields that aren't being initialized.
893 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
894 continue;
895
896 // Don't emit anonymous bitfields or zero-sized fields.
897 if (Field->isUnnamedBitField() ||
898 isEmptyFieldForLayout(CGM.getContext(), *Field))
899 continue;
900
901 // Emit the value of the initializer.
902 const APValue &FieldValue =
903 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
904 llvm::Constant *EltInit =
905 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
906 if (!EltInit)
907 return false;
908
909 if (ZeroInitPadding) {
910 if (!DoZeroInitPadding(Layout, FieldNo, **Field, AllowOverwrite,
911 SizeSoFar, ZeroFieldSize))
912 return false;
913 if (ZeroFieldSize)
914 SizeSoFar += CharUnits::fromQuantity(
915 CGM.getDataLayout().getTypeAllocSize(EltInit->getType()));
916 }
917
918 if (!Field->isBitField()) {
919 // Handle non-bitfield members.
920 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
921 EltInit, AllowOverwrite))
922 return false;
923 // After emitting a non-empty field with [[no_unique_address]], we may
924 // need to overwrite its tail padding.
925 if (Field->hasAttr<NoUniqueAddressAttr>())
926 AllowOverwrite = true;
927 } else {
928 // Otherwise we have a bitfield.
929 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
930 EltInit, AllowOverwrite))
931 return false;
932 }
933 }
934 if (ZeroInitPadding && !DoZeroInitPadding(Layout, AllowOverwrite, SizeSoFar))
935 return false;
936
937 return true;
938}
939
940bool ConstStructBuilder::DoZeroInitPadding(
941 const ASTRecordLayout &Layout, unsigned FieldNo, const FieldDecl &Field,
942 bool AllowOverwrite, CharUnits &SizeSoFar, bool &ZeroFieldSize) {
943 uint64_t StartBitOffset = Layout.getFieldOffset(FieldNo);
944 CharUnits StartOffset = CGM.getContext().toCharUnitsFromBits(StartBitOffset);
945 if (SizeSoFar < StartOffset)
946 if (!AppendBytes(SizeSoFar, getPadding(CGM, StartOffset - SizeSoFar),
947 AllowOverwrite))
948 return false;
949
950 if (!Field.isBitField()) {
951 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field.getType());
952 SizeSoFar = StartOffset + FieldSize;
953 ZeroFieldSize = FieldSize.isZero();
954 } else {
955 const CGRecordLayout &RL =
956 CGM.getTypes().getCGRecordLayout(Field.getParent());
957 const CGBitFieldInfo &Info = RL.getBitFieldInfo(&Field);
958 uint64_t EndBitOffset = StartBitOffset + Info.Size;
959 SizeSoFar = CGM.getContext().toCharUnitsFromBits(EndBitOffset);
960 if (EndBitOffset % CGM.getContext().getCharWidth() != 0) {
961 SizeSoFar++;
962 }
963 ZeroFieldSize = Info.Size == 0;
964 }
965 return true;
966}
967
968bool ConstStructBuilder::DoZeroInitPadding(const ASTRecordLayout &Layout,
969 bool AllowOverwrite,
970 CharUnits SizeSoFar) {
971 CharUnits TotalSize = Layout.getSize();
972 if (SizeSoFar < TotalSize)
973 if (!AppendBytes(SizeSoFar, getPadding(CGM, TotalSize - SizeSoFar),
974 AllowOverwrite))
975 return false;
976 SizeSoFar = TotalSize;
977 return true;
978}
979
980llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
981 Type = Type.getNonReferenceType();
982 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
983 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
984 return Builder.build(ValTy, RD->hasFlexibleArrayMember());
985}
986
987llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
988 const InitListExpr *ILE,
989 QualType ValTy) {
990 ConstantAggregateBuilder Const(Emitter.CGM);
991 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
992
993 if (!Builder.Build(ILE, /*AllowOverwrite*/false))
994 return nullptr;
995
996 return Builder.Finalize(ValTy);
997}
998
999llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
1000 const APValue &Val,
1001 QualType ValTy) {
1002 ConstantAggregateBuilder Const(Emitter.CGM);
1003 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
1004
1005 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
1006 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
1007 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
1008 return nullptr;
1009
1010 return Builder.Finalize(ValTy);
1011}
1012
1013bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
1014 ConstantAggregateBuilder &Const,
1015 CharUnits Offset,
1016 const InitListExpr *Updater) {
1017 return ConstStructBuilder(Emitter, Const, Offset)
1018 .Build(Updater, /*AllowOverwrite*/ true);
1019}
1020
1021//===----------------------------------------------------------------------===//
1022// ConstExprEmitter
1023//===----------------------------------------------------------------------===//
1024
1025static ConstantAddress
1026tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
1027 const CompoundLiteralExpr *E) {
1028 CodeGenModule &CGM = emitter.CGM;
1030 if (llvm::GlobalVariable *Addr =
1032 return ConstantAddress(Addr, Addr->getValueType(), Align);
1033
1034 LangAS addressSpace = E->getType().getAddressSpace();
1035 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
1036 addressSpace, E->getType());
1037 if (!C) {
1038 assert(!E->isFileScope() &&
1039 "file-scope compound literal did not have constant initializer!");
1040 return ConstantAddress::invalid();
1041 }
1042
1043 auto GV = new llvm::GlobalVariable(
1044 CGM.getModule(), C->getType(),
1045 E->getType().isConstantStorage(CGM.getContext(), true, false),
1046 llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
1047 llvm::GlobalVariable::NotThreadLocal,
1048 CGM.getContext().getTargetAddressSpace(addressSpace));
1049 emitter.finalize(GV);
1050 GV->setAlignment(Align.getAsAlign());
1052 return ConstantAddress(GV, GV->getValueType(), Align);
1053}
1054
1055static llvm::Constant *
1056EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
1057 llvm::Type *CommonElementType, uint64_t ArrayBound,
1059 llvm::Constant *Filler) {
1060 // Figure out how long the initial prefix of non-zero elements is.
1061 uint64_t NonzeroLength = ArrayBound;
1062 if (Elements.size() < NonzeroLength && Filler->isNullValue())
1063 NonzeroLength = Elements.size();
1064 if (NonzeroLength == Elements.size()) {
1065 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
1066 --NonzeroLength;
1067 }
1068
1069 if (NonzeroLength == 0)
1070 return llvm::ConstantAggregateZero::get(DesiredType);
1071
1072 // Add a zeroinitializer array filler if we have lots of trailing zeroes.
1073 uint64_t TrailingZeroes = ArrayBound - NonzeroLength;
1074 if (TrailingZeroes >= 8) {
1075 assert(Elements.size() >= NonzeroLength &&
1076 "missing initializer for non-zero element");
1077
1078 // If all the elements had the same type up to the trailing zeroes, emit a
1079 // struct of two arrays (the nonzero data and the zeroinitializer).
1080 if (CommonElementType && NonzeroLength >= 8) {
1081 llvm::Constant *Initial = llvm::ConstantArray::get(
1082 llvm::ArrayType::get(CommonElementType, NonzeroLength),
1083 ArrayRef(Elements).take_front(NonzeroLength));
1084 Elements.resize(2);
1085 Elements[0] = Initial;
1086 } else {
1087 Elements.resize(NonzeroLength + 1);
1088 }
1089
1090 auto *FillerType =
1091 CommonElementType ? CommonElementType : DesiredType->getElementType();
1092 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
1093 Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
1094 CommonElementType = nullptr;
1095 } else if (Elements.size() != ArrayBound) {
1096 // Otherwise pad to the right size with the filler if necessary.
1097 Elements.resize(ArrayBound, Filler);
1098 if (Filler->getType() != CommonElementType)
1099 CommonElementType = nullptr;
1100 }
1101
1102 // If all elements have the same type, just emit an array constant.
1103 if (CommonElementType)
1104 return llvm::ConstantArray::get(
1105 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
1106
1107 // We have mixed types. Use a packed struct.
1109 Types.reserve(Elements.size());
1110 for (llvm::Constant *Elt : Elements)
1111 Types.push_back(Elt->getType());
1112 llvm::StructType *SType =
1113 llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1114 return llvm::ConstantStruct::get(SType, Elements);
1115}
1116
1117// This class only needs to handle arrays, structs and unions. Outside C++11
1118// mode, we don't currently constant fold those types. All other types are
1119// handled by constant folding.
1120//
1121// Constant folding is currently missing support for a few features supported
1122// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1123class ConstExprEmitter
1124 : public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> {
1125 CodeGenModule &CGM;
1127 llvm::LLVMContext &VMContext;
1128public:
1129 ConstExprEmitter(ConstantEmitter &emitter)
1130 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1131 }
1132
1133 //===--------------------------------------------------------------------===//
1134 // Visitor Methods
1135 //===--------------------------------------------------------------------===//
1136
1137 llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; }
1138
1139 llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) {
1140 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1141 return Result;
1142 return Visit(CE->getSubExpr(), T);
1143 }
1144
1145 llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) {
1146 return Visit(PE->getSubExpr(), T);
1147 }
1148
1149 llvm::Constant *
1150 VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE,
1151 QualType T) {
1152 return Visit(PE->getReplacement(), T);
1153 }
1154
1155 llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE,
1156 QualType T) {
1157 return Visit(GE->getResultExpr(), T);
1158 }
1159
1160 llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) {
1161 return Visit(CE->getChosenSubExpr(), T);
1162 }
1163
1164 llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E,
1165 QualType T) {
1166 return Visit(E->getInitializer(), T);
1167 }
1168
1169 llvm::Constant *ProduceIntToIntCast(const Expr *E, QualType DestType) {
1170 QualType FromType = E->getType();
1171 // See also HandleIntToIntCast in ExprConstant.cpp
1172 if (FromType->isIntegerType())
1173 if (llvm::Constant *C = Visit(E, FromType))
1174 if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1175 unsigned SrcWidth = CGM.getContext().getIntWidth(FromType);
1176 unsigned DstWidth = CGM.getContext().getIntWidth(DestType);
1177 if (DstWidth == SrcWidth)
1178 return CI;
1179 llvm::APInt A = FromType->isSignedIntegerType()
1180 ? CI->getValue().sextOrTrunc(DstWidth)
1181 : CI->getValue().zextOrTrunc(DstWidth);
1182 return llvm::ConstantInt::get(CGM.getLLVMContext(), A);
1183 }
1184 return nullptr;
1185 }
1186
1187 llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) {
1188 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1189 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1190 const Expr *subExpr = E->getSubExpr();
1191
1192 switch (E->getCastKind()) {
1193 case CK_ToUnion: {
1194 // GCC cast to union extension
1195 assert(E->getType()->isUnionType() &&
1196 "Destination type is not union type!");
1197
1198 auto field = E->getTargetUnionField();
1199
1200 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1201 if (!C) return nullptr;
1202
1203 auto destTy = ConvertType(destType);
1204 if (C->getType() == destTy) return C;
1205
1206 // Build a struct with the union sub-element as the first member,
1207 // and padded to the appropriate size.
1210 Elts.push_back(C);
1211 Types.push_back(C->getType());
1212 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1213 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1214
1215 assert(CurSize <= TotalSize && "Union size mismatch!");
1216 if (unsigned NumPadBytes = TotalSize - CurSize) {
1217 llvm::Constant *Padding =
1218 getPadding(CGM, CharUnits::fromQuantity(NumPadBytes));
1219 Elts.push_back(Padding);
1220 Types.push_back(Padding->getType());
1221 }
1222
1223 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1224 return llvm::ConstantStruct::get(STy, Elts);
1225 }
1226
1227 case CK_AddressSpaceConversion: {
1228 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1229 if (!C) return nullptr;
1231 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1232 llvm::Type *destTy = ConvertType(E->getType());
1233 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1234 destAS, destTy);
1235 }
1236
1237 case CK_LValueToRValue: {
1238 // We don't really support doing lvalue-to-rvalue conversions here; any
1239 // interesting conversions should be done in Evaluate(). But as a
1240 // special case, allow compound literals to support the gcc extension
1241 // allowing "struct x {int x;} x = (struct x) {};".
1242 if (const auto *E =
1243 dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1244 return Visit(E->getInitializer(), destType);
1245 return nullptr;
1246 }
1247
1248 case CK_AtomicToNonAtomic:
1249 case CK_NonAtomicToAtomic:
1250 case CK_NoOp:
1251 case CK_ConstructorConversion:
1252 return Visit(subExpr, destType);
1253
1254 case CK_ArrayToPointerDecay:
1255 if (const auto *S = dyn_cast<StringLiteral>(subExpr))
1257 return nullptr;
1258 case CK_NullToPointer:
1259 if (Visit(subExpr, destType))
1260 return CGM.EmitNullConstant(destType);
1261 return nullptr;
1262
1263 case CK_IntToOCLSampler:
1264 llvm_unreachable("global sampler variables are not generated");
1265
1266 case CK_IntegralCast:
1267 return ProduceIntToIntCast(subExpr, destType);
1268
1269 case CK_Dependent: llvm_unreachable("saw dependent cast!");
1270
1271 case CK_BuiltinFnToFnPtr:
1272 llvm_unreachable("builtin functions are handled elsewhere");
1273
1274 case CK_ReinterpretMemberPointer:
1275 case CK_DerivedToBaseMemberPointer:
1276 case CK_BaseToDerivedMemberPointer: {
1277 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1278 if (!C) return nullptr;
1280 }
1281
1282 // These will never be supported.
1283 case CK_ObjCObjectLValueCast:
1284 case CK_ARCProduceObject:
1285 case CK_ARCConsumeObject:
1286 case CK_ARCReclaimReturnedObject:
1287 case CK_ARCExtendBlockObject:
1288 case CK_CopyAndAutoreleaseBlockObject:
1289 return nullptr;
1290
1291 // These don't need to be handled here because Evaluate knows how to
1292 // evaluate them in the cases where they can be folded.
1293 case CK_BitCast:
1294 case CK_ToVoid:
1295 case CK_Dynamic:
1296 case CK_LValueBitCast:
1297 case CK_LValueToRValueBitCast:
1298 case CK_NullToMemberPointer:
1299 case CK_UserDefinedConversion:
1300 case CK_CPointerToObjCPointerCast:
1301 case CK_BlockPointerToObjCPointerCast:
1302 case CK_AnyPointerToBlockPointerCast:
1303 case CK_FunctionToPointerDecay:
1304 case CK_BaseToDerived:
1305 case CK_DerivedToBase:
1306 case CK_UncheckedDerivedToBase:
1307 case CK_MemberPointerToBoolean:
1308 case CK_VectorSplat:
1309 case CK_FloatingRealToComplex:
1310 case CK_FloatingComplexToReal:
1311 case CK_FloatingComplexToBoolean:
1312 case CK_FloatingComplexCast:
1313 case CK_FloatingComplexToIntegralComplex:
1314 case CK_IntegralRealToComplex:
1315 case CK_IntegralComplexToReal:
1316 case CK_IntegralComplexToBoolean:
1317 case CK_IntegralComplexCast:
1318 case CK_IntegralComplexToFloatingComplex:
1319 case CK_PointerToIntegral:
1320 case CK_PointerToBoolean:
1321 case CK_BooleanToSignedIntegral:
1322 case CK_IntegralToPointer:
1323 case CK_IntegralToBoolean:
1324 case CK_IntegralToFloating:
1325 case CK_FloatingToIntegral:
1326 case CK_FloatingToBoolean:
1327 case CK_FloatingCast:
1328 case CK_FloatingToFixedPoint:
1329 case CK_FixedPointToFloating:
1330 case CK_FixedPointCast:
1331 case CK_FixedPointToBoolean:
1332 case CK_FixedPointToIntegral:
1333 case CK_IntegralToFixedPoint:
1334 case CK_ZeroToOCLOpaqueType:
1335 case CK_MatrixCast:
1336 case CK_HLSLVectorTruncation:
1337 case CK_HLSLArrayRValue:
1338 return nullptr;
1339 }
1340 llvm_unreachable("Invalid CastKind");
1341 }
1342
1343 llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE,
1344 QualType T) {
1345 // No need for a DefaultInitExprScope: we don't handle 'this' in a
1346 // constant expression.
1347 return Visit(DIE->getExpr(), T);
1348 }
1349
1350 llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) {
1351 return Visit(E->getSubExpr(), T);
1352 }
1353
1354 llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) {
1355 return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1356 }
1357
1358 static APValue withDestType(ASTContext &Ctx, const Expr *E, QualType SrcType,
1359 QualType DestType, const llvm::APSInt &Value) {
1360 if (!Ctx.hasSameType(SrcType, DestType)) {
1361 if (DestType->isFloatingType()) {
1362 llvm::APFloat Result =
1363 llvm::APFloat(Ctx.getFloatTypeSemantics(DestType), 1);
1364 llvm::RoundingMode RM =
1366 if (RM == llvm::RoundingMode::Dynamic)
1367 RM = llvm::RoundingMode::NearestTiesToEven;
1368 Result.convertFromAPInt(Value, Value.isSigned(), RM);
1369 return APValue(Result);
1370 }
1371 }
1372 return APValue(Value);
1373 }
1374
1375 llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) {
1376 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1377 assert(CAT && "can't emit array init for non-constant-bound array");
1378 uint64_t NumInitElements = ILE->getNumInits();
1379 const uint64_t NumElements = CAT->getZExtSize();
1380 for (const auto *Init : ILE->inits()) {
1381 if (const auto *Embed =
1382 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1383 NumInitElements += Embed->getDataElementCount() - 1;
1384 if (NumInitElements > NumElements) {
1385 NumInitElements = NumElements;
1386 break;
1387 }
1388 }
1389 }
1390
1391 // Initialising an array requires us to automatically
1392 // initialise any elements that have not been initialised explicitly
1393 uint64_t NumInitableElts = std::min<uint64_t>(NumInitElements, NumElements);
1394
1395 QualType EltType = CAT->getElementType();
1396
1397 // Initialize remaining array elements.
1398 llvm::Constant *fillC = nullptr;
1399 if (const Expr *filler = ILE->getArrayFiller()) {
1400 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1401 if (!fillC)
1402 return nullptr;
1403 }
1404
1405 // Copy initializer elements.
1407 if (fillC && fillC->isNullValue())
1408 Elts.reserve(NumInitableElts + 1);
1409 else
1410 Elts.reserve(NumElements);
1411
1412 llvm::Type *CommonElementType = nullptr;
1413 auto Emit = [&](const Expr *Init, unsigned ArrayIndex) {
1414 llvm::Constant *C = nullptr;
1415 C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1416 if (!C)
1417 return false;
1418 if (ArrayIndex == 0)
1419 CommonElementType = C->getType();
1420 else if (C->getType() != CommonElementType)
1421 CommonElementType = nullptr;
1422 Elts.push_back(C);
1423 return true;
1424 };
1425
1426 unsigned ArrayIndex = 0;
1427 QualType DestTy = CAT->getElementType();
1428 for (unsigned i = 0; i < ILE->getNumInits(); ++i) {
1429 const Expr *Init = ILE->getInit(i);
1430 if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1431 StringLiteral *SL = EmbedS->getDataStringLiteral();
1432 llvm::APSInt Value(CGM.getContext().getTypeSize(DestTy),
1433 DestTy->isUnsignedIntegerType());
1434 llvm::Constant *C;
1435 for (unsigned I = EmbedS->getStartingElementPos(),
1436 N = EmbedS->getDataElementCount();
1437 I != EmbedS->getStartingElementPos() + N; ++I) {
1438 Value = SL->getCodeUnit(I);
1439 if (DestTy->isIntegerType()) {
1440 C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value);
1441 } else {
1442 C = Emitter.tryEmitPrivateForMemory(
1443 withDestType(CGM.getContext(), Init, EmbedS->getType(), DestTy,
1444 Value),
1445 EltType);
1446 }
1447 if (!C)
1448 return nullptr;
1449 Elts.push_back(C);
1450 ArrayIndex++;
1451 }
1452 if ((ArrayIndex - EmbedS->getDataElementCount()) == 0)
1453 CommonElementType = C->getType();
1454 else if (C->getType() != CommonElementType)
1455 CommonElementType = nullptr;
1456 } else {
1457 if (!Emit(Init, ArrayIndex))
1458 return nullptr;
1459 ArrayIndex++;
1460 }
1461 }
1462
1463 llvm::ArrayType *Desired =
1464 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1465 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1466 fillC);
1467 }
1468
1469 llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE,
1470 QualType T) {
1471 return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1472 }
1473
1474 llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E,
1475 QualType T) {
1476 return CGM.EmitNullConstant(T);
1477 }
1478
1479 llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) {
1480 if (ILE->isTransparent())
1481 return Visit(ILE->getInit(0), T);
1482
1483 if (ILE->getType()->isArrayType())
1484 return EmitArrayInitialization(ILE, T);
1485
1486 if (ILE->getType()->isRecordType())
1487 return EmitRecordInitialization(ILE, T);
1488
1489 return nullptr;
1490 }
1491
1492 llvm::Constant *
1493 VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E,
1494 QualType destType) {
1495 auto C = Visit(E->getBase(), destType);
1496 if (!C)
1497 return nullptr;
1498
1499 ConstantAggregateBuilder Const(CGM);
1500 Const.add(C, CharUnits::Zero(), false);
1501
1502 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1503 E->getUpdater()))
1504 return nullptr;
1505
1506 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1507 bool HasFlexibleArray = false;
1508 if (const auto *RT = destType->getAs<RecordType>())
1509 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1510 return Const.build(ValTy, HasFlexibleArray);
1511 }
1512
1513 llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E,
1514 QualType Ty) {
1515 if (!E->getConstructor()->isTrivial())
1516 return nullptr;
1517
1518 // Only default and copy/move constructors can be trivial.
1519 if (E->getNumArgs()) {
1520 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1521 assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1522 "trivial ctor has argument but isn't a copy/move ctor");
1523
1524 const Expr *Arg = E->getArg(0);
1525 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1526 "argument to copy ctor is of wrong type");
1527
1528 // Look through the temporary; it's just converting the value to an
1529 // lvalue to pass it to the constructor.
1530 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg))
1531 return Visit(MTE->getSubExpr(), Ty);
1532 // Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1533 return nullptr;
1534 }
1535
1536 return CGM.EmitNullConstant(Ty);
1537 }
1538
1539 llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) {
1540 // This is a string literal initializing an array in an initializer.
1542 }
1543
1544 llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) {
1545 // This must be an @encode initializing an array in a static initializer.
1546 // Don't emit it as the address of the string, emit the string data itself
1547 // as an inline array.
1548 std::string Str;
1549 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1551 assert(CAT && "String data not of constant array type!");
1552
1553 // Resize the string to the right size, adding zeros at the end, or
1554 // truncating as needed.
1555 Str.resize(CAT->getZExtSize(), '\0');
1556 return llvm::ConstantDataArray::getString(VMContext, Str, false);
1557 }
1558
1559 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1560 return Visit(E->getSubExpr(), T);
1561 }
1562
1563 llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) {
1564 if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1565 if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1566 return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1567 return nullptr;
1568 }
1569
1570 llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) {
1571 return Visit(E->getSelectedExpr(), T);
1572 }
1573
1574 // Utility methods
1575 llvm::Type *ConvertType(QualType T) {
1576 return CGM.getTypes().ConvertType(T);
1577 }
1578};
1579
1580} // end anonymous namespace.
1581
1582llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1583 AbstractState saved) {
1584 Abstract = saved.OldValue;
1585
1586 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1587 "created a placeholder while doing an abstract emission?");
1588
1589 // No validation necessary for now.
1590 // No cleanup to do for now.
1591 return C;
1592}
1593
1594llvm::Constant *
1596 auto state = pushAbstract();
1598 return validateAndPopAbstract(C, state);
1599}
1600
1601llvm::Constant *
1603 auto state = pushAbstract();
1604 auto C = tryEmitPrivate(E, destType);
1605 return validateAndPopAbstract(C, state);
1606}
1607
1608llvm::Constant *
1610 auto state = pushAbstract();
1611 auto C = tryEmitPrivate(value, destType);
1612 return validateAndPopAbstract(C, state);
1613}
1614
1616 if (!CE->hasAPValueResult())
1617 return nullptr;
1618
1619 QualType RetType = CE->getType();
1620 if (CE->isGLValue())
1621 RetType = CGM.getContext().getLValueReferenceType(RetType);
1622
1623 return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1624}
1625
1626llvm::Constant *
1628 auto state = pushAbstract();
1629 auto C = tryEmitPrivate(E, destType);
1630 C = validateAndPopAbstract(C, state);
1631 if (!C) {
1632 CGM.Error(E->getExprLoc(),
1633 "internal error: could not emit constant value \"abstractly\"");
1634 C = CGM.EmitNullConstant(destType);
1635 }
1636 return C;
1637}
1638
1639llvm::Constant *
1641 QualType destType,
1642 bool EnablePtrAuthFunctionTypeDiscrimination) {
1643 auto state = pushAbstract();
1644 auto C =
1645 tryEmitPrivate(value, destType, EnablePtrAuthFunctionTypeDiscrimination);
1646 C = validateAndPopAbstract(C, state);
1647 if (!C) {
1648 CGM.Error(loc,
1649 "internal error: could not emit constant value \"abstractly\"");
1650 C = CGM.EmitNullConstant(destType);
1651 }
1652 return C;
1653}
1654
1656 initializeNonAbstract(D.getType().getAddressSpace());
1657 return markIfFailed(tryEmitPrivateForVarInit(D));
1658}
1659
1661 LangAS destAddrSpace,
1662 QualType destType) {
1663 initializeNonAbstract(destAddrSpace);
1664 return markIfFailed(tryEmitPrivateForMemory(E, destType));
1665}
1666
1668 LangAS destAddrSpace,
1669 QualType destType) {
1670 initializeNonAbstract(destAddrSpace);
1671 auto C = tryEmitPrivateForMemory(value, destType);
1672 assert(C && "couldn't emit constant value non-abstractly?");
1673 return C;
1674}
1675
1677 assert(!Abstract && "cannot get current address for abstract constant");
1678
1679
1680
1681 // Make an obviously ill-formed global that should blow up compilation
1682 // if it survives.
1683 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1684 llvm::GlobalValue::PrivateLinkage,
1685 /*init*/ nullptr,
1686 /*name*/ "",
1687 /*before*/ nullptr,
1688 llvm::GlobalVariable::NotThreadLocal,
1689 CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1690
1691 PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1692
1693 return global;
1694}
1695
1697 llvm::GlobalValue *placeholder) {
1698 assert(!PlaceholderAddresses.empty());
1699 assert(PlaceholderAddresses.back().first == nullptr);
1700 assert(PlaceholderAddresses.back().second == placeholder);
1701 PlaceholderAddresses.back().first = signal;
1702}
1703
1704namespace {
1705 struct ReplacePlaceholders {
1706 CodeGenModule &CGM;
1707
1708 /// The base address of the global.
1709 llvm::Constant *Base;
1710 llvm::Type *BaseValueTy = nullptr;
1711
1712 /// The placeholder addresses that were registered during emission.
1713 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1714
1715 /// The locations of the placeholder signals.
1716 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1717
1718 /// The current index stack. We use a simple unsigned stack because
1719 /// we assume that placeholders will be relatively sparse in the
1720 /// initializer, but we cache the index values we find just in case.
1723
1724 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1725 ArrayRef<std::pair<llvm::Constant*,
1726 llvm::GlobalVariable*>> addresses)
1727 : CGM(CGM), Base(base),
1728 PlaceholderAddresses(addresses.begin(), addresses.end()) {
1729 }
1730
1731 void replaceInInitializer(llvm::Constant *init) {
1732 // Remember the type of the top-most initializer.
1733 BaseValueTy = init->getType();
1734
1735 // Initialize the stack.
1736 Indices.push_back(0);
1737 IndexValues.push_back(nullptr);
1738
1739 // Recurse into the initializer.
1740 findLocations(init);
1741
1742 // Check invariants.
1743 assert(IndexValues.size() == Indices.size() && "mismatch");
1744 assert(Indices.size() == 1 && "didn't pop all indices");
1745
1746 // Do the replacement; this basically invalidates 'init'.
1747 assert(Locations.size() == PlaceholderAddresses.size() &&
1748 "missed a placeholder?");
1749
1750 // We're iterating over a hashtable, so this would be a source of
1751 // non-determinism in compiler output *except* that we're just
1752 // messing around with llvm::Constant structures, which never itself
1753 // does anything that should be visible in compiler output.
1754 for (auto &entry : Locations) {
1755 assert(entry.first->getName() == "" && "not a placeholder!");
1756 entry.first->replaceAllUsesWith(entry.second);
1757 entry.first->eraseFromParent();
1758 }
1759 }
1760
1761 private:
1762 void findLocations(llvm::Constant *init) {
1763 // Recurse into aggregates.
1764 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1765 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1766 Indices.push_back(i);
1767 IndexValues.push_back(nullptr);
1768
1769 findLocations(agg->getOperand(i));
1770
1771 IndexValues.pop_back();
1772 Indices.pop_back();
1773 }
1774 return;
1775 }
1776
1777 // Otherwise, check for registered constants.
1778 while (true) {
1779 auto it = PlaceholderAddresses.find(init);
1780 if (it != PlaceholderAddresses.end()) {
1781 setLocation(it->second);
1782 break;
1783 }
1784
1785 // Look through bitcasts or other expressions.
1786 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1787 init = expr->getOperand(0);
1788 } else {
1789 break;
1790 }
1791 }
1792 }
1793
1794 void setLocation(llvm::GlobalVariable *placeholder) {
1795 assert(!Locations.contains(placeholder) &&
1796 "already found location for placeholder!");
1797
1798 // Lazily fill in IndexValues with the values from Indices.
1799 // We do this in reverse because we should always have a strict
1800 // prefix of indices from the start.
1801 assert(Indices.size() == IndexValues.size());
1802 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1803 if (IndexValues[i]) {
1804#ifndef NDEBUG
1805 for (size_t j = 0; j != i + 1; ++j) {
1806 assert(IndexValues[j] &&
1807 isa<llvm::ConstantInt>(IndexValues[j]) &&
1808 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1809 == Indices[j]);
1810 }
1811#endif
1812 break;
1813 }
1814
1815 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1816 }
1817
1818 llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1819 BaseValueTy, Base, IndexValues);
1820
1821 Locations.insert({placeholder, location});
1822 }
1823 };
1824}
1825
1826void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1827 assert(InitializedNonAbstract &&
1828 "finalizing emitter that was used for abstract emission?");
1829 assert(!Finalized && "finalizing emitter multiple times");
1830 assert(global->getInitializer());
1831
1832 // Note that we might also be Failed.
1833 Finalized = true;
1834
1835 if (!PlaceholderAddresses.empty()) {
1836 ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1837 .replaceInInitializer(global->getInitializer());
1838 PlaceholderAddresses.clear(); // satisfy
1839 }
1840}
1841
1843 assert((!InitializedNonAbstract || Finalized || Failed) &&
1844 "not finalized after being initialized for non-abstract emission");
1845 assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1846}
1847
1849 if (auto AT = type->getAs<AtomicType>()) {
1850 return CGM.getContext().getQualifiedType(AT->getValueType(),
1851 type.getQualifiers());
1852 }
1853 return type;
1854}
1855
1857 // Make a quick check if variable can be default NULL initialized
1858 // and avoid going through rest of code which may do, for c++11,
1859 // initialization of memory to all NULLs.
1860 if (!D.hasLocalStorage()) {
1861 QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1862 if (Ty->isRecordType())
1863 if (const CXXConstructExpr *E =
1864 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1865 const CXXConstructorDecl *CD = E->getConstructor();
1866 if (CD->isTrivial() && CD->isDefaultConstructor())
1867 return CGM.EmitNullConstant(D.getType());
1868 }
1869 }
1870 InConstantContext = D.hasConstantInitialization();
1871
1872 QualType destType = D.getType();
1873 const Expr *E = D.getInit();
1874 assert(E && "No initializer to emit");
1875
1876 if (!destType->isReferenceType()) {
1877 QualType nonMemoryDestType = getNonMemoryType(CGM, destType);
1878 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, nonMemoryDestType))
1879 return emitForMemory(C, destType);
1880 }
1881
1882 // Try to emit the initializer. Note that this can allow some things that
1883 // are not allowed by tryEmitPrivateForMemory alone.
1884 if (APValue *value = D.evaluateValue())
1885 return tryEmitPrivateForMemory(*value, destType);
1886
1887 return nullptr;
1888}
1889
1890llvm::Constant *
1892 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1893 auto C = tryEmitAbstract(E, nonMemoryDestType);
1894 return (C ? emitForMemory(C, destType) : nullptr);
1895}
1896
1897llvm::Constant *
1899 QualType destType) {
1900 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1901 auto C = tryEmitAbstract(value, nonMemoryDestType);
1902 return (C ? emitForMemory(C, destType) : nullptr);
1903}
1904
1906 QualType destType) {
1907 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1908 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1909 return (C ? emitForMemory(C, destType) : nullptr);
1910}
1911
1913 QualType destType) {
1914 auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1915 auto C = tryEmitPrivate(value, nonMemoryDestType);
1916 return (C ? emitForMemory(C, destType) : nullptr);
1917}
1918
1919/// Try to emit a constant signed pointer, given a raw pointer and the
1920/// destination ptrauth qualifier.
1921///
1922/// This can fail if the qualifier needs address discrimination and the
1923/// emitter is in an abstract mode.
1924llvm::Constant *
1926 PointerAuthQualifier Schema) {
1927 assert(Schema && "applying trivial ptrauth schema");
1928
1929 if (Schema.hasKeyNone())
1930 return UnsignedPointer;
1931
1932 unsigned Key = Schema.getKey();
1933
1934 // Create an address placeholder if we're using address discrimination.
1935 llvm::GlobalValue *StorageAddress = nullptr;
1936 if (Schema.isAddressDiscriminated()) {
1937 // We can't do this if the emitter is in an abstract state.
1938 if (isAbstract())
1939 return nullptr;
1940
1941 StorageAddress = getCurrentAddrPrivate();
1942 }
1943
1944 llvm::ConstantInt *Discriminator =
1945 llvm::ConstantInt::get(CGM.IntPtrTy, Schema.getExtraDiscriminator());
1946
1947 llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
1948 UnsignedPointer, Key, StorageAddress, Discriminator);
1949
1950 if (Schema.isAddressDiscriminated())
1951 registerCurrentAddrPrivate(SignedPointer, StorageAddress);
1952
1953 return SignedPointer;
1954}
1955
1957 llvm::Constant *C,
1958 QualType destType) {
1959 // For an _Atomic-qualified constant, we may need to add tail padding.
1960 if (auto AT = destType->getAs<AtomicType>()) {
1961 QualType destValueType = AT->getValueType();
1962 C = emitForMemory(CGM, C, destValueType);
1963
1964 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1965 uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1966 if (innerSize == outerSize)
1967 return C;
1968
1969 assert(innerSize < outerSize && "emitted over-large constant for atomic");
1970 llvm::Constant *elts[] = {
1971 C,
1972 llvm::ConstantAggregateZero::get(
1973 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1974 };
1975 return llvm::ConstantStruct::getAnon(elts);
1976 }
1977
1978 // Zero-extend bool.
1979 if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) {
1980 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1981 llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1982 llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout());
1983 assert(Res && "Constant folding must succeed");
1984 return Res;
1985 }
1986
1987 if (destType->isBitIntType()) {
1988 ConstantAggregateBuilder Builder(CGM);
1989 llvm::Type *LoadStoreTy = CGM.getTypes().convertTypeForLoadStore(destType);
1990 // ptrtoint/inttoptr should not involve _BitInt in constant expressions, so
1991 // casting to ConstantInt is safe here.
1992 auto *CI = cast<llvm::ConstantInt>(C);
1993 llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1994 destType->isSignedIntegerOrEnumerationType() ? llvm::Instruction::SExt
1995 : llvm::Instruction::ZExt,
1996 CI, LoadStoreTy, CGM.getDataLayout());
1997 if (CGM.getTypes().typeRequiresSplitIntoByteArray(destType, C->getType())) {
1998 // Long _BitInt has array of bytes as in-memory type.
1999 // So, split constant into individual bytes.
2000 llvm::Type *DesiredTy = CGM.getTypes().ConvertTypeForMem(destType);
2001 llvm::APInt Value = cast<llvm::ConstantInt>(Res)->getValue();
2002 Builder.addBits(Value, /*OffsetInBits=*/0, /*AllowOverwrite=*/false);
2003 return Builder.build(DesiredTy, /*AllowOversized*/ false);
2004 }
2005 return Res;
2006 }
2007
2008 return C;
2009}
2010
2012 QualType destType) {
2013 assert(!destType->isVoidType() && "can't emit a void constant");
2014
2015 if (!destType->isReferenceType())
2016 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, destType))
2017 return C;
2018
2020
2021 bool Success = false;
2022
2023 if (destType->isReferenceType())
2025 else
2026 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
2027
2028 if (Success && !Result.HasSideEffects)
2029 return tryEmitPrivate(Result.Val, destType);
2030
2031 return nullptr;
2032}
2033
2034llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
2035 return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
2036}
2037
2038namespace {
2039/// A struct which can be used to peephole certain kinds of finalization
2040/// that normally happen during l-value emission.
2041struct ConstantLValue {
2042 llvm::Constant *Value;
2043 bool HasOffsetApplied;
2044
2045 /*implicit*/ ConstantLValue(llvm::Constant *value,
2046 bool hasOffsetApplied = false)
2047 : Value(value), HasOffsetApplied(hasOffsetApplied) {}
2048
2049 /*implicit*/ ConstantLValue(ConstantAddress address)
2050 : ConstantLValue(address.getPointer()) {}
2051};
2052
2053/// A helper class for emitting constant l-values.
2054class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
2055 ConstantLValue> {
2056 CodeGenModule &CGM;
2058 const APValue &Value;
2059 QualType DestType;
2060 bool EnablePtrAuthFunctionTypeDiscrimination;
2061
2062 // Befriend StmtVisitorBase so that we don't have to expose Visit*.
2063 friend StmtVisitorBase;
2064
2065public:
2066 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
2067 QualType destType,
2068 bool EnablePtrAuthFunctionTypeDiscrimination = true)
2069 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType),
2070 EnablePtrAuthFunctionTypeDiscrimination(
2071 EnablePtrAuthFunctionTypeDiscrimination) {}
2072
2073 llvm::Constant *tryEmit();
2074
2075private:
2076 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
2077 ConstantLValue tryEmitBase(const APValue::LValueBase &base);
2078
2079 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
2080 ConstantLValue VisitConstantExpr(const ConstantExpr *E);
2081 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
2082 ConstantLValue VisitStringLiteral(const StringLiteral *E);
2083 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
2084 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
2085 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
2086 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
2087 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
2088 ConstantLValue VisitCallExpr(const CallExpr *E);
2089 ConstantLValue VisitBlockExpr(const BlockExpr *E);
2090 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2091 ConstantLValue VisitMaterializeTemporaryExpr(
2093
2094 ConstantLValue emitPointerAuthSignConstant(const CallExpr *E);
2095 llvm::Constant *emitPointerAuthPointer(const Expr *E);
2096 unsigned emitPointerAuthKey(const Expr *E);
2097 std::pair<llvm::Constant *, llvm::ConstantInt *>
2098 emitPointerAuthDiscriminator(const Expr *E);
2099
2100 bool hasNonZeroOffset() const {
2101 return !Value.getLValueOffset().isZero();
2102 }
2103
2104 /// Return the value offset.
2105 llvm::Constant *getOffset() {
2106 return llvm::ConstantInt::get(CGM.Int64Ty,
2107 Value.getLValueOffset().getQuantity());
2108 }
2109
2110 /// Apply the value offset to the given constant.
2111 llvm::Constant *applyOffset(llvm::Constant *C) {
2112 if (!hasNonZeroOffset())
2113 return C;
2114
2115 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
2116 }
2117};
2118
2119}
2120
2121llvm::Constant *ConstantLValueEmitter::tryEmit() {
2122 const APValue::LValueBase &base = Value.getLValueBase();
2123
2124 // The destination type should be a pointer or reference
2125 // type, but it might also be a cast thereof.
2126 //
2127 // FIXME: the chain of casts required should be reflected in the APValue.
2128 // We need this in order to correctly handle things like a ptrtoint of a
2129 // non-zero null pointer and addrspace casts that aren't trivially
2130 // represented in LLVM IR.
2131 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
2132 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
2133
2134 // If there's no base at all, this is a null or absolute pointer,
2135 // possibly cast back to an integer type.
2136 if (!base) {
2137 return tryEmitAbsolute(destTy);
2138 }
2139
2140 // Otherwise, try to emit the base.
2141 ConstantLValue result = tryEmitBase(base);
2142
2143 // If that failed, we're done.
2144 llvm::Constant *value = result.Value;
2145 if (!value) return nullptr;
2146
2147 // Apply the offset if necessary and not already done.
2148 if (!result.HasOffsetApplied) {
2149 value = applyOffset(value);
2150 }
2151
2152 // Convert to the appropriate type; this could be an lvalue for
2153 // an integer. FIXME: performAddrSpaceCast
2154 if (isa<llvm::PointerType>(destTy))
2155 return llvm::ConstantExpr::getPointerCast(value, destTy);
2156
2157 return llvm::ConstantExpr::getPtrToInt(value, destTy);
2158}
2159
2160/// Try to emit an absolute l-value, such as a null pointer or an integer
2161/// bitcast to pointer type.
2162llvm::Constant *
2163ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
2164 // If we're producing a pointer, this is easy.
2165 auto destPtrTy = cast<llvm::PointerType>(destTy);
2166 if (Value.isNullPointer()) {
2167 // FIXME: integer offsets from non-zero null pointers.
2168 return CGM.getNullPointer(destPtrTy, DestType);
2169 }
2170
2171 // Convert the integer to a pointer-sized integer before converting it
2172 // to a pointer.
2173 // FIXME: signedness depends on the original integer type.
2174 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
2175 llvm::Constant *C;
2176 C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false,
2177 CGM.getDataLayout());
2178 assert(C && "Must have folded, as Offset is a ConstantInt");
2179 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
2180 return C;
2181}
2182
2183ConstantLValue
2184ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
2185 // Handle values.
2186 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
2187 // The constant always points to the canonical declaration. We want to look
2188 // at properties of the most recent declaration at the point of emission.
2189 D = cast<ValueDecl>(D->getMostRecentDecl());
2190
2191 if (D->hasAttr<WeakRefAttr>())
2192 return CGM.GetWeakRefReference(D).getPointer();
2193
2194 auto PtrAuthSign = [&](llvm::Constant *C) {
2195 CGPointerAuthInfo AuthInfo;
2196
2197 if (EnablePtrAuthFunctionTypeDiscrimination)
2198 AuthInfo = CGM.getFunctionPointerAuthInfo(DestType);
2199
2200 if (AuthInfo) {
2201 if (hasNonZeroOffset())
2202 return ConstantLValue(nullptr);
2203
2204 C = applyOffset(C);
2206 C, AuthInfo.getKey(), nullptr,
2207 cast_or_null<llvm::ConstantInt>(AuthInfo.getDiscriminator()));
2208 return ConstantLValue(C, /*applied offset*/ true);
2209 }
2210
2211 return ConstantLValue(C);
2212 };
2213
2214 if (const auto *FD = dyn_cast<FunctionDecl>(D))
2215 return PtrAuthSign(CGM.getRawFunctionPointer(FD));
2216
2217 if (const auto *VD = dyn_cast<VarDecl>(D)) {
2218 // We can never refer to a variable with local storage.
2219 if (!VD->hasLocalStorage()) {
2220 if (VD->isFileVarDecl() || VD->hasExternalStorage())
2221 return CGM.GetAddrOfGlobalVar(VD);
2222
2223 if (VD->isLocalVarDecl()) {
2224 return CGM.getOrCreateStaticVarDecl(
2225 *VD, CGM.getLLVMLinkageVarDefinition(VD));
2226 }
2227 }
2228 }
2229
2230 if (const auto *GD = dyn_cast<MSGuidDecl>(D))
2231 return CGM.GetAddrOfMSGuidDecl(GD);
2232
2233 if (const auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
2234 return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
2235
2236 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
2237 return CGM.GetAddrOfTemplateParamObject(TPO);
2238
2239 return nullptr;
2240 }
2241
2242 // Handle typeid(T).
2243 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
2244 return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
2245
2246 // Otherwise, it must be an expression.
2247 return Visit(base.get<const Expr*>());
2248}
2249
2250ConstantLValue
2251ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
2252 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
2253 return Result;
2254 return Visit(E->getSubExpr());
2255}
2256
2257ConstantLValue
2258ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2259 ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
2260 CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
2261 return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E);
2262}
2263
2264ConstantLValue
2265ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
2267}
2268
2269ConstantLValue
2270ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2272}
2273
2274static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2275 QualType T,
2276 CodeGenModule &CGM) {
2277 auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2278 return C.withElementType(CGM.getTypes().ConvertTypeForMem(T));
2279}
2280
2281ConstantLValue
2282ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2283 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2284}
2285
2286ConstantLValue
2287ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2288 assert(E->isExpressibleAsConstantInitializer() &&
2289 "this boxed expression can't be emitted as a compile-time constant");
2290 const auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2291 return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2292}
2293
2294ConstantLValue
2295ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2296 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2297}
2298
2299ConstantLValue
2300ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2301 assert(Emitter.CGF && "Invalid address of label expression outside function");
2302 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2303 return Ptr;
2304}
2305
2306ConstantLValue
2307ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2308 unsigned builtin = E->getBuiltinCallee();
2309 if (builtin == Builtin::BI__builtin_function_start)
2310 return CGM.GetFunctionStart(
2311 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2312
2313 if (builtin == Builtin::BI__builtin_ptrauth_sign_constant)
2314 return emitPointerAuthSignConstant(E);
2315
2316 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2317 builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2318 return nullptr;
2319
2320 const auto *Literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2321 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2322 return CGM.getObjCRuntime().GenerateConstantString(Literal);
2323 } else {
2324 // FIXME: need to deal with UCN conversion issues.
2325 return CGM.GetAddrOfConstantCFString(Literal);
2326 }
2327}
2328
2329ConstantLValue
2330ConstantLValueEmitter::emitPointerAuthSignConstant(const CallExpr *E) {
2331 llvm::Constant *UnsignedPointer = emitPointerAuthPointer(E->getArg(0));
2332 unsigned Key = emitPointerAuthKey(E->getArg(1));
2333 auto [StorageAddress, OtherDiscriminator] =
2334 emitPointerAuthDiscriminator(E->getArg(2));
2335
2336 llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
2337 UnsignedPointer, Key, StorageAddress, OtherDiscriminator);
2338 return SignedPointer;
2339}
2340
2341llvm::Constant *ConstantLValueEmitter::emitPointerAuthPointer(const Expr *E) {
2343 bool Succeeded = E->EvaluateAsRValue(Result, CGM.getContext());
2344 assert(Succeeded);
2345 (void)Succeeded;
2346
2347 // The assertions here are all checked by Sema.
2348 assert(Result.Val.isLValue());
2349 if (isa<FunctionDecl>(Result.Val.getLValueBase().get<const ValueDecl *>()))
2350 assert(Result.Val.getLValueOffset().isZero());
2351 return ConstantEmitter(CGM, Emitter.CGF)
2352 .emitAbstract(E->getExprLoc(), Result.Val, E->getType(), false);
2353}
2354
2355unsigned ConstantLValueEmitter::emitPointerAuthKey(const Expr *E) {
2356 return E->EvaluateKnownConstInt(CGM.getContext()).getZExtValue();
2357}
2358
2359std::pair<llvm::Constant *, llvm::ConstantInt *>
2360ConstantLValueEmitter::emitPointerAuthDiscriminator(const Expr *E) {
2361 E = E->IgnoreParens();
2362
2363 if (const auto *Call = dyn_cast<CallExpr>(E)) {
2364 if (Call->getBuiltinCallee() ==
2365 Builtin::BI__builtin_ptrauth_blend_discriminator) {
2366 llvm::Constant *Pointer = ConstantEmitter(CGM).emitAbstract(
2367 Call->getArg(0), Call->getArg(0)->getType());
2368 auto *Extra = cast<llvm::ConstantInt>(ConstantEmitter(CGM).emitAbstract(
2369 Call->getArg(1), Call->getArg(1)->getType()));
2370 return {Pointer, Extra};
2371 }
2372 }
2373
2374 llvm::Constant *Result = ConstantEmitter(CGM).emitAbstract(E, E->getType());
2375 if (Result->getType()->isPointerTy())
2376 return {Result, nullptr};
2377 return {nullptr, cast<llvm::ConstantInt>(Result)};
2378}
2379
2380ConstantLValue
2381ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2382 StringRef functionName;
2383 if (auto CGF = Emitter.CGF)
2384 functionName = CGF->CurFn->getName();
2385 else
2386 functionName = "global";
2387
2388 return CGM.GetAddrOfGlobalBlock(E, functionName);
2389}
2390
2391ConstantLValue
2392ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2393 QualType T;
2394 if (E->isTypeOperand())
2395 T = E->getTypeOperand(CGM.getContext());
2396 else
2397 T = E->getExprOperand()->getType();
2398 return CGM.GetAddrOfRTTIDescriptor(T);
2399}
2400
2401ConstantLValue
2402ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2403 const MaterializeTemporaryExpr *E) {
2404 assert(E->getStorageDuration() == SD_Static);
2405 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2406 return CGM.GetAddrOfGlobalTemporary(E, Inner);
2407}
2408
2409llvm::Constant *
2411 bool EnablePtrAuthFunctionTypeDiscrimination) {
2412 switch (Value.getKind()) {
2413 case APValue::None:
2415 // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2416 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2417 case APValue::LValue:
2418 return ConstantLValueEmitter(*this, Value, DestType,
2419 EnablePtrAuthFunctionTypeDiscrimination)
2420 .tryEmit();
2421 case APValue::Int:
2422 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2424 return llvm::ConstantInt::get(CGM.getLLVMContext(),
2425 Value.getFixedPoint().getValue());
2426 case APValue::ComplexInt: {
2427 llvm::Constant *Complex[2];
2428
2429 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2430 Value.getComplexIntReal());
2431 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2432 Value.getComplexIntImag());
2433
2434 // FIXME: the target may want to specify that this is packed.
2435 llvm::StructType *STy =
2436 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2437 return llvm::ConstantStruct::get(STy, Complex);
2438 }
2439 case APValue::Float: {
2440 const llvm::APFloat &Init = Value.getFloat();
2441 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2442 !CGM.getContext().getLangOpts().NativeHalfType &&
2444 return llvm::ConstantInt::get(CGM.getLLVMContext(),
2445 Init.bitcastToAPInt());
2446 else
2447 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2448 }
2449 case APValue::ComplexFloat: {
2450 llvm::Constant *Complex[2];
2451
2452 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2453 Value.getComplexFloatReal());
2454 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2455 Value.getComplexFloatImag());
2456
2457 // FIXME: the target may want to specify that this is packed.
2458 llvm::StructType *STy =
2459 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2460 return llvm::ConstantStruct::get(STy, Complex);
2461 }
2462 case APValue::Vector: {
2463 unsigned NumElts = Value.getVectorLength();
2464 SmallVector<llvm::Constant *, 4> Inits(NumElts);
2465
2466 for (unsigned I = 0; I != NumElts; ++I) {
2467 const APValue &Elt = Value.getVectorElt(I);
2468 if (Elt.isInt())
2469 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2470 else if (Elt.isFloat())
2471 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2472 else if (Elt.isIndeterminate())
2473 Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType(
2474 DestType->castAs<VectorType>()->getElementType()));
2475 else
2476 llvm_unreachable("unsupported vector element type");
2477 }
2478 return llvm::ConstantVector::get(Inits);
2479 }
2481 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2482 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2483 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2484 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2485 if (!LHS || !RHS) return nullptr;
2486
2487 // Compute difference
2488 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2489 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2490 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2491 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2492
2493 // LLVM is a bit sensitive about the exact format of the
2494 // address-of-label difference; make sure to truncate after
2495 // the subtraction.
2496 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2497 }
2498 case APValue::Struct:
2499 case APValue::Union:
2500 return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2501 case APValue::Array: {
2502 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2503 unsigned NumElements = Value.getArraySize();
2504 unsigned NumInitElts = Value.getArrayInitializedElts();
2505
2506 // Emit array filler, if there is one.
2507 llvm::Constant *Filler = nullptr;
2508 if (Value.hasArrayFiller()) {
2509 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2510 ArrayTy->getElementType());
2511 if (!Filler)
2512 return nullptr;
2513 }
2514
2515 // Emit initializer elements.
2517 if (Filler && Filler->isNullValue())
2518 Elts.reserve(NumInitElts + 1);
2519 else
2520 Elts.reserve(NumElements);
2521
2522 llvm::Type *CommonElementType = nullptr;
2523 for (unsigned I = 0; I < NumInitElts; ++I) {
2524 llvm::Constant *C = tryEmitPrivateForMemory(
2525 Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2526 if (!C) return nullptr;
2527
2528 if (I == 0)
2529 CommonElementType = C->getType();
2530 else if (C->getType() != CommonElementType)
2531 CommonElementType = nullptr;
2532 Elts.push_back(C);
2533 }
2534
2535 llvm::ArrayType *Desired =
2536 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2537
2538 // Fix the type of incomplete arrays if the initializer isn't empty.
2539 if (DestType->isIncompleteArrayType() && !Elts.empty())
2540 Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size());
2541
2542 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2543 Filler);
2544 }
2546 return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2547 }
2548 llvm_unreachable("Unknown APValue kind");
2549}
2550
2552 const CompoundLiteralExpr *E) {
2553 return EmittedCompoundLiterals.lookup(E);
2554}
2555
2557 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2558 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2559 (void)Ok;
2560 assert(Ok && "CLE has already been emitted!");
2561}
2562
2565 assert(E->isFileScope() && "not a file-scope compound literal expr");
2566 ConstantEmitter emitter(*this);
2567 return tryEmitGlobalCompoundLiteral(emitter, E);
2568}
2569
2570llvm::Constant *
2572 // Member pointer constants always have a very particular form.
2573 const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2574 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2575
2576 // A member function pointer.
2577 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2578 return getCXXABI().EmitMemberFunctionPointer(method);
2579
2580 // Otherwise, a member data pointer.
2581 uint64_t fieldOffset = getContext().getFieldOffset(decl);
2582 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2583 return getCXXABI().EmitMemberDataPointer(type, chars);
2584}
2585
2586static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2587 llvm::Type *baseType,
2588 const CXXRecordDecl *base);
2589
2590static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2591 const RecordDecl *record,
2592 bool asCompleteObject) {
2593 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2594 llvm::StructType *structure =
2595 (asCompleteObject ? layout.getLLVMType()
2596 : layout.getBaseSubobjectLLVMType());
2597
2598 unsigned numElements = structure->getNumElements();
2599 std::vector<llvm::Constant *> elements(numElements);
2600
2601 auto CXXR = dyn_cast<CXXRecordDecl>(record);
2602 // Fill in all the bases.
2603 if (CXXR) {
2604 for (const auto &I : CXXR->bases()) {
2605 if (I.isVirtual()) {
2606 // Ignore virtual bases; if we're laying out for a complete
2607 // object, we'll lay these out later.
2608 continue;
2609 }
2610
2611 const CXXRecordDecl *base =
2612 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2613
2614 // Ignore empty bases.
2615 if (isEmptyRecordForLayout(CGM.getContext(), I.getType()) ||
2616 CGM.getContext()
2617 .getASTRecordLayout(base)
2619 .isZero())
2620 continue;
2621
2622 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2623 llvm::Type *baseType = structure->getElementType(fieldIndex);
2624 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2625 }
2626 }
2627
2628 // Fill in all the fields.
2629 for (const auto *Field : record->fields()) {
2630 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2631 // will fill in later.)
2632 if (!Field->isBitField() &&
2633 !isEmptyFieldForLayout(CGM.getContext(), Field)) {
2634 unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2635 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2636 }
2637
2638 // For unions, stop after the first named field.
2639 if (record->isUnion()) {
2640 if (Field->getIdentifier())
2641 break;
2642 if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2643 if (FieldRD->findFirstNamedDataMember())
2644 break;
2645 }
2646 }
2647
2648 // Fill in the virtual bases, if we're working with the complete object.
2649 if (CXXR && asCompleteObject) {
2650 for (const auto &I : CXXR->vbases()) {
2651 const CXXRecordDecl *base =
2652 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2653
2654 // Ignore empty bases.
2655 if (isEmptyRecordForLayout(CGM.getContext(), I.getType()))
2656 continue;
2657
2658 unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2659
2660 // We might have already laid this field out.
2661 if (elements[fieldIndex]) continue;
2662
2663 llvm::Type *baseType = structure->getElementType(fieldIndex);
2664 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2665 }
2666 }
2667
2668 // Now go through all other fields and zero them out.
2669 for (unsigned i = 0; i != numElements; ++i) {
2670 if (!elements[i])
2671 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2672 }
2673
2674 return llvm::ConstantStruct::get(structure, elements);
2675}
2676
2677/// Emit the null constant for a base subobject.
2678static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2679 llvm::Type *baseType,
2680 const CXXRecordDecl *base) {
2681 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2682
2683 // Just zero out bases that don't have any pointer to data members.
2684 if (baseLayout.isZeroInitializableAsBase())
2685 return llvm::Constant::getNullValue(baseType);
2686
2687 // Otherwise, we can just use its null constant.
2688 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2689}
2690
2692 QualType T) {
2694}
2695
2697 if (T->getAs<PointerType>())
2698 return getNullPointer(
2699 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2700
2701 if (getTypes().isZeroInitializable(T))
2702 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2703
2704 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2705 llvm::ArrayType *ATy =
2706 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2707
2708 QualType ElementTy = CAT->getElementType();
2709
2710 llvm::Constant *Element =
2711 ConstantEmitter::emitNullForMemory(*this, ElementTy);
2712 unsigned NumElements = CAT->getZExtSize();
2713 SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2714 return llvm::ConstantArray::get(ATy, Array);
2715 }
2716
2717 if (const RecordType *RT = T->getAs<RecordType>())
2718 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2719
2720 assert(T->isMemberDataPointerType() &&
2721 "Should only see pointers to data members here!");
2722
2724}
2725
2726llvm::Constant *
2728 return ::EmitNullConstant(*this, Record, false);
2729}
Defines the clang::ASTContext interface.
Defines enum values for all the target-independent builtin functions.
static QualType getNonMemoryType(CodeGenModule &CGM, QualType type)
static llvm::Constant * EmitNullConstant(CodeGenModule &CGM, const RecordDecl *record, bool asCompleteObject)
static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, QualType T, CodeGenModule &CGM)
static llvm::Constant * EmitNullConstantForBase(CodeGenModule &CGM, llvm::Type *baseType, const CXXRecordDecl *base)
Emit the null constant for a base subobject.
const Decl * D
Expr * E
llvm::MachO::Record Record
Definition: MachO.h:31
SourceRange Range
Definition: SemaObjC.cpp:758
llvm::APInt getValue() const
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition: APValue.h:122
APSInt & getInt()
Definition: APValue.h:465
APValue & getStructField(unsigned i)
Definition: APValue.h:593
const FieldDecl * getUnionField() const
Definition: APValue.h:605
bool isFloat() const
Definition: APValue.h:444
APValue & getUnionValue()
Definition: APValue.h:609
bool isIndeterminate() const
Definition: APValue.h:440
bool isInt() const
Definition: APValue.h:443
@ Indeterminate
This object has an indeterminate value (C++ [basic.indet]).
Definition: APValue.h:131
@ None
There is no such object (it's outside its lifetime).
Definition: APValue.h:129
APFloat & getFloat()
Definition: APValue.h:479
APValue & getStructBase(unsigned i)
Definition: APValue.h:588
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2915
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
unsigned getIntWidth(QualType T) const
const llvm::fltSemantics & getFloatTypeSemantics(QualType T) const
Return the APFloat 'semantics' for the specified scalar floating point type.
uint64_t getFieldOffset(const ValueDecl *FD) const
Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
void getObjCEncodingForType(QualType T, std::string &S, const FieldDecl *Field=nullptr, QualType *NotEncodedT=nullptr) const
Emit the Objective-CC type encoding for the given type T into S.
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2732
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue=true) const
Return the uniqued reference to the type for an lvalue reference to the specified type.
const LangOptions & getLangOpts() const
Definition: ASTContext.h:834
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
Definition: ASTContext.h:2289
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2763
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2482
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
unsigned getTargetAddressSpace(LangAS AS) const
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2486
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
bool hasOwnVFPtr() const
hasOwnVFPtr - Does this class provide its own virtual-function table pointer, rather than inheriting ...
Definition: RecordLayout.h:280
CharUnits getSize() const
getSize - Get the record size in characters.
Definition: RecordLayout.h:193
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:200
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:249
const CXXRecordDecl * getPrimaryBase() const
getPrimaryBase - Get the primary base for this record.
Definition: RecordLayout.h:234
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:210
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:4421
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3577
QualType getElementType() const
Definition: Type.h:3589
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:6414
Represents a base class of a C++ class.
Definition: DeclCXX.h:146
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1546
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2553
bool isDefaultConstructor() const
Whether this constructor is a default constructor (C++ [class.ctor]p5), which can be used to default-...
Definition: DeclCXX.cpp:2845
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1375
Expr * getExpr()
Get the initialization expression that will be used.
Definition: ExprCXX.cpp:1084
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2078
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:845
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2874
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3547
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:122
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
CharUnits alignTo(const CharUnits &Align) const
alignTo - Returns the next integer (mod 2**64) that is greater than or equal to this quantity and is ...
Definition: CharUnits.h:201
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:4641
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:4677
virtual llvm::Constant * EmitNullMemberPointer(const MemberPointerType *MPT)
Create a null member pointer of the given type.
Definition: CGCXXABI.cpp:105
virtual llvm::Constant * EmitMemberPointer(const APValue &MP, QualType MPT)
Create a member pointer for the given member pointer constant.
Definition: CGCXXABI.cpp:119
virtual llvm::Constant * getVTableAddressPoint(BaseSubobject Base, const CXXRecordDecl *VTableClass)=0
Get the address point of the vtable for the given base subobject.
virtual llvm::Constant * EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset)
Create a member pointer for the given field.
Definition: CGCXXABI.cpp:114
virtual llvm::Value * EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src)
Perform a derived-to-base, base-to-derived, or bitcast member pointer conversion.
Definition: CGCXXABI.cpp:74
virtual llvm::Constant * EmitMemberFunctionPointer(const CXXMethodDecl *MD)
Create a member pointer for the given method.
Definition: CGCXXABI.cpp:109
virtual ConstantAddress GenerateConstantString(const StringLiteral *)=0
Generate a constant string object.
llvm::Value * getDiscriminator() const
CGRecordLayout - This class handles struct and union layout info while lowering AST types to LLVM typ...
unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const
llvm::StructType * getLLVMType() const
Return the "complete object" LLVM type associated with this record.
const CGBitFieldInfo & getBitFieldInfo(const FieldDecl *FD) const
Return the BitFieldInfo that corresponds to the field FD.
bool isZeroInitializableAsBase() const
Check whether this struct can be C++ zero-initialized with a zeroinitializer when considered as a bas...
llvm::StructType * getBaseSubobjectLLVMType() const
Return the "base subobject" LLVM type associated with this record.
unsigned getLLVMFieldNo(const FieldDecl *FD) const
Return llvm::StructType element number that corresponds to the field FD.
unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const
Return the LLVM field index corresponding to the given virtual base.
This class organizes the cross-function state that is used while generating LLVM code.
ConstantAddress GetAddrOfMSGuidDecl(const MSGuidDecl *GD)
Get the address of a GUID.
void EmitExplicitCastExprType(const ExplicitCastExpr *E, CodeGenFunction *CGF=nullptr)
Emit type info if type of an expression is a variably modified type.
Definition: CGExpr.cpp:1263
llvm::Module & getModule() const
ConstantAddress GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E)
Returns a pointer to a constant global variable for the given file-scope compound literal expression.
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type.
llvm::Constant * getRawFunctionPointer(GlobalDecl GD, llvm::Type *Ty=nullptr)
Return a function pointer for a reference to the given function.
Definition: CGExpr.cpp:2909
llvm::Constant * GetAddrOfRTTIDescriptor(QualType Ty, bool ForEH=false)
Get the address of the RTTI descriptor for the given type.
llvm::Constant * getNullPointer(llvm::PointerType *T, QualType QT)
Get target specific null pointer.
llvm::Constant * GetAddrOfGlobalBlock(const BlockExpr *BE, StringRef Name)
Gets the address of a block which requires no captures.
Definition: CGBlocks.cpp:1266
llvm::GlobalValue::LinkageTypes getLLVMLinkageVarDefinition(const VarDecl *VD)
Returns LLVM linkage for a declarator.
llvm::Constant * getMemberPointerConstant(const UnaryOperator *e)
const llvm::DataLayout & getDataLayout() const
void Error(SourceLocation loc, StringRef error)
Emit a general error that something can't be done.
CGCXXABI & getCXXABI() const
ConstantAddress GetWeakRefReference(const ValueDecl *VD)
Get a reference to the target of VD.
CGPointerAuthInfo getFunctionPointerAuthInfo(QualType T)
Return the abstract pointer authentication schema for a pointer to the given function type.
llvm::Constant * GetFunctionStart(const ValueDecl *Decl)
llvm::GlobalVariable * getAddrOfConstantCompoundLiteralIfEmitted(const CompoundLiteralExpr *E)
If it's been emitted already, returns the GlobalVariable corresponding to a compound literal.
std::optional< PointerAuthQualifier > getVTablePointerAuthentication(const CXXRecordDecl *thisClass)
llvm::Constant * getOrCreateStaticVarDecl(const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage)
Definition: CGDecl.cpp:245
ConstantAddress GetAddrOfConstantCFString(const StringLiteral *Literal)
Return a pointer to a constant CFString object for the given string.
ConstantAddress GetAddrOfConstantStringFromLiteral(const StringLiteral *S, StringRef Name=".str")
Return a pointer to a constant array for the given string literal.
ASTContext & getContext() const
ConstantAddress GetAddrOfTemplateParamObject(const TemplateParamObjectDecl *TPO)
Get the address of a template parameter object.
ConstantAddress GetAddrOfUnnamedGlobalConstantDecl(const UnnamedGlobalConstantDecl *GCD)
Get the address of a UnnamedGlobalConstant.
llvm::Constant * GetAddrOfGlobalVar(const VarDecl *D, llvm::Type *Ty=nullptr, ForDefinition_t IsForDefinition=NotForDefinition)
Return the llvm::Constant for the address of the given global variable.
void setAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV)
Notes that CLE's GlobalVariable is GV.
const TargetCodeGenInfo & getTargetCodeGenInfo()
llvm::Constant * GetConstantArrayFromStringLiteral(const StringLiteral *E)
Return a constant array for the given string.
llvm::LLVMContext & getLLVMContext()
CGObjCRuntime & getObjCRuntime()
Return a reference to the configured Objective-C runtime.
ConstantAddress GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr *E, const Expr *Inner)
Returns a pointer to a global variable representing a temporary with static or thread storage duratio...
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
llvm::Constant * getConstantSignedPointer(llvm::Constant *Pointer, const PointerAuthSchema &Schema, llvm::Constant *StorageAddress, GlobalDecl SchemaDecl, QualType SchemaType)
Sign a constant pointer using the given scheme, producing a constant with the same IR type.
ConstantAddress GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *)
Return a pointer to a constant array for the given ObjCEncodeExpr node.
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
llvm::Type * convertTypeForLoadStore(QualType T, llvm::Type *LLVMTy=nullptr)
Given that T is a scalar type, return the IR type that should be used for load and store operations.
const CGRecordLayout & getCGRecordLayout(const RecordDecl *)
getCGRecordLayout - Return record layout info for the given record decl.
llvm::Type * ConvertTypeForMem(QualType T)
ConvertTypeForMem - Convert type T into a llvm::Type.
bool typeRequiresSplitIntoByteArray(QualType ASTTy, llvm::Type *LLVMTy=nullptr)
Check whether the given type needs to be laid out in memory using an opaque byte-array type because i...
A specialization of Address that requires the address to be an LLVM Constant.
Definition: Address.h:294
static ConstantAddress invalid()
Definition: Address.h:302
llvm::Constant * getPointer() const
Definition: Address.h:306
llvm::Constant * tryEmitPrivateForMemory(const Expr *E, QualType T)
llvm::Constant * tryEmitForInitializer(const VarDecl &D)
Try to emit the initiaizer of the given declaration as an abstract constant.
llvm::Constant * tryEmitPrivateForVarInit(const VarDecl &D)
llvm::Constant * tryEmitPrivate(const Expr *E, QualType T)
void finalize(llvm::GlobalVariable *global)
llvm::Constant * tryEmitAbstractForInitializer(const VarDecl &D)
Try to emit the initializer of the given declaration as an abstract constant.
llvm::Constant * emitAbstract(const Expr *E, QualType T)
Emit the result of the given expression as an abstract constant, asserting that it succeeded.
llvm::GlobalValue * getCurrentAddrPrivate()
Get the address of the current location.
llvm::Constant * tryEmitConstantExpr(const ConstantExpr *CE)
llvm::Constant * emitForMemory(llvm::Constant *C, QualType T)
llvm::Constant * emitNullForMemory(QualType T)
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
void registerCurrentAddrPrivate(llvm::Constant *signal, llvm::GlobalValue *placeholder)
Register a 'signal' value with the emitter to inform it where to resolve a placeholder.
llvm::Constant * emitForInitializer(const APValue &value, LangAS destAddrSpace, QualType destType)
llvm::Constant * tryEmitAbstractForMemory(const Expr *E, QualType T)
bool isAbstract() const
Is the current emission context abstract?
llvm::Constant * tryEmitConstantSignedPointer(llvm::Constant *Ptr, PointerAuthQualifier Auth)
Try to emit a constant signed pointer, given a raw pointer and the destination ptrauth qualifier.
Address performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, Address Addr, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull=false) const
virtual llvm::Constant * getNullPointer(const CodeGen::CodeGenModule &CGM, llvm::PointerType *T, QualType QT) const
Get target specific null pointer.
Definition: TargetInfo.cpp:120
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:3477
ConstStmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:195
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:3615
uint64_t getZExtSize() const
Return the size zero-extended as a uint64_t.
Definition: Type.h:3691
ConstantExpr - An expression that occurs in a constant context and optionally the result of evaluatin...
Definition: Expr.h:1077
APValue getAPValueResult() const
Definition: Expr.cpp:413
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1127
bool hasAPValueResult() const
Definition: Expr.h:1152
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2369
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
Decl * getMostRecentDecl()
Retrieve the most recent declaration that declares the same entity as this declaration (which may be ...
Definition: DeclBase.h:1065
bool hasAttr() const
Definition: DeclBase.h:580
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:3474
This represents one expression.
Definition: Expr.h:110
const Expr * skipRValueSubobjectAdjustments(SmallVectorImpl< const Expr * > &CommaLHS, SmallVectorImpl< SubobjectAdjustment > &Adjustments) const
Walk outwards from an expression we want to bind a reference to and find the expression whose lifetim...
Definition: Expr.cpp:82
bool isGLValue() const
Definition: Expr.h:280
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3095
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Returns the set of floating point options that apply to this expression.
Definition: Expr.cpp:3886
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3086
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsLValue - Evaluate an expression to see if we can fold it to an lvalue with link time known ...
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsRValue - Return true if this is a constant which we can fold to an rvalue using any crazy t...
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:277
QualType getType() const
Definition: Expr.h:142
const ValueDecl * getAsBuiltinConstantDeclRef(const ASTContext &Context) const
If this expression is an unambiguous reference to a single declaration, in the style of __builtin_fun...
Definition: Expr.cpp:226
RoundingMode getRoundingMode() const
Definition: LangOptions.h:912
Represents a member of a struct/union/class.
Definition: Decl.h:3033
const Expr * getSubExpr() const
Definition: Expr.h:1057
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2305
Represents a C11 generic selection.
Definition: Expr.h:5966
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:5841
Describes an C or C++ initializer list.
Definition: Expr.h:5088
bool isTransparent() const
Is this a transparent initializer list (that is, an InitListExpr that is purely syntactic,...
Definition: Expr.cpp:2460
FieldDecl * getInitializedFieldInUnion()
If this initializes a union, specifies which field in the union to initialize.
Definition: Expr.h:5207
unsigned getNumInits() const
Definition: Expr.h:5118
Expr * getArrayFiller()
If this initializer list initializes an array with more elements than there are initializers in the l...
Definition: Expr.h:5182
const Expr * getInit(unsigned Init) const
Definition: Expr.h:5134
ArrayRef< Expr * > inits()
Definition: Expr.h:5128
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4734
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:3519
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:127
ObjCEncodeExpr, used for @encode in Objective-C.
Definition: ExprObjC.h:410
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
ParenExpr - This represents a parenthesized expression, e.g.
Definition: Expr.h:2170
const Expr * getSubExpr() const
Definition: Expr.h:2187
Pointer-authentication qualifiers.
Definition: Type.h:151
bool hasKeyNone() const
Definition: Type.h:262
bool isAddressDiscriminated() const
Definition: Type.h:264
unsigned getExtraDiscriminator() const
Definition: Type.h:269
unsigned getKey() const
Definition: Type.h:257
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3198
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1991
A (possibly-)qualified type.
Definition: Type.h:929
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:8057
bool isConstantStorage(const ASTContext &Ctx, bool ExcludeCtor, bool ExcludeDtor)
Definition: Type.h:1028
Represents a struct/union/class.
Definition: Decl.h:4148
bool hasFlexibleArrayMember() const
Definition: Decl.h:4181
field_iterator field_end() const
Definition: Decl.h:4357
field_range fields() const
Definition: Decl.h:4354
field_iterator field_begin() const
Definition: Decl.cpp:5092
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:6072
RecordDecl * getDecl() const
Definition: Type.h:6082
Encodes a location in the source.
StmtVisitorBase - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:37
RetTy Visit(PTR(Stmt) S, ParamTys... P)
Definition: StmtVisitor.h:44
Stmt - This represents one statement.
Definition: Stmt.h:84
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1778
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1870
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4490
bool isUnion() const
Definition: Decl.h:3770
virtual bool useFP16ConversionIntrinsics() const
Check whether llvm intrinsics such as llvm.convert.to.fp16 should be used to convert to and from __fp...
Definition: TargetInfo.h:1002
Symbolic representation of typeid(T) for some type T.
Definition: APValue.h:44
The base class of the type hierarchy.
Definition: Type.h:1828
bool isVoidType() const
Definition: Type.h:8510
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:2201
bool isIncompleteArrayType() const
Definition: Type.h:8266
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition: Type.cpp:2180
bool isArrayType() const
Definition: Type.h:8258
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:8550
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8800
bool isReferenceType() const
Definition: Type.h:8204
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isMemberDataPointerType() const
Definition: Type.h:8251
bool isBitIntType() const
Definition: Type.h:8424
bool isFloatingType() const
Definition: Type.cpp:2283
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:2230
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8731
bool isRecordType() const
Definition: Type.h:8286
bool isUnionType() const
Definition: Type.cpp:704
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2232
Expr * getSubExpr() const
Definition: Expr.h:2277
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:671
Kind getKind() const
Definition: Value.h:137
Represents a variable declaration or definition.
Definition: Decl.h:882
Represents a GCC generic vector type.
Definition: Type.h:4034
QualType getElementType() const
Definition: Type.h:4048
bool isEmptyRecordForLayout(const ASTContext &Context, QualType T)
isEmptyRecordForLayout - Return true iff a structure contains only empty base classes (per isEmptyRec...
bool isEmptyFieldForLayout(const ASTContext &Context, const FieldDecl *FD)
isEmptyFieldForLayout - Return true iff the field is "empty", that is, either a zero-width bit-field ...
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
uint32_t Literal
Literals are represented as positive integers.
Definition: CNFFormula.h:35
bool Const(InterpState &S, CodePtr OpPC, const T &Arg)
Definition: Interp.h:1243
bool GE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1186
The JSON file list parser is used to communicate input to InstallAPI.
@ Finalize
'finalize' clause, allowed on 'exit data' directive.
bool operator<(DeclarationName LHS, DeclarationName RHS)
Ordering on two declaration names.
@ SD_Static
Static storage duration.
Definition: Specifiers.h:331
@ Result
The result type of a method or function.
LangAS
Defines the address space values used by the address space qualifier of QualType.
Definition: AddressSpaces.h:25
const FunctionProtoType * T
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition: DeclBase.h:1274
@ Success
Template argument deduction was successful.
unsigned long uint64_t
Structure with information about how a bitfield should be accessed.
unsigned Size
The total size of the bit-field, in bits.
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
llvm::IntegerType * CharTy
char
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:642