clang 20.0.0git
BugReporter.cpp
Go to the documentation of this file.
1//===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines BugReporter, a utility class for generating
10// PathDiagnostics.
11//
12//===----------------------------------------------------------------------===//
13
16#include "clang/AST/Attr.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ParentMap.h"
24#include "clang/AST/Stmt.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
28#include "clang/Analysis/CFG.h"
32#include "clang/Basic/LLVM.h"
49#include "llvm/ADT/ArrayRef.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/DenseSet.h"
52#include "llvm/ADT/FoldingSet.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallString.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/ADT/StringExtras.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/iterator_range.h"
61#include "llvm/Support/Casting.h"
62#include "llvm/Support/Compiler.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/MemoryBuffer.h"
65#include "llvm/Support/raw_ostream.h"
66#include <algorithm>
67#include <cassert>
68#include <cstddef>
69#include <iterator>
70#include <memory>
71#include <optional>
72#include <queue>
73#include <string>
74#include <tuple>
75#include <utility>
76#include <vector>
77
78using namespace clang;
79using namespace ento;
80using namespace llvm;
81
82#define DEBUG_TYPE "BugReporter"
83
84STATISTIC(MaxBugClassSize,
85 "The maximum number of bug reports in the same equivalence class");
86STATISTIC(MaxValidBugClassSize,
87 "The maximum number of bug reports in the same equivalence class "
88 "where at least one report is valid (not suppressed)");
89
90STATISTIC(NumTimesReportPassesZ3, "Number of reports passed Z3");
91STATISTIC(NumTimesReportRefuted, "Number of reports refuted by Z3");
92STATISTIC(NumTimesReportEQClassAborted,
93 "Number of times a report equivalence class was aborted by the Z3 "
94 "oracle heuristic");
95STATISTIC(NumTimesReportEQClassWasExhausted,
96 "Number of times all reports of an equivalence class was refuted");
97
99
100void BugReporterContext::anchor() {}
101
102//===----------------------------------------------------------------------===//
103// PathDiagnosticBuilder and its associated routines and helper objects.
104//===----------------------------------------------------------------------===//
105
106namespace {
107
108/// A (CallPiece, node assiciated with its CallEnter) pair.
109using CallWithEntry =
110 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
111using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
112
113/// Map from each node to the diagnostic pieces visitors emit for them.
114using VisitorsDiagnosticsTy =
115 llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
116
117/// A map from PathDiagnosticPiece to the LocationContext of the inlined
118/// function call it represents.
119using LocationContextMap =
120 llvm::DenseMap<const PathPieces *, const LocationContext *>;
121
122/// A helper class that contains everything needed to construct a
123/// PathDiagnostic object. It does no much more then providing convenient
124/// getters and some well placed asserts for extra security.
125class PathDiagnosticConstruct {
126 /// The consumer we're constructing the bug report for.
127 const PathDiagnosticConsumer *Consumer;
128 /// Our current position in the bug path, which is owned by
129 /// PathDiagnosticBuilder.
130 const ExplodedNode *CurrentNode;
131 /// A mapping from parts of the bug path (for example, a function call, which
132 /// would span backwards from a CallExit to a CallEnter with the nodes in
133 /// between them) with the location contexts it is associated with.
134 LocationContextMap LCM;
135 const SourceManager &SM;
136
137public:
138 /// We keep stack of calls to functions as we're ascending the bug path.
139 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
140 /// that instead?
141 CallWithEntryStack CallStack;
142 /// The bug report we're constructing. For ease of use, this field is kept
143 /// public, though some "shortcut" getters are provided for commonly used
144 /// methods of PathDiagnostic.
145 std::unique_ptr<PathDiagnostic> PD;
146
147public:
148 PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
149 const ExplodedNode *ErrorNode,
150 const PathSensitiveBugReport *R,
151 const Decl *AnalysisEntryPoint);
152
153 /// \returns the location context associated with the current position in the
154 /// bug path.
155 const LocationContext *getCurrLocationContext() const {
156 assert(CurrentNode && "Already reached the root!");
157 return CurrentNode->getLocationContext();
158 }
159
160 /// Same as getCurrLocationContext (they should always return the same
161 /// location context), but works after reaching the root of the bug path as
162 /// well.
163 const LocationContext *getLocationContextForActivePath() const {
164 return LCM.find(&PD->getActivePath())->getSecond();
165 }
166
167 const ExplodedNode *getCurrentNode() const { return CurrentNode; }
168
169 /// Steps the current node to its predecessor.
170 /// \returns whether we reached the root of the bug path.
171 bool ascendToPrevNode() {
172 CurrentNode = CurrentNode->getFirstPred();
173 return static_cast<bool>(CurrentNode);
174 }
175
176 const ParentMap &getParentMap() const {
177 return getCurrLocationContext()->getParentMap();
178 }
179
180 const SourceManager &getSourceManager() const { return SM; }
181
182 const Stmt *getParent(const Stmt *S) const {
183 return getParentMap().getParent(S);
184 }
185
186 void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
187 assert(Path && LC);
188 LCM[Path] = LC;
189 }
190
191 const LocationContext *getLocationContextFor(const PathPieces *Path) const {
192 assert(LCM.count(Path) &&
193 "Failed to find the context associated with these pieces!");
194 return LCM.find(Path)->getSecond();
195 }
196
197 bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
198
199 PathPieces &getActivePath() { return PD->getActivePath(); }
200 PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
201
202 bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
203 bool shouldAddControlNotes() const {
204 return Consumer->shouldAddControlNotes();
205 }
206 bool shouldGenerateDiagnostics() const {
207 return Consumer->shouldGenerateDiagnostics();
208 }
209 bool supportsLogicalOpControlFlow() const {
210 return Consumer->supportsLogicalOpControlFlow();
211 }
212};
213
214/// Contains every contextual information needed for constructing a
215/// PathDiagnostic object for a given bug report. This class and its fields are
216/// immutable, and passes a BugReportConstruct object around during the
217/// construction.
218class PathDiagnosticBuilder : public BugReporterContext {
219 /// A linear path from the error node to the root.
220 std::unique_ptr<const ExplodedGraph> BugPath;
221 /// The bug report we're describing. Visitors create their diagnostics with
222 /// them being the last entities being able to modify it (for example,
223 /// changing interestingness here would cause inconsistencies as to how this
224 /// file and visitors construct diagnostics), hence its const.
225 const PathSensitiveBugReport *R;
226 /// The leaf of the bug path. This isn't the same as the bug reports error
227 /// node, which refers to the *original* graph, not the bug path.
228 const ExplodedNode *const ErrorNode;
229 /// The diagnostic pieces visitors emitted, which is expected to be collected
230 /// by the time this builder is constructed.
231 std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
232
233public:
234 /// Find a non-invalidated report for a given equivalence class, and returns
235 /// a PathDiagnosticBuilder able to construct bug reports for different
236 /// consumers. Returns std::nullopt if no valid report is found.
237 static std::optional<PathDiagnosticBuilder>
238 findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
239 PathSensitiveBugReporter &Reporter);
240
241 PathDiagnosticBuilder(
242 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
243 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
244 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
245
246 /// This function is responsible for generating diagnostic pieces that are
247 /// *not* provided by bug report visitors.
248 /// These diagnostics may differ depending on the consumer's settings,
249 /// and are therefore constructed separately for each consumer.
250 ///
251 /// There are two path diagnostics generation modes: with adding edges (used
252 /// for plists) and without (used for HTML and text). When edges are added,
253 /// the path is modified to insert artificially generated edges.
254 /// Otherwise, more detailed diagnostics is emitted for block edges,
255 /// explaining the transitions in words.
256 std::unique_ptr<PathDiagnostic>
257 generate(const PathDiagnosticConsumer *PDC) const;
258
259private:
260 void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
261 const CallWithEntryStack &CallStack) const;
262 void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
263 PathDiagnosticLocation &PrevLoc) const;
264
265 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
266 BlockEdge BE) const;
267
269 generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
270 PathDiagnosticLocation &Start) const;
271
273 generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
274 PathDiagnosticLocation &Start) const;
275
277 generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
278 const CFGBlock *Src, const CFGBlock *DstC) const;
279
281 ExecutionContinues(const PathDiagnosticConstruct &C) const;
282
284 ExecutionContinues(llvm::raw_string_ostream &os,
285 const PathDiagnosticConstruct &C) const;
286
287 const PathSensitiveBugReport *getBugReport() const { return R; }
288};
289
290} // namespace
291
292//===----------------------------------------------------------------------===//
293// Base implementation of stack hint generators.
294//===----------------------------------------------------------------------===//
295
297
299 if (!N)
301
303 CallExitEnd CExit = P.castAs<CallExitEnd>();
304
305 // FIXME: Use CallEvent to abstract this over all calls.
306 const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
307 const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
308 if (!CE)
309 return {};
310
311 // Check if one of the parameters are set to the interesting symbol.
312 for (auto [Idx, ArgExpr] : llvm::enumerate(CE->arguments())) {
313 SVal SV = N->getSVal(ArgExpr);
314
315 // Check if the variable corresponding to the symbol is passed by value.
316 SymbolRef AS = SV.getAsLocSymbol();
317 if (AS == Sym) {
318 return getMessageForArg(ArgExpr, Idx);
319 }
320
321 // Check if the parameter is a pointer to the symbol.
322 if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
323 // Do not attempt to dereference void*.
324 if (ArgExpr->getType()->isVoidPointerType())
325 continue;
326 SVal PSV = N->getState()->getSVal(Reg->getRegion());
327 SymbolRef AS = PSV.getAsLocSymbol();
328 if (AS == Sym) {
329 return getMessageForArg(ArgExpr, Idx);
330 }
331 }
332 }
333
334 // Check if we are returning the interesting symbol.
335 SVal SV = N->getSVal(CE);
336 SymbolRef RetSym = SV.getAsLocSymbol();
337 if (RetSym == Sym) {
338 return getMessageForReturn(CE);
339 }
340
342}
343
345 unsigned ArgIndex) {
346 // Printed parameters start at 1, not 0.
347 ++ArgIndex;
348
349 return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
350 llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
351}
352
353//===----------------------------------------------------------------------===//
354// Diagnostic cleanup.
355//===----------------------------------------------------------------------===//
356
360 // Prefer diagnostics that come from ConditionBRVisitor over
361 // those that came from TrackConstraintBRVisitor,
362 // unless the one from ConditionBRVisitor is
363 // its generic fallback diagnostic.
364 const void *tagPreferred = ConditionBRVisitor::getTag();
365 const void *tagLesser = TrackConstraintBRVisitor::getTag();
366
367 if (X->getLocation() != Y->getLocation())
368 return nullptr;
369
370 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
372
373 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
375
376 return nullptr;
377}
378
379/// An optimization pass over PathPieces that removes redundant diagnostics
380/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both
381/// BugReporterVisitors use different methods to generate diagnostics, with
382/// one capable of emitting diagnostics in some cases but not in others. This
383/// can lead to redundant diagnostic pieces at the same point in a path.
384static void removeRedundantMsgs(PathPieces &path) {
385 unsigned N = path.size();
386 if (N < 2)
387 return;
388 // NOTE: this loop intentionally is not using an iterator. Instead, we
389 // are streaming the path and modifying it in place. This is done by
390 // grabbing the front, processing it, and if we decide to keep it append
391 // it to the end of the path. The entire path is processed in this way.
392 for (unsigned i = 0; i < N; ++i) {
393 auto piece = std::move(path.front());
394 path.pop_front();
395
396 switch (piece->getKind()) {
398 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
399 break;
401 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
402 break;
404 if (i == N-1)
405 break;
406
407 if (auto *nextEvent =
408 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
409 auto *event = cast<PathDiagnosticEventPiece>(piece.get());
410 // Check to see if we should keep one of the two pieces. If we
411 // come up with a preference, record which piece to keep, and consume
412 // another piece from the path.
413 if (auto *pieceToKeep =
414 eventsDescribeSameCondition(event, nextEvent)) {
415 piece = std::move(pieceToKeep == event ? piece : path.front());
416 path.pop_front();
417 ++i;
418 }
419 }
420 break;
421 }
425 break;
426 }
427 path.push_back(std::move(piece));
428 }
429}
430
431/// Recursively scan through a path and prune out calls and macros pieces
432/// that aren't needed. Return true if afterwards the path contains
433/// "interesting stuff" which means it shouldn't be pruned from the parent path.
434static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
435 PathPieces &pieces,
436 const PathSensitiveBugReport *R,
437 bool IsInteresting = false) {
438 bool containsSomethingInteresting = IsInteresting;
439 const unsigned N = pieces.size();
440
441 for (unsigned i = 0 ; i < N ; ++i) {
442 // Remove the front piece from the path. If it is still something we
443 // want to keep once we are done, we will push it back on the end.
444 auto piece = std::move(pieces.front());
445 pieces.pop_front();
446
447 switch (piece->getKind()) {
449 auto &call = cast<PathDiagnosticCallPiece>(*piece);
450 // Check if the location context is interesting.
452 C, call.path, R,
453 R->isInteresting(C.getLocationContextFor(&call.path))))
454 continue;
455
456 containsSomethingInteresting = true;
457 break;
458 }
460 auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
461 if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
462 continue;
463 containsSomethingInteresting = true;
464 break;
465 }
467 auto &event = cast<PathDiagnosticEventPiece>(*piece);
468
469 // We never throw away an event, but we do throw it away wholesale
470 // as part of a path if we throw the entire path away.
471 containsSomethingInteresting |= !event.isPrunable();
472 break;
473 }
477 break;
478 }
479
480 pieces.push_back(std::move(piece));
481 }
482
483 return containsSomethingInteresting;
484}
485
486/// Same logic as above to remove extra pieces.
488 for (unsigned int i = 0; i < Path.size(); ++i) {
489 auto Piece = std::move(Path.front());
490 Path.pop_front();
491 if (!isa<PathDiagnosticPopUpPiece>(*Piece))
492 Path.push_back(std::move(Piece));
493 }
494}
495
496/// Returns true if the given decl has been implicitly given a body, either by
497/// the analyzer or by the compiler proper.
498static bool hasImplicitBody(const Decl *D) {
499 assert(D);
500 return D->isImplicit() || !D->hasBody();
501}
502
503/// Recursively scan through a path and make sure that all call pieces have
504/// valid locations.
505static void
507 PathDiagnosticLocation *LastCallLocation = nullptr) {
508 for (const auto &I : Pieces) {
509 auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
510
511 if (!Call)
512 continue;
513
514 if (LastCallLocation) {
515 bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
516 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
517 Call->callEnter = *LastCallLocation;
518 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
519 Call->callReturn = *LastCallLocation;
520 }
521
522 // Recursively clean out the subclass. Keep this call around if
523 // it contains any informative diagnostics.
524 PathDiagnosticLocation *ThisCallLocation;
525 if (Call->callEnterWithin.asLocation().isValid() &&
526 !hasImplicitBody(Call->getCallee()))
527 ThisCallLocation = &Call->callEnterWithin;
528 else
529 ThisCallLocation = &Call->callEnter;
530
531 assert(ThisCallLocation && "Outermost call has an invalid location");
532 adjustCallLocations(Call->path, ThisCallLocation);
533 }
534}
535
536/// Remove edges in and out of C++ default initializer expressions. These are
537/// for fields that have in-class initializers, as opposed to being initialized
538/// explicitly in a constructor or braced list.
540 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
541 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
543
544 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
546
547 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
548 const Stmt *Start = CF->getStartLocation().asStmt();
549 const Stmt *End = CF->getEndLocation().asStmt();
550 if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) {
551 I = Pieces.erase(I);
552 continue;
553 } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) {
554 PathPieces::iterator Next = std::next(I);
555 if (Next != E) {
556 if (auto *NextCF =
557 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
558 NextCF->setStartLocation(CF->getStartLocation());
559 }
560 }
561 I = Pieces.erase(I);
562 continue;
563 }
564 }
565
566 I++;
567 }
568}
569
570/// Remove all pieces with invalid locations as these cannot be serialized.
571/// We might have pieces with invalid locations as a result of inlining Body
572/// Farm generated functions.
574 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
575 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
577
578 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
580
581 if (!(*I)->getLocation().isValid() ||
582 !(*I)->getLocation().asLocation().isValid()) {
583 I = Pieces.erase(I);
584 continue;
585 }
586 I++;
587 }
588}
589
590PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
591 const PathDiagnosticConstruct &C) const {
592 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
593 return PathDiagnosticLocation(S, getSourceManager(),
594 C.getCurrLocationContext());
595
596 return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
597 getSourceManager());
598}
599
600PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
601 llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
602 // Slow, but probably doesn't matter.
603 if (os.str().empty())
604 os << ' ';
605
606 const PathDiagnosticLocation &Loc = ExecutionContinues(C);
607
608 if (Loc.asStmt())
609 os << "Execution continues on line "
610 << getSourceManager().getExpansionLineNumber(Loc.asLocation())
611 << '.';
612 else {
613 os << "Execution jumps to the end of the ";
614 const Decl *D = C.getCurrLocationContext()->getDecl();
615 if (isa<ObjCMethodDecl>(D))
616 os << "method";
617 else if (isa<FunctionDecl>(D))
618 os << "function";
619 else {
620 assert(isa<BlockDecl>(D));
621 os << "anonymous block";
622 }
623 os << '.';
624 }
625
626 return Loc;
627}
628
629static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
630 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
631 return PM.getParentIgnoreParens(S);
632
633 const Stmt *Parent = PM.getParentIgnoreParens(S);
634 if (!Parent)
635 return nullptr;
636
637 switch (Parent->getStmtClass()) {
638 case Stmt::ForStmtClass:
639 case Stmt::DoStmtClass:
640 case Stmt::WhileStmtClass:
641 case Stmt::ObjCForCollectionStmtClass:
642 case Stmt::CXXForRangeStmtClass:
643 return Parent;
644 default:
645 break;
646 }
647
648 return nullptr;
649}
650
653 bool allowNestedContexts = false) {
654 if (!S)
655 return {};
656
657 const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
658
659 while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
660 switch (Parent->getStmtClass()) {
661 case Stmt::BinaryOperatorClass: {
662 const auto *B = cast<BinaryOperator>(Parent);
663 if (B->isLogicalOp())
664 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
665 break;
666 }
667 case Stmt::CompoundStmtClass:
668 case Stmt::StmtExprClass:
669 return PathDiagnosticLocation(S, SMgr, LC);
670 case Stmt::ChooseExprClass:
671 // Similar to '?' if we are referring to condition, just have the edge
672 // point to the entire choose expression.
673 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
674 return PathDiagnosticLocation(Parent, SMgr, LC);
675 else
676 return PathDiagnosticLocation(S, SMgr, LC);
677 case Stmt::BinaryConditionalOperatorClass:
678 case Stmt::ConditionalOperatorClass:
679 // For '?', if we are referring to condition, just have the edge point
680 // to the entire '?' expression.
681 if (allowNestedContexts ||
682 cast<AbstractConditionalOperator>(Parent)->getCond() == S)
683 return PathDiagnosticLocation(Parent, SMgr, LC);
684 else
685 return PathDiagnosticLocation(S, SMgr, LC);
686 case Stmt::CXXForRangeStmtClass:
687 if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
688 return PathDiagnosticLocation(S, SMgr, LC);
689 break;
690 case Stmt::DoStmtClass:
691 return PathDiagnosticLocation(S, SMgr, LC);
692 case Stmt::ForStmtClass:
693 if (cast<ForStmt>(Parent)->getBody() == S)
694 return PathDiagnosticLocation(S, SMgr, LC);
695 break;
696 case Stmt::IfStmtClass:
697 if (cast<IfStmt>(Parent)->getCond() != S)
698 return PathDiagnosticLocation(S, SMgr, LC);
699 break;
700 case Stmt::ObjCForCollectionStmtClass:
701 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
702 return PathDiagnosticLocation(S, SMgr, LC);
703 break;
704 case Stmt::WhileStmtClass:
705 if (cast<WhileStmt>(Parent)->getCond() != S)
706 return PathDiagnosticLocation(S, SMgr, LC);
707 break;
708 default:
709 break;
710 }
711
712 S = Parent;
713 }
714
715 assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
716
717 return PathDiagnosticLocation(S, SMgr, LC);
718}
719
720//===----------------------------------------------------------------------===//
721// "Minimal" path diagnostic generation algorithm.
722//===----------------------------------------------------------------------===//
723
724/// If the piece contains a special message, add it to all the call pieces on
725/// the active stack. For example, my_malloc allocated memory, so MallocChecker
726/// will construct an event at the call to malloc(), and add a stack hint that
727/// an allocated memory was returned. We'll use this hint to construct a message
728/// when returning from the call to my_malloc
729///
730/// void *my_malloc() { return malloc(sizeof(int)); }
731/// void fishy() {
732/// void *ptr = my_malloc(); // returned allocated memory
733/// } // leak
734void PathDiagnosticBuilder::updateStackPiecesWithMessage(
735 PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
736 if (R->hasCallStackHint(P))
737 for (const auto &I : CallStack) {
738 PathDiagnosticCallPiece *CP = I.first;
739 const ExplodedNode *N = I.second;
740 std::string stackMsg = R->getCallStackMessage(P, N);
741
742 // The last message on the path to final bug is the most important
743 // one. Since we traverse the path backwards, do not add the message
744 // if one has been previously added.
745 if (!CP->hasCallStackMessage())
746 CP->setCallStackMessage(stackMsg);
747 }
748}
749
750static void CompactMacroExpandedPieces(PathPieces &path,
751 const SourceManager& SM);
752
753PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
754 const PathDiagnosticConstruct &C, const CFGBlock *Dst,
755 PathDiagnosticLocation &Start) const {
756
757 const SourceManager &SM = getSourceManager();
758 // Figure out what case arm we took.
759 std::string sbuf;
760 llvm::raw_string_ostream os(sbuf);
762
763 if (const Stmt *S = Dst->getLabel()) {
764 End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
765
766 switch (S->getStmtClass()) {
767 default:
768 os << "No cases match in the switch statement. "
769 "Control jumps to line "
770 << End.asLocation().getExpansionLineNumber();
771 break;
772 case Stmt::DefaultStmtClass:
773 os << "Control jumps to the 'default' case at line "
774 << End.asLocation().getExpansionLineNumber();
775 break;
776
777 case Stmt::CaseStmtClass: {
778 os << "Control jumps to 'case ";
779 const auto *Case = cast<CaseStmt>(S);
780 const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts();
781
782 // Determine if it is an enum.
783 bool GetRawInt = true;
784
785 if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
786 // FIXME: Maybe this should be an assertion. Are there cases
787 // were it is not an EnumConstantDecl?
788 const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
789
790 if (D) {
791 GetRawInt = false;
792 os << *D;
793 }
794 }
795
796 if (GetRawInt)
797 os << LHS->EvaluateKnownConstInt(getASTContext());
798
799 os << ":' at line " << End.asLocation().getExpansionLineNumber();
800 break;
801 }
802 }
803 } else {
804 os << "'Default' branch taken. ";
805 End = ExecutionContinues(os, C);
806 }
807 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf);
808}
809
810PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
811 const PathDiagnosticConstruct &C, const Stmt *S,
812 PathDiagnosticLocation &Start) const {
813 std::string sbuf;
814 llvm::raw_string_ostream os(sbuf);
815 const PathDiagnosticLocation &End =
816 getEnclosingStmtLocation(S, C.getCurrLocationContext());
817 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
818 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf);
819}
820
821PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
822 const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
823 const CFGBlock *Dst) const {
824
825 const SourceManager &SM = getSourceManager();
826
827 const auto *B = cast<BinaryOperator>(T);
828 std::string sbuf;
829 llvm::raw_string_ostream os(sbuf);
830 os << "Left side of '";
831 PathDiagnosticLocation Start, End;
832
833 if (B->getOpcode() == BO_LAnd) {
834 os << "&&"
835 << "' is ";
836
837 if (*(Src->succ_begin() + 1) == Dst) {
838 os << "false";
839 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
840 Start =
842 } else {
843 os << "true";
844 Start =
845 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
846 End = ExecutionContinues(C);
847 }
848 } else {
849 assert(B->getOpcode() == BO_LOr);
850 os << "||"
851 << "' is ";
852
853 if (*(Src->succ_begin() + 1) == Dst) {
854 os << "false";
855 Start =
856 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
857 End = ExecutionContinues(C);
858 } else {
859 os << "true";
860 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
861 Start =
863 }
864 }
865 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf);
866}
867
868void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
869 PathDiagnosticConstruct &C, BlockEdge BE) const {
870 const SourceManager &SM = getSourceManager();
871 const LocationContext *LC = C.getCurrLocationContext();
872 const CFGBlock *Src = BE.getSrc();
873 const CFGBlock *Dst = BE.getDst();
874 const Stmt *T = Src->getTerminatorStmt();
875 if (!T)
876 return;
877
878 auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
879 switch (T->getStmtClass()) {
880 default:
881 break;
882
883 case Stmt::GotoStmtClass:
884 case Stmt::IndirectGotoStmtClass: {
885 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
886 C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
887 break;
888 }
889
890 case Stmt::SwitchStmtClass: {
891 C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
892 break;
893 }
894
895 case Stmt::BreakStmtClass:
896 case Stmt::ContinueStmtClass: {
897 std::string sbuf;
898 llvm::raw_string_ostream os(sbuf);
899 PathDiagnosticLocation End = ExecutionContinues(os, C);
900 C.getActivePath().push_front(
901 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf));
902 break;
903 }
904
905 // Determine control-flow for ternary '?'.
906 case Stmt::BinaryConditionalOperatorClass:
907 case Stmt::ConditionalOperatorClass: {
908 std::string sbuf;
909 llvm::raw_string_ostream os(sbuf);
910 os << "'?' condition is ";
911
912 if (*(Src->succ_begin() + 1) == Dst)
913 os << "false";
914 else
915 os << "true";
916
917 PathDiagnosticLocation End = ExecutionContinues(C);
918
919 if (const Stmt *S = End.asStmt())
920 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
921
922 C.getActivePath().push_front(
923 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf));
924 break;
925 }
926
927 // Determine control-flow for short-circuited '&&' and '||'.
928 case Stmt::BinaryOperatorClass: {
929 if (!C.supportsLogicalOpControlFlow())
930 break;
931
932 C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
933 break;
934 }
935
936 case Stmt::DoStmtClass:
937 if (*(Src->succ_begin()) == Dst) {
938 std::string sbuf;
939 llvm::raw_string_ostream os(sbuf);
940
941 os << "Loop condition is true. ";
942 PathDiagnosticLocation End = ExecutionContinues(os, C);
943
944 if (const Stmt *S = End.asStmt())
945 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
946
947 C.getActivePath().push_front(
948 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf));
949 } else {
950 PathDiagnosticLocation End = ExecutionContinues(C);
951
952 if (const Stmt *S = End.asStmt())
953 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
954
955 C.getActivePath().push_front(
956 std::make_shared<PathDiagnosticControlFlowPiece>(
957 Start, End, "Loop condition is false. Exiting loop"));
958 }
959 break;
960
961 case Stmt::WhileStmtClass:
962 case Stmt::ForStmtClass:
963 if (*(Src->succ_begin() + 1) == Dst) {
964 std::string sbuf;
965 llvm::raw_string_ostream os(sbuf);
966
967 os << "Loop condition is false. ";
968 PathDiagnosticLocation End = ExecutionContinues(os, C);
969 if (const Stmt *S = End.asStmt())
970 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
971
972 C.getActivePath().push_front(
973 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, sbuf));
974 } else {
975 PathDiagnosticLocation End = ExecutionContinues(C);
976 if (const Stmt *S = End.asStmt())
977 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
978
979 C.getActivePath().push_front(
980 std::make_shared<PathDiagnosticControlFlowPiece>(
981 Start, End, "Loop condition is true. Entering loop body"));
982 }
983
984 break;
985
986 case Stmt::IfStmtClass: {
987 PathDiagnosticLocation End = ExecutionContinues(C);
988
989 if (const Stmt *S = End.asStmt())
990 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
991
992 if (*(Src->succ_begin() + 1) == Dst)
993 C.getActivePath().push_front(
994 std::make_shared<PathDiagnosticControlFlowPiece>(
995 Start, End, "Taking false branch"));
996 else
997 C.getActivePath().push_front(
998 std::make_shared<PathDiagnosticControlFlowPiece>(
999 Start, End, "Taking true branch"));
1000
1001 break;
1002 }
1003 }
1004}
1005
1006//===----------------------------------------------------------------------===//
1007// Functions for determining if a loop was executed 0 times.
1008//===----------------------------------------------------------------------===//
1009
1010static bool isLoop(const Stmt *Term) {
1011 switch (Term->getStmtClass()) {
1012 case Stmt::ForStmtClass:
1013 case Stmt::WhileStmtClass:
1014 case Stmt::ObjCForCollectionStmtClass:
1015 case Stmt::CXXForRangeStmtClass:
1016 return true;
1017 default:
1018 // Note that we intentionally do not include do..while here.
1019 return false;
1020 }
1021}
1022
1023static bool isJumpToFalseBranch(const BlockEdge *BE) {
1024 const CFGBlock *Src = BE->getSrc();
1025 assert(Src->succ_size() == 2);
1026 return (*(Src->succ_begin()+1) == BE->getDst());
1027}
1028
1029static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1030 const Stmt *SubS) {
1031 while (SubS) {
1032 if (SubS == S)
1033 return true;
1034 SubS = PM.getParent(SubS);
1035 }
1036 return false;
1037}
1038
1039static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1040 const ExplodedNode *N) {
1041 while (N) {
1042 std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1043 if (SP) {
1044 const Stmt *S = SP->getStmt();
1045 if (!isContainedByStmt(PM, Term, S))
1046 return S;
1047 }
1048 N = N->getFirstPred();
1049 }
1050 return nullptr;
1051}
1052
1053static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1054 const Stmt *LoopBody = nullptr;
1055 switch (Term->getStmtClass()) {
1056 case Stmt::CXXForRangeStmtClass: {
1057 const auto *FR = cast<CXXForRangeStmt>(Term);
1058 if (isContainedByStmt(PM, FR->getInc(), S))
1059 return true;
1060 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1061 return true;
1062 LoopBody = FR->getBody();
1063 break;
1064 }
1065 case Stmt::ForStmtClass: {
1066 const auto *FS = cast<ForStmt>(Term);
1067 if (isContainedByStmt(PM, FS->getInc(), S))
1068 return true;
1069 LoopBody = FS->getBody();
1070 break;
1071 }
1072 case Stmt::ObjCForCollectionStmtClass: {
1073 const auto *FC = cast<ObjCForCollectionStmt>(Term);
1074 LoopBody = FC->getBody();
1075 break;
1076 }
1077 case Stmt::WhileStmtClass:
1078 LoopBody = cast<WhileStmt>(Term)->getBody();
1079 break;
1080 default:
1081 return false;
1082 }
1083 return isContainedByStmt(PM, LoopBody, S);
1084}
1085
1086/// Adds a sanitized control-flow diagnostic edge to a path.
1087static void addEdgeToPath(PathPieces &path,
1088 PathDiagnosticLocation &PrevLoc,
1089 PathDiagnosticLocation NewLoc) {
1090 if (!NewLoc.isValid())
1091 return;
1092
1093 SourceLocation NewLocL = NewLoc.asLocation();
1094 if (NewLocL.isInvalid())
1095 return;
1096
1097 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1098 PrevLoc = NewLoc;
1099 return;
1100 }
1101
1102 // Ignore self-edges, which occur when there are multiple nodes at the same
1103 // statement.
1104 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1105 return;
1106
1107 path.push_front(
1108 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1109 PrevLoc = NewLoc;
1110}
1111
1112/// A customized wrapper for CFGBlock::getTerminatorCondition()
1113/// which returns the element for ObjCForCollectionStmts.
1114static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1115 const Stmt *S = B->getTerminatorCondition();
1116 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
1117 return FS->getElement();
1118 return S;
1119}
1120
1121constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1122constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1123constexpr llvm::StringLiteral StrLoopRangeEmpty =
1124 "Loop body skipped when range is empty";
1125constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1126 "Loop body skipped when collection is empty";
1127
1128static std::unique_ptr<FilesToLineNumsMap>
1130
1131void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1132 PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1133 ProgramPoint P = C.getCurrentNode()->getLocation();
1134 const SourceManager &SM = getSourceManager();
1135
1136 // Have we encountered an entrance to a call? It may be
1137 // the case that we have not encountered a matching
1138 // call exit before this point. This means that the path
1139 // terminated within the call itself.
1140 if (auto CE = P.getAs<CallEnter>()) {
1141
1142 if (C.shouldAddPathEdges()) {
1143 // Add an edge to the start of the function.
1144 const StackFrameContext *CalleeLC = CE->getCalleeContext();
1145 const Decl *D = CalleeLC->getDecl();
1146 // Add the edge only when the callee has body. We jump to the beginning
1147 // of the *declaration*, however we expect it to be followed by the
1148 // body. This isn't the case for autosynthesized property accessors in
1149 // Objective-C. No need for a similar extra check for CallExit points
1150 // because the exit edge comes from a statement (i.e. return),
1151 // not from declaration.
1152 if (D->hasBody())
1153 addEdgeToPath(C.getActivePath(), PrevLoc,
1155 }
1156
1157 // Did we visit an entire call?
1158 bool VisitedEntireCall = C.PD->isWithinCall();
1159 C.PD->popActivePath();
1160
1162 if (VisitedEntireCall) {
1163 Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
1164 } else {
1165 // The path terminated within a nested location context, create a new
1166 // call piece to encapsulate the rest of the path pieces.
1167 const Decl *Caller = CE->getLocationContext()->getDecl();
1168 Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
1169 assert(C.getActivePath().size() == 1 &&
1170 C.getActivePath().front().get() == Call);
1171
1172 // Since we just transferred the path over to the call piece, reset the
1173 // mapping of the active path to the current location context.
1174 assert(C.isInLocCtxMap(&C.getActivePath()) &&
1175 "When we ascend to a previously unvisited call, the active path's "
1176 "address shouldn't change, but rather should be compacted into "
1177 "a single CallEvent!");
1178 C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
1179
1180 // Record the location context mapping for the path within the call.
1181 assert(!C.isInLocCtxMap(&Call->path) &&
1182 "When we ascend to a previously unvisited call, this must be the "
1183 "first time we encounter the caller context!");
1184 C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1185 }
1186 Call->setCallee(*CE, SM);
1187
1188 // Update the previous location in the active path.
1189 PrevLoc = Call->getLocation();
1190
1191 if (!C.CallStack.empty()) {
1192 assert(C.CallStack.back().first == Call);
1193 C.CallStack.pop_back();
1194 }
1195 return;
1196 }
1197
1198 assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1199 "The current position in the bug path is out of sync with the "
1200 "location context associated with the active path!");
1201
1202 // Have we encountered an exit from a function call?
1203 if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1204
1205 // We are descending into a call (backwards). Construct
1206 // a new call piece to contain the path pieces for that call.
1208 // Record the mapping from call piece to LocationContext.
1209 assert(!C.isInLocCtxMap(&Call->path) &&
1210 "We just entered a call, this must've been the first time we "
1211 "encounter its context!");
1212 C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1213
1214 if (C.shouldAddPathEdges()) {
1215 // Add the edge to the return site.
1216 addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
1217 PrevLoc.invalidate();
1218 }
1219
1220 auto *P = Call.get();
1221 C.getActivePath().push_front(std::move(Call));
1222
1223 // Make the contents of the call the active path for now.
1224 C.PD->pushActivePath(&P->path);
1225 C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
1226 return;
1227 }
1228
1229 if (auto PS = P.getAs<PostStmt>()) {
1230 if (!C.shouldAddPathEdges())
1231 return;
1232
1233 // Add an edge. If this is an ObjCForCollectionStmt do
1234 // not add an edge here as it appears in the CFG both
1235 // as a terminator and as a terminator condition.
1236 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1238 PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1239 addEdgeToPath(C.getActivePath(), PrevLoc, L);
1240 }
1241
1242 } else if (auto BE = P.getAs<BlockEdge>()) {
1243
1244 if (C.shouldAddControlNotes()) {
1245 generateMinimalDiagForBlockEdge(C, *BE);
1246 }
1247
1248 if (!C.shouldAddPathEdges()) {
1249 return;
1250 }
1251
1252 // Are we jumping to the head of a loop? Add a special diagnostic.
1253 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1254 PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1255 const Stmt *Body = nullptr;
1256
1257 if (const auto *FS = dyn_cast<ForStmt>(Loop))
1258 Body = FS->getBody();
1259 else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1260 Body = WS->getBody();
1261 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1262 Body = OFS->getBody();
1263 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1264 Body = FRS->getBody();
1265 }
1266 // do-while statements are explicitly excluded here
1267
1268 auto p = std::make_shared<PathDiagnosticEventPiece>(
1269 L, "Looping back to the head of the loop");
1270 p->setPrunable(true);
1271
1272 addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
1273 // We might've added a very similar control node already
1274 if (!C.shouldAddControlNotes()) {
1275 C.getActivePath().push_front(std::move(p));
1276 }
1277
1278 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1279 addEdgeToPath(C.getActivePath(), PrevLoc,
1281 }
1282 }
1283
1284 const CFGBlock *BSrc = BE->getSrc();
1285 const ParentMap &PM = C.getParentMap();
1286
1287 if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1288 // Are we jumping past the loop body without ever executing the
1289 // loop (because the condition was false)?
1290 if (isLoop(Term)) {
1291 const Stmt *TermCond = getTerminatorCondition(BSrc);
1292 bool IsInLoopBody = isInLoopBody(
1293 PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
1294
1295 StringRef str;
1296
1297 if (isJumpToFalseBranch(&*BE)) {
1298 if (!IsInLoopBody) {
1299 if (isa<ObjCForCollectionStmt>(Term)) {
1301 } else if (isa<CXXForRangeStmt>(Term)) {
1302 str = StrLoopRangeEmpty;
1303 } else {
1304 str = StrLoopBodyZero;
1305 }
1306 }
1307 } else {
1308 str = StrEnteringLoop;
1309 }
1310
1311 if (!str.empty()) {
1312 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1313 C.getCurrLocationContext());
1314 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1315 PE->setPrunable(true);
1316 addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
1317
1318 // We might've added a very similar control node already
1319 if (!C.shouldAddControlNotes()) {
1320 C.getActivePath().push_front(std::move(PE));
1321 }
1322 }
1323 } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) {
1324 PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1325 addEdgeToPath(C.getActivePath(), PrevLoc, L);
1326 }
1327 }
1328 }
1329}
1330
1331static std::unique_ptr<PathDiagnostic>
1333 const Decl *AnalysisEntryPoint) {
1334 const BugType &BT = R->getBugType();
1335 return std::make_unique<PathDiagnostic>(
1337 R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1339 AnalysisEntryPoint, std::make_unique<FilesToLineNumsMap>());
1340}
1341
1342static std::unique_ptr<PathDiagnostic>
1344 const SourceManager &SM,
1345 const Decl *AnalysisEntryPoint) {
1346 const BugType &BT = R->getBugType();
1347 return std::make_unique<PathDiagnostic>(
1349 R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1351 AnalysisEntryPoint, findExecutedLines(SM, R->getErrorNode()));
1352}
1353
1354static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1355 if (!S)
1356 return nullptr;
1357
1358 while (true) {
1359 S = PM.getParentIgnoreParens(S);
1360
1361 if (!S)
1362 break;
1363
1364 if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S))
1365 continue;
1366
1367 break;
1368 }
1369
1370 return S;
1371}
1372
1373static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1374 switch (S->getStmtClass()) {
1375 case Stmt::BinaryOperatorClass: {
1376 const auto *BO = cast<BinaryOperator>(S);
1377 if (!BO->isLogicalOp())
1378 return false;
1379 return BO->getLHS() == Cond || BO->getRHS() == Cond;
1380 }
1381 case Stmt::IfStmtClass:
1382 return cast<IfStmt>(S)->getCond() == Cond;
1383 case Stmt::ForStmtClass:
1384 return cast<ForStmt>(S)->getCond() == Cond;
1385 case Stmt::WhileStmtClass:
1386 return cast<WhileStmt>(S)->getCond() == Cond;
1387 case Stmt::DoStmtClass:
1388 return cast<DoStmt>(S)->getCond() == Cond;
1389 case Stmt::ChooseExprClass:
1390 return cast<ChooseExpr>(S)->getCond() == Cond;
1391 case Stmt::IndirectGotoStmtClass:
1392 return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1393 case Stmt::SwitchStmtClass:
1394 return cast<SwitchStmt>(S)->getCond() == Cond;
1395 case Stmt::BinaryConditionalOperatorClass:
1396 return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1397 case Stmt::ConditionalOperatorClass: {
1398 const auto *CO = cast<ConditionalOperator>(S);
1399 return CO->getCond() == Cond ||
1400 CO->getLHS() == Cond ||
1401 CO->getRHS() == Cond;
1402 }
1403 case Stmt::ObjCForCollectionStmtClass:
1404 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1405 case Stmt::CXXForRangeStmtClass: {
1406 const auto *FRS = cast<CXXForRangeStmt>(S);
1407 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1408 }
1409 default:
1410 return false;
1411 }
1412}
1413
1414static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1415 if (const auto *FS = dyn_cast<ForStmt>(FL))
1416 return FS->getInc() == S || FS->getInit() == S;
1417 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1418 return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1419 FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1420 return false;
1421}
1422
1423using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1424
1425/// Adds synthetic edges from top-level statements to their subexpressions.
1426///
1427/// This avoids a "swoosh" effect, where an edge from a top-level statement A
1428/// points to a sub-expression B.1 that's not at the start of B. In these cases,
1429/// we'd like to see an edge from A to B, then another one from B to B.1.
1430static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1431 const ParentMap &PM = LC->getParentMap();
1432 PathPieces::iterator Prev = pieces.end();
1433 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1434 Prev = I, ++I) {
1435 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1436
1437 if (!Piece)
1438 continue;
1439
1440 PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1442
1443 PathDiagnosticLocation NextSrcContext = SrcLoc;
1444 const Stmt *InnerStmt = nullptr;
1445 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1446 SrcContexts.push_back(NextSrcContext);
1447 InnerStmt = NextSrcContext.asStmt();
1448 NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
1449 /*allowNested=*/true);
1450 }
1451
1452 // Repeatedly split the edge as necessary.
1453 // This is important for nested logical expressions (||, &&, ?:) where we
1454 // want to show all the levels of context.
1455 while (true) {
1456 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1457
1458 // We are looking at an edge. Is the destination within a larger
1459 // expression?
1460 PathDiagnosticLocation DstContext =
1461 getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
1462 if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1463 break;
1464
1465 // If the source is in the same context, we're already good.
1466 if (llvm::is_contained(SrcContexts, DstContext))
1467 break;
1468
1469 // Update the subexpression node to point to the context edge.
1470 Piece->setStartLocation(DstContext);
1471
1472 // Try to extend the previous edge if it's at the same level as the source
1473 // context.
1474 if (Prev != E) {
1475 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1476
1477 if (PrevPiece) {
1478 if (const Stmt *PrevSrc =
1479 PrevPiece->getStartLocation().getStmtOrNull()) {
1480 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1481 if (PrevSrcParent ==
1482 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1483 PrevPiece->setEndLocation(DstContext);
1484 break;
1485 }
1486 }
1487 }
1488 }
1489
1490 // Otherwise, split the current edge into a context edge and a
1491 // subexpression edge. Note that the context statement may itself have
1492 // context.
1493 auto P =
1494 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1495 Piece = P.get();
1496 I = pieces.insert(I, std::move(P));
1497 }
1498 }
1499}
1500
1501/// Move edges from a branch condition to a branch target
1502/// when the condition is simple.
1503///
1504/// This restructures some of the work of addContextEdges. That function
1505/// creates edges this may destroy, but they work together to create a more
1506/// aesthetically set of edges around branches. After the call to
1507/// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1508/// the branch to the branch condition, and (3) an edge from the branch
1509/// condition to the branch target. We keep (1), but may wish to remove (2)
1510/// and move the source of (3) to the branch if the branch condition is simple.
1512 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1513 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1514
1515 if (!PieceI)
1516 continue;
1517
1518 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1519 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1520
1521 if (!s1Start || !s1End)
1522 continue;
1523
1524 PathPieces::iterator NextI = I; ++NextI;
1525 if (NextI == E)
1526 break;
1527
1528 PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1529
1530 while (true) {
1531 if (NextI == E)
1532 break;
1533
1534 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1535 if (EV) {
1536 StringRef S = EV->getString();
1537 if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1539 ++NextI;
1540 continue;
1541 }
1542 break;
1543 }
1544
1545 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1546 break;
1547 }
1548
1549 if (!PieceNextI)
1550 continue;
1551
1552 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1553 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1554
1555 if (!s2Start || !s2End || s1End != s2Start)
1556 continue;
1557
1558 // We only perform this transformation for specific branch kinds.
1559 // We don't want to do this for do..while, for example.
1561 CXXForRangeStmt>(s1Start))
1562 continue;
1563
1564 // Is s1End the branch condition?
1565 if (!isConditionForTerminator(s1Start, s1End))
1566 continue;
1567
1568 // Perform the hoisting by eliminating (2) and changing the start
1569 // location of (3).
1570 PieceNextI->setStartLocation(PieceI->getStartLocation());
1571 I = pieces.erase(I);
1572 }
1573}
1574
1575/// Returns the number of bytes in the given (character-based) SourceRange.
1576///
1577/// If the locations in the range are not on the same line, returns
1578/// std::nullopt.
1579///
1580/// Note that this does not do a precise user-visible character or column count.
1581static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1583 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1584 SM.getExpansionRange(Range.getEnd()).getEnd());
1585
1586 FileID FID = SM.getFileID(ExpansionRange.getBegin());
1587 if (FID != SM.getFileID(ExpansionRange.getEnd()))
1588 return std::nullopt;
1589
1590 std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID);
1591 if (!Buffer)
1592 return std::nullopt;
1593
1594 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1595 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1596 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1597
1598 // We're searching the raw bytes of the buffer here, which might include
1599 // escaped newlines and such. That's okay; we're trying to decide whether the
1600 // SourceRange is covering a large or small amount of space in the user's
1601 // editor.
1602 if (Snippet.find_first_of("\r\n") != StringRef::npos)
1603 return std::nullopt;
1604
1605 // This isn't Unicode-aware, but it doesn't need to be.
1606 return Snippet.size();
1607}
1608
1609/// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1610static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1611 const Stmt *S) {
1612 return getLengthOnSingleLine(SM, S->getSourceRange());
1613}
1614
1615/// Eliminate two-edge cycles created by addContextEdges().
1616///
1617/// Once all the context edges are in place, there are plenty of cases where
1618/// there's a single edge from a top-level statement to a subexpression,
1619/// followed by a single path note, and then a reverse edge to get back out to
1620/// the top level. If the statement is simple enough, the subexpression edges
1621/// just add noise and make it harder to understand what's going on.
1622///
1623/// This function only removes edges in pairs, because removing only one edge
1624/// might leave other edges dangling.
1625///
1626/// This will not remove edges in more complicated situations:
1627/// - if there is more than one "hop" leading to or from a subexpression.
1628/// - if there is an inlined call between the edges instead of a single event.
1629/// - if the whole statement is large enough that having subexpression arrows
1630/// might be helpful.
1632 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1633 // Pattern match the current piece and its successor.
1634 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1635
1636 if (!PieceI) {
1637 ++I;
1638 continue;
1639 }
1640
1641 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1642 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1643
1644 PathPieces::iterator NextI = I; ++NextI;
1645 if (NextI == E)
1646 break;
1647
1648 const auto *PieceNextI =
1649 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1650
1651 if (!PieceNextI) {
1652 if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1653 ++NextI;
1654 if (NextI == E)
1655 break;
1656 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1657 }
1658
1659 if (!PieceNextI) {
1660 ++I;
1661 continue;
1662 }
1663 }
1664
1665 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1666 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1667
1668 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1669 const size_t MAX_SHORT_LINE_LENGTH = 80;
1670 std::optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1671 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1672 std::optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1673 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1674 Path.erase(I);
1675 I = Path.erase(NextI);
1676 continue;
1677 }
1678 }
1679 }
1680
1681 ++I;
1682 }
1683}
1684
1685/// Return true if X is contained by Y.
1686static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1687 while (X) {
1688 if (X == Y)
1689 return true;
1690 X = PM.getParent(X);
1691 }
1692 return false;
1693}
1694
1695// Remove short edges on the same line less than 3 columns in difference.
1696static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1697 const ParentMap &PM) {
1698 bool erased = false;
1699
1700 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1701 erased ? I : ++I) {
1702 erased = false;
1703
1704 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1705
1706 if (!PieceI)
1707 continue;
1708
1709 const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1710 const Stmt *end = PieceI->getEndLocation().getStmtOrNull();
1711
1712 if (!start || !end)
1713 continue;
1714
1715 const Stmt *endParent = PM.getParent(end);
1716 if (!endParent)
1717 continue;
1718
1719 if (isConditionForTerminator(end, endParent))
1720 continue;
1721
1722 SourceLocation FirstLoc = start->getBeginLoc();
1723 SourceLocation SecondLoc = end->getBeginLoc();
1724
1725 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1726 continue;
1727 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1728 std::swap(SecondLoc, FirstLoc);
1729
1730 SourceRange EdgeRange(FirstLoc, SecondLoc);
1731 std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1732
1733 // If the statements are on different lines, continue.
1734 if (!ByteWidth)
1735 continue;
1736
1737 const size_t MAX_PUNY_EDGE_LENGTH = 2;
1738 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1739 // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1740 // there might not be enough /columns/. A proper user-visible column count
1741 // is probably too expensive, though.
1742 I = path.erase(I);
1743 erased = true;
1744 continue;
1745 }
1746 }
1747}
1748
1750 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1751 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1752
1753 if (!PieceI)
1754 continue;
1755
1756 PathPieces::iterator NextI = I; ++NextI;
1757 if (NextI == E)
1758 return;
1759
1760 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1761
1762 if (!PieceNextI)
1763 continue;
1764
1765 // Erase the second piece if it has the same exact message text.
1766 if (PieceI->getString() == PieceNextI->getString()) {
1767 path.erase(NextI);
1768 }
1769 }
1770}
1771
1772static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1773 OptimizedCallsSet &OCS) {
1774 bool hasChanges = false;
1775 const LocationContext *LC = C.getLocationContextFor(&path);
1776 assert(LC);
1777 const ParentMap &PM = LC->getParentMap();
1778 const SourceManager &SM = C.getSourceManager();
1779
1780 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1781 // Optimize subpaths.
1782 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1783 // Record the fact that a call has been optimized so we only do the
1784 // effort once.
1785 if (!OCS.count(CallI)) {
1786 while (optimizeEdges(C, CallI->path, OCS)) {
1787 }
1788 OCS.insert(CallI);
1789 }
1790 ++I;
1791 continue;
1792 }
1793
1794 // Pattern match the current piece and its successor.
1795 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1796
1797 if (!PieceI) {
1798 ++I;
1799 continue;
1800 }
1801
1802 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1803 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1804 const Stmt *level1 = getStmtParent(s1Start, PM);
1805 const Stmt *level2 = getStmtParent(s1End, PM);
1806
1807 PathPieces::iterator NextI = I; ++NextI;
1808 if (NextI == E)
1809 break;
1810
1811 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1812
1813 if (!PieceNextI) {
1814 ++I;
1815 continue;
1816 }
1817
1818 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1819 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1820 const Stmt *level3 = getStmtParent(s2Start, PM);
1821 const Stmt *level4 = getStmtParent(s2End, PM);
1822
1823 // Rule I.
1824 //
1825 // If we have two consecutive control edges whose end/begin locations
1826 // are at the same level (e.g. statements or top-level expressions within
1827 // a compound statement, or siblings share a single ancestor expression),
1828 // then merge them if they have no interesting intermediate event.
1829 //
1830 // For example:
1831 //
1832 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1833 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements.
1834 //
1835 // NOTE: this will be limited later in cases where we add barriers
1836 // to prevent this optimization.
1837 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1838 PieceI->setEndLocation(PieceNextI->getEndLocation());
1839 path.erase(NextI);
1840 hasChanges = true;
1841 continue;
1842 }
1843
1844 // Rule II.
1845 //
1846 // Eliminate edges between subexpressions and parent expressions
1847 // when the subexpression is consumed.
1848 //
1849 // NOTE: this will be limited later in cases where we add barriers
1850 // to prevent this optimization.
1851 if (s1End && s1End == s2Start && level2) {
1852 bool removeEdge = false;
1853 // Remove edges into the increment or initialization of a
1854 // loop that have no interleaving event. This means that
1855 // they aren't interesting.
1856 if (isIncrementOrInitInForLoop(s1End, level2))
1857 removeEdge = true;
1858 // Next only consider edges that are not anchored on
1859 // the condition of a terminator. This are intermediate edges
1860 // that we might want to trim.
1861 else if (!isConditionForTerminator(level2, s1End)) {
1862 // Trim edges on expressions that are consumed by
1863 // the parent expression.
1864 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1865 removeEdge = true;
1866 }
1867 // Trim edges where a lexical containment doesn't exist.
1868 // For example:
1869 //
1870 // X -> Y -> Z
1871 //
1872 // If 'Z' lexically contains Y (it is an ancestor) and
1873 // 'X' does not lexically contain Y (it is a descendant OR
1874 // it has no lexical relationship at all) then trim.
1875 //
1876 // This can eliminate edges where we dive into a subexpression
1877 // and then pop back out, etc.
1878 else if (s1Start && s2End &&
1879 lexicalContains(PM, s2Start, s2End) &&
1880 !lexicalContains(PM, s1End, s1Start)) {
1881 removeEdge = true;
1882 }
1883 // Trim edges from a subexpression back to the top level if the
1884 // subexpression is on a different line.
1885 //
1886 // A.1 -> A -> B
1887 // becomes
1888 // A.1 -> B
1889 //
1890 // These edges just look ugly and don't usually add anything.
1891 else if (s1Start && s2End &&
1892 lexicalContains(PM, s1Start, s1End)) {
1893 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1894 PieceI->getStartLocation().asLocation());
1895 if (!getLengthOnSingleLine(SM, EdgeRange))
1896 removeEdge = true;
1897 }
1898 }
1899
1900 if (removeEdge) {
1901 PieceI->setEndLocation(PieceNextI->getEndLocation());
1902 path.erase(NextI);
1903 hasChanges = true;
1904 continue;
1905 }
1906 }
1907
1908 // Optimize edges for ObjC fast-enumeration loops.
1909 //
1910 // (X -> collection) -> (collection -> element)
1911 //
1912 // becomes:
1913 //
1914 // (X -> element)
1915 if (s1End == s2Start) {
1916 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1917 if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1918 s2End == FS->getElement()) {
1919 PieceI->setEndLocation(PieceNextI->getEndLocation());
1920 path.erase(NextI);
1921 hasChanges = true;
1922 continue;
1923 }
1924 }
1925
1926 // No changes at this index? Move to the next one.
1927 ++I;
1928 }
1929
1930 if (!hasChanges) {
1931 // Adjust edges into subexpressions to make them more uniform
1932 // and aesthetically pleasing.
1933 addContextEdges(path, LC);
1934 // Remove "cyclical" edges that include one or more context edges.
1935 removeContextCycles(path, SM);
1936 // Hoist edges originating from branch conditions to branches
1937 // for simple branches.
1939 // Remove any puny edges left over after primary optimization pass.
1940 removePunyEdges(path, SM, PM);
1941 // Remove identical events.
1943 }
1944
1945 return hasChanges;
1946}
1947
1948/// Drop the very first edge in a path, which should be a function entry edge.
1949///
1950/// If the first edge is not a function entry edge (say, because the first
1951/// statement had an invalid source location), this function does nothing.
1952// FIXME: We should just generate invalid edges anyway and have the optimizer
1953// deal with them.
1954static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1955 PathPieces &Path) {
1956 const auto *FirstEdge =
1957 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1958 if (!FirstEdge)
1959 return;
1960
1961 const Decl *D = C.getLocationContextFor(&Path)->getDecl();
1962 PathDiagnosticLocation EntryLoc =
1963 PathDiagnosticLocation::createBegin(D, C.getSourceManager());
1964 if (FirstEdge->getStartLocation() != EntryLoc)
1965 return;
1966
1967 Path.pop_front();
1968}
1969
1970/// Populate executes lines with lines containing at least one diagnostics.
1972
1973 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1974 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1975
1976 for (const auto &P : path) {
1977 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1978 FileID FID = Loc.getFileID();
1979 unsigned LineNo = Loc.getLineNumber();
1980 assert(FID.isValid());
1981 ExecutedLines[FID].insert(LineNo);
1982 }
1983}
1984
1985PathDiagnosticConstruct::PathDiagnosticConstruct(
1986 const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1987 const PathSensitiveBugReport *R, const Decl *AnalysisEntryPoint)
1988 : Consumer(PDC), CurrentNode(ErrorNode),
1989 SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1990 PD(generateEmptyDiagnosticForReport(R, getSourceManager(),
1991 AnalysisEntryPoint)) {
1992 LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1993}
1994
1995PathDiagnosticBuilder::PathDiagnosticBuilder(
1996 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1997 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1998 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1999 : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
2000 ErrorNode(ErrorNode),
2001 VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
2002
2003std::unique_ptr<PathDiagnostic>
2004PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
2005 const Decl *EntryPoint = getBugReporter().getAnalysisEntryPoint();
2006 PathDiagnosticConstruct Construct(PDC, ErrorNode, R, EntryPoint);
2007
2008 const SourceManager &SM = getSourceManager();
2009 const AnalyzerOptions &Opts = getAnalyzerOptions();
2010
2011 if (!PDC->shouldGenerateDiagnostics())
2012 return generateEmptyDiagnosticForReport(R, getSourceManager(), EntryPoint);
2013
2014 // Construct the final (warning) event for the bug report.
2015 auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
2016 PathDiagnosticPieceRef LastPiece;
2017 if (EndNotes != VisitorsDiagnostics->end()) {
2018 assert(!EndNotes->second.empty());
2019 LastPiece = EndNotes->second[0];
2020 } else {
2021 LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
2022 *getBugReport());
2023 }
2024 Construct.PD->setEndOfPath(LastPiece);
2025
2026 PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2027 // From the error node to the root, ascend the bug path and construct the bug
2028 // report.
2029 while (Construct.ascendToPrevNode()) {
2030 generatePathDiagnosticsForNode(Construct, PrevLoc);
2031
2032 auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
2033 if (VisitorNotes == VisitorsDiagnostics->end())
2034 continue;
2035
2036 // This is a workaround due to inability to put shared PathDiagnosticPiece
2037 // into a FoldingSet.
2038 std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2039
2040 // Add pieces from custom visitors.
2041 for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2042 llvm::FoldingSetNodeID ID;
2043 Note->Profile(ID);
2044 if (!DeduplicationSet.insert(ID).second)
2045 continue;
2046
2047 if (PDC->shouldAddPathEdges())
2048 addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
2049 updateStackPiecesWithMessage(Note, Construct.CallStack);
2050 Construct.getActivePath().push_front(Note);
2051 }
2052 }
2053
2054 if (PDC->shouldAddPathEdges()) {
2055 // Add an edge to the start of the function.
2056 // We'll prune it out later, but it helps make diagnostics more uniform.
2057 const StackFrameContext *CalleeLC =
2058 Construct.getLocationContextForActivePath()->getStackFrame();
2059 const Decl *D = CalleeLC->getDecl();
2060 addEdgeToPath(Construct.getActivePath(), PrevLoc,
2062 }
2063
2064
2065 // Finally, prune the diagnostic path of uninteresting stuff.
2066 if (!Construct.PD->path.empty()) {
2067 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2068 bool stillHasNotes =
2069 removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
2070 assert(stillHasNotes);
2071 (void)stillHasNotes;
2072 }
2073
2074 // Remove pop-up notes if needed.
2075 if (!Opts.ShouldAddPopUpNotes)
2076 removePopUpNotes(Construct.getMutablePieces());
2077
2078 // Redirect all call pieces to have valid locations.
2079 adjustCallLocations(Construct.getMutablePieces());
2080 removePiecesWithInvalidLocations(Construct.getMutablePieces());
2081
2082 if (PDC->shouldAddPathEdges()) {
2083
2084 // Reduce the number of edges from a very conservative set
2085 // to an aesthetically pleasing subset that conveys the
2086 // necessary information.
2088 while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
2089 }
2090
2091 // Drop the very first function-entry edge. It's not really necessary
2092 // for top-level functions.
2093 dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
2094 }
2095
2096 // Remove messages that are basically the same, and edges that may not
2097 // make sense.
2098 // We have to do this after edge optimization in the Extensive mode.
2099 removeRedundantMsgs(Construct.getMutablePieces());
2100 removeEdgesToDefaultInitializers(Construct.getMutablePieces());
2101 }
2102
2103 if (Opts.ShouldDisplayMacroExpansions)
2104 CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
2105
2106 return std::move(Construct.PD);
2107}
2108
2109//===----------------------------------------------------------------------===//
2110// Methods for BugType and subclasses.
2111//===----------------------------------------------------------------------===//
2112
2113void BugType::anchor() {}
2114
2115//===----------------------------------------------------------------------===//
2116// Methods for BugReport and subclasses.
2117//===----------------------------------------------------------------------===//
2118
2119LLVM_ATTRIBUTE_USED static bool
2120isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2121 for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2122 if (Pair.second == CheckerName)
2123 return true;
2124 }
2125 return false;
2126}
2127
2128LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2129 StringRef CheckerName) {
2130 for (const CheckerInfo &Checker : Registry.Checkers) {
2131 if (Checker.FullName == CheckerName)
2132 return Checker.IsHidden;
2133 }
2134 llvm_unreachable(
2135 "Checker name not found in CheckerRegistry -- did you retrieve it "
2136 "correctly from CheckerManager::getCurrentCheckerName?");
2137}
2138
2140 const BugType &bt, StringRef shortDesc, StringRef desc,
2141 const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2142 const Decl *DeclToUnique)
2143 : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2144 ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2145 UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2147 ->getAnalysisManager()
2148 .getCheckerManager()
2149 ->getCheckerRegistryData(),
2150 bt.getCheckerName()) &&
2151 "Some checkers depend on this one! We don't allow dependency "
2152 "checkers to emit warnings, because checkers should depend on "
2153 "*modeling*, not *diagnostics*.");
2154
2155 assert((bt.getCheckerName().starts_with("debug") ||
2157 ->getAnalysisManager()
2158 .getCheckerManager()
2159 ->getCheckerRegistryData(),
2160 bt.getCheckerName())) &&
2161 "Hidden checkers musn't emit diagnostics as they are by definition "
2162 "non-user facing!");
2163}
2164
2166 std::unique_ptr<BugReporterVisitor> visitor) {
2167 if (!visitor)
2168 return;
2169
2170 llvm::FoldingSetNodeID ID;
2171 visitor->Profile(ID);
2172
2173 void *InsertPos = nullptr;
2174 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2175 return;
2176 }
2177
2178 Callbacks.push_back(std::move(visitor));
2179}
2180
2182 Callbacks.clear();
2183}
2184
2186 const ExplodedNode *N = getErrorNode();
2187 if (!N)
2188 return nullptr;
2189
2190 const LocationContext *LC = N->getLocationContext();
2191 return LC->getStackFrame()->getDecl();
2192}
2193
2194void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2195 hash.AddInteger(static_cast<int>(getKind()));
2196 hash.AddPointer(&BT);
2197 hash.AddString(getShortDescription());
2198 assert(Location.isValid());
2199 Location.Profile(hash);
2200
2201 for (SourceRange range : Ranges) {
2202 if (!range.isValid())
2203 continue;
2204 hash.Add(range.getBegin());
2205 hash.Add(range.getEnd());
2206 }
2207}
2208
2209void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2210 hash.AddInteger(static_cast<int>(getKind()));
2211 hash.AddPointer(&BT);
2212 hash.AddString(getShortDescription());
2214 if (UL.isValid()) {
2215 UL.Profile(hash);
2216 } else {
2217 // TODO: The statement may be null if the report was emitted before any
2218 // statements were executed. In particular, some checkers by design
2219 // occasionally emit their reports in empty functions (that have no
2220 // statements in their body). Do we profile correctly in this case?
2222 }
2223
2224 for (SourceRange range : Ranges) {
2225 if (!range.isValid())
2226 continue;
2227 hash.Add(range.getBegin());
2228 hash.Add(range.getEnd());
2229 }
2230}
2231
2232template <class T>
2234 llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2236 auto Result = InterestingnessMap.insert({Val, TKind});
2237
2238 if (Result.second)
2239 return;
2240
2241 // Even if this symbol/region was already marked as interesting as a
2242 // condition, if we later mark it as interesting again but with
2243 // thorough tracking, overwrite it. Entities marked with thorough
2244 // interestiness are the most important (or most interesting, if you will),
2245 // and we wouldn't like to downplay their importance.
2246
2247 switch (TKind) {
2249 Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2250 return;
2252 return;
2253 }
2254
2255 llvm_unreachable(
2256 "BugReport::markInteresting currently can only handle 2 different "
2257 "tracking kinds! Please define what tracking kind should this entitiy"
2258 "have, if it was already marked as interesting with a different kind!");
2259}
2260
2263 if (!sym)
2264 return;
2265
2267
2268 // FIXME: No tests exist for this code and it is questionable:
2269 // How to handle multiple metadata for the same region?
2270 if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2271 markInteresting(meta->getRegion(), TKind);
2272}
2273
2275 if (!sym)
2276 return;
2277 InterestingSymbols.erase(sym);
2278
2279 // The metadata part of markInteresting is not reversed here.
2280 // Just making the same region not interesting is incorrect
2281 // in specific cases.
2282 if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2283 markNotInteresting(meta->getRegion());
2284}
2285
2288 if (!R)
2289 return;
2290
2291 R = R->getBaseRegion();
2293
2294 if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2295 markInteresting(SR->getSymbol(), TKind);
2296}
2297
2299 if (!R)
2300 return;
2301
2302 R = R->getBaseRegion();
2303 InterestingRegions.erase(R);
2304
2305 if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2306 markNotInteresting(SR->getSymbol());
2307}
2308
2311 markInteresting(V.getAsRegion(), TKind);
2312 markInteresting(V.getAsSymbol(), TKind);
2313}
2314
2316 if (!LC)
2317 return;
2318 InterestingLocationContexts.insert(LC);
2319}
2320
2321std::optional<bugreporter::TrackingKind>
2323 auto RKind = getInterestingnessKind(V.getAsRegion());
2324 auto SKind = getInterestingnessKind(V.getAsSymbol());
2325 if (!RKind)
2326 return SKind;
2327 if (!SKind)
2328 return RKind;
2329
2330 // If either is marked with throrough tracking, return that, we wouldn't like
2331 // to downplay a note's importance by 'only' mentioning it as a condition.
2332 switch(*RKind) {
2334 return RKind;
2336 return SKind;
2337 }
2338
2339 llvm_unreachable(
2340 "BugReport::getInterestingnessKind currently can only handle 2 different "
2341 "tracking kinds! Please define what tracking kind should we return here "
2342 "when the kind of getAsRegion() and getAsSymbol() is different!");
2343 return std::nullopt;
2344}
2345
2346std::optional<bugreporter::TrackingKind>
2348 if (!sym)
2349 return std::nullopt;
2350 // We don't currently consider metadata symbols to be interesting
2351 // even if we know their region is interesting. Is that correct behavior?
2352 auto It = InterestingSymbols.find(sym);
2353 if (It == InterestingSymbols.end())
2354 return std::nullopt;
2355 return It->getSecond();
2356}
2357
2358std::optional<bugreporter::TrackingKind>
2360 if (!R)
2361 return std::nullopt;
2362
2363 R = R->getBaseRegion();
2364 auto It = InterestingRegions.find(R);
2365 if (It != InterestingRegions.end())
2366 return It->getSecond();
2367
2368 if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2369 return getInterestingnessKind(SR->getSymbol());
2370 return std::nullopt;
2371}
2372
2374 return getInterestingnessKind(V).has_value();
2375}
2376
2378 return getInterestingnessKind(sym).has_value();
2379}
2380
2382 return getInterestingnessKind(R).has_value();
2383}
2384
2386 if (!LC)
2387 return false;
2388 return InterestingLocationContexts.count(LC);
2389}
2390
2392 if (!ErrorNode)
2393 return nullptr;
2394
2396 const Stmt *S = nullptr;
2397
2398 if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2399 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2400 if (BE->getBlock() == &Exit)
2402 }
2403 if (!S)
2405
2406 return S;
2407}
2408
2411 // If no custom ranges, add the range of the statement corresponding to
2412 // the error node.
2413 if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
2414 return ErrorNodeRange;
2415
2416 return Ranges;
2417}
2418
2419static bool exitingDestructor(const ExplodedNode *N) {
2420 // Need to loop here, as some times the Error node is already outside of the
2421 // destructor context, and the previous node is an edge that is also outside.
2422 while (N && !N->getLocation().getAs<StmtPoint>()) {
2423 N = N->getFirstPred();
2424 }
2425 return N && isa<CXXDestructorDecl>(N->getLocationContext()->getDecl());
2426}
2427
2428static const Stmt *
2430 if (exitingDestructor(N)) {
2431 // If we are exiting a destructor call, it is more useful to point to
2432 // the next stmt which is usually the temporary declaration.
2433 if (const Stmt *S = N->getNextStmtForDiagnostics())
2434 return S;
2435 // If next stmt is not found, it is likely the end of a top-level
2436 // function analysis. find the last execution statement then.
2437 }
2439}
2440
2443 assert(ErrorNode && "Cannot create a location with a null node.");
2444 const Stmt *S = ErrorNode->getStmtForDiagnostics();
2446 const LocationContext *LC = P.getLocationContext();
2447 SourceManager &SM =
2448 ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2449
2450 if (!S) {
2451 // If this is an implicit call, return the implicit call point location.
2452 if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2453 return PathDiagnosticLocation(PIE->getLocation(), SM);
2454 if (auto FE = P.getAs<FunctionExitPoint>()) {
2455 if (const ReturnStmt *RS = FE->getStmt())
2457
2459 }
2460 if (!S)
2462 }
2463
2464 if (S) {
2465 // Attributed statements usually have corrupted begin locations,
2466 // it's OK to ignore attributes for our purposes and deal with
2467 // the actual annotated statement.
2468 if (const auto *AS = dyn_cast<AttributedStmt>(S))
2469 S = AS->getSubStmt();
2470
2471 // For member expressions, return the location of the '.' or '->'.
2472 if (const auto *ME = dyn_cast<MemberExpr>(S))
2474
2475 // For binary operators, return the location of the operator.
2476 if (const auto *B = dyn_cast<BinaryOperator>(S))
2478
2479 if (P.getAs<PostStmtPurgeDeadSymbols>())
2481
2482 if (S->getBeginLoc().isValid())
2483 return PathDiagnosticLocation(S, SM, LC);
2484
2487 }
2488
2490 SM);
2491}
2492
2493//===----------------------------------------------------------------------===//
2494// Methods for BugReporter and subclasses.
2495//===----------------------------------------------------------------------===//
2496
2498 return Eng.getGraph();
2499}
2500
2502 return Eng.getStateManager();
2503}
2504
2506 : D(D), UserSuppressions(D.getASTContext()) {}
2507
2509 // Make sure reports are flushed.
2510 assert(StrBugTypes.empty() &&
2511 "Destroying BugReporter before diagnostics are emitted!");
2512
2513 // Free the bug reports we are tracking.
2514 for (const auto I : EQClassesVector)
2515 delete I;
2516}
2517
2519 // We need to flush reports in deterministic order to ensure the order
2520 // of the reports is consistent between runs.
2521 for (const auto EQ : EQClassesVector)
2522 FlushReport(*EQ);
2523
2524 // BugReporter owns and deletes only BugTypes created implicitly through
2525 // EmitBasicReport.
2526 // FIXME: There are leaks from checkers that assume that the BugTypes they
2527 // create will be destroyed by the BugReporter.
2528 StrBugTypes.clear();
2529}
2530
2531//===----------------------------------------------------------------------===//
2532// PathDiagnostics generation.
2533//===----------------------------------------------------------------------===//
2534
2535namespace {
2536
2537/// A wrapper around an ExplodedGraph that contains a single path from the root
2538/// to the error node.
2539class BugPathInfo {
2540public:
2541 std::unique_ptr<ExplodedGraph> BugPath;
2543 const ExplodedNode *ErrorNode;
2544};
2545
2546/// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2547/// conveniently retrieve bug paths from a single error node to the root.
2548class BugPathGetter {
2549 std::unique_ptr<ExplodedGraph> TrimmedGraph;
2550
2551 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2552
2553 /// Assign each node with its distance from the root.
2554 PriorityMapTy PriorityMap;
2555
2556 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2557 /// we need to pair it to the error node of the constructed trimmed graph.
2558 using ReportNewNodePair =
2559 std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2561
2562 BugPathInfo CurrentBugPath;
2563
2564 /// A helper class for sorting ExplodedNodes by priority.
2565 template <bool Descending>
2566 class PriorityCompare {
2567 const PriorityMapTy &PriorityMap;
2568
2569 public:
2570 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2571
2572 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2573 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2574 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2575 PriorityMapTy::const_iterator E = PriorityMap.end();
2576
2577 if (LI == E)
2578 return Descending;
2579 if (RI == E)
2580 return !Descending;
2581
2582 return Descending ? LI->second > RI->second
2583 : LI->second < RI->second;
2584 }
2585
2586 bool operator()(const ReportNewNodePair &LHS,
2587 const ReportNewNodePair &RHS) const {
2588 return (*this)(LHS.second, RHS.second);
2589 }
2590 };
2591
2592public:
2593 BugPathGetter(const ExplodedGraph *OriginalGraph,
2595
2596 BugPathInfo *getNextBugPath();
2597};
2598
2599} // namespace
2600
2601BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2604 for (const auto I : bugReports) {
2605 assert(I->isValid() &&
2606 "We only allow BugReporterVisitors and BugReporter itself to "
2607 "invalidate reports!");
2608 Nodes.emplace_back(I->getErrorNode());
2609 }
2610
2611 // The trimmed graph is created in the body of the constructor to ensure
2612 // that the DenseMaps have been initialized already.
2613 InterExplodedGraphMap ForwardMap;
2614 TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
2615
2616 // Find the (first) error node in the trimmed graph. We just need to consult
2617 // the node map which maps from nodes in the original graph to nodes
2618 // in the new graph.
2620
2621 for (PathSensitiveBugReport *Report : bugReports) {
2622 const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
2623 assert(NewNode &&
2624 "Failed to construct a trimmed graph that contains this error "
2625 "node!");
2626 ReportNodes.emplace_back(Report, NewNode);
2627 RemainingNodes.insert(NewNode);
2628 }
2629
2630 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2631
2632 // Perform a forward BFS to find all the shortest paths.
2633 std::queue<const ExplodedNode *> WS;
2634
2635 assert(TrimmedGraph->num_roots() == 1);
2636 WS.push(*TrimmedGraph->roots_begin());
2637 unsigned Priority = 0;
2638
2639 while (!WS.empty()) {
2640 const ExplodedNode *Node = WS.front();
2641 WS.pop();
2642
2643 PriorityMapTy::iterator PriorityEntry;
2644 bool IsNew;
2645 std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
2646 ++Priority;
2647
2648 if (!IsNew) {
2649 assert(PriorityEntry->second <= Priority);
2650 continue;
2651 }
2652
2653 if (RemainingNodes.erase(Node))
2654 if (RemainingNodes.empty())
2655 break;
2656
2657 for (const ExplodedNode *Succ : Node->succs())
2658 WS.push(Succ);
2659 }
2660
2661 // Sort the error paths from longest to shortest.
2662 llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
2663}
2664
2665BugPathInfo *BugPathGetter::getNextBugPath() {
2666 if (ReportNodes.empty())
2667 return nullptr;
2668
2669 const ExplodedNode *OrigN;
2670 std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
2671 assert(PriorityMap.contains(OrigN) && "error node not accessible from root");
2672
2673 // Create a new graph with a single path. This is the graph that will be
2674 // returned to the caller.
2675 auto GNew = std::make_unique<ExplodedGraph>();
2676
2677 // Now walk from the error node up the BFS path, always taking the
2678 // predeccessor with the lowest number.
2679 ExplodedNode *Succ = nullptr;
2680 while (true) {
2681 // Create the equivalent node in the new graph with the same state
2682 // and location.
2683 ExplodedNode *NewN = GNew->createUncachedNode(
2684 OrigN->getLocation(), OrigN->getState(),
2685 OrigN->getID(), OrigN->isSink());
2686
2687 // Link up the new node with the previous node.
2688 if (Succ)
2689 Succ->addPredecessor(NewN, *GNew);
2690 else
2691 CurrentBugPath.ErrorNode = NewN;
2692
2693 Succ = NewN;
2694
2695 // Are we at the final node?
2696 if (OrigN->pred_empty()) {
2697 GNew->addRoot(NewN);
2698 break;
2699 }
2700
2701 // Find the next predeccessor node. We choose the node that is marked
2702 // with the lowest BFS number.
2703 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2704 PriorityCompare<false>(PriorityMap));
2705 }
2706
2707 CurrentBugPath.BugPath = std::move(GNew);
2708
2709 return &CurrentBugPath;
2710}
2711
2712/// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2713/// object and collapses PathDiagosticPieces that are expanded by macros.
2715 const SourceManager& SM) {
2716 using MacroStackTy = std::vector<
2717 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2718
2719 using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2720
2721 MacroStackTy MacroStack;
2722 PiecesTy Pieces;
2723
2724 for (PathPieces::const_iterator I = path.begin(), E = path.end();
2725 I != E; ++I) {
2726 const auto &piece = *I;
2727
2728 // Recursively compact calls.
2729 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2730 CompactMacroExpandedPieces(call->path, SM);
2731 }
2732
2733 // Get the location of the PathDiagnosticPiece.
2734 const FullSourceLoc Loc = piece->getLocation().asLocation();
2735
2736 // Determine the instantiation location, which is the location we group
2737 // related PathDiagnosticPieces.
2738 SourceLocation InstantiationLoc = Loc.isMacroID() ?
2739 SM.getExpansionLoc(Loc) :
2741
2742 if (Loc.isFileID()) {
2743 MacroStack.clear();
2744 Pieces.push_back(piece);
2745 continue;
2746 }
2747
2748 assert(Loc.isMacroID());
2749
2750 // Is the PathDiagnosticPiece within the same macro group?
2751 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2752 MacroStack.back().first->subPieces.push_back(piece);
2753 continue;
2754 }
2755
2756 // We aren't in the same group. Are we descending into a new macro
2757 // or are part of an old one?
2758 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2759
2760 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2761 SM.getExpansionLoc(Loc) :
2763
2764 // Walk the entire macro stack.
2765 while (!MacroStack.empty()) {
2766 if (InstantiationLoc == MacroStack.back().second) {
2767 MacroGroup = MacroStack.back().first;
2768 break;
2769 }
2770
2771 if (ParentInstantiationLoc == MacroStack.back().second) {
2772 MacroGroup = MacroStack.back().first;
2773 break;
2774 }
2775
2776 MacroStack.pop_back();
2777 }
2778
2779 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2780 // Create a new macro group and add it to the stack.
2781 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2782 PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2783
2784 if (MacroGroup)
2785 MacroGroup->subPieces.push_back(NewGroup);
2786 else {
2787 assert(InstantiationLoc.isFileID());
2788 Pieces.push_back(NewGroup);
2789 }
2790
2791 MacroGroup = NewGroup;
2792 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2793 }
2794
2795 // Finally, add the PathDiagnosticPiece to the group.
2796 MacroGroup->subPieces.push_back(piece);
2797 }
2798
2799 // Now take the pieces and construct a new PathDiagnostic.
2800 path.clear();
2801
2802 path.insert(path.end(), Pieces.begin(), Pieces.end());
2803}
2804
2805/// Generate notes from all visitors.
2806/// Notes associated with @c ErrorNode are generated using
2807/// @c getEndPath, and the rest are generated with @c VisitNode.
2808static std::unique_ptr<VisitorsDiagnosticsTy>
2810 const ExplodedNode *ErrorNode,
2811 BugReporterContext &BRC) {
2812 std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2813 std::make_unique<VisitorsDiagnosticsTy>();
2815
2816 // Run visitors on all nodes starting from the node *before* the last one.
2817 // The last node is reserved for notes generated with @c getEndPath.
2818 const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2819 while (NextNode) {
2820
2821 // At each iteration, move all visitors from report to visitor list. This is
2822 // important, because the Profile() functions of the visitors make sure that
2823 // a visitor isn't added multiple times for the same node, but it's fine
2824 // to add the a visitor with Profile() for different nodes (e.g. tracking
2825 // a region at different points of the symbolic execution).
2826 for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2827 visitors.push_back(std::move(Visitor));
2828
2829 R->clearVisitors();
2830
2831 const ExplodedNode *Pred = NextNode->getFirstPred();
2832 if (!Pred) {
2833 PathDiagnosticPieceRef LastPiece;
2834 for (auto &V : visitors) {
2835 V->finalizeVisitor(BRC, ErrorNode, *R);
2836
2837 if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2838 assert(!LastPiece &&
2839 "There can only be one final piece in a diagnostic.");
2840 assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2841 "The final piece must contain a message!");
2842 LastPiece = std::move(Piece);
2843 (*Notes)[ErrorNode].push_back(LastPiece);
2844 }
2845 }
2846 break;
2847 }
2848
2849 for (auto &V : visitors) {
2850 auto P = V->VisitNode(NextNode, BRC, *R);
2851 if (P)
2852 (*Notes)[NextNode].push_back(std::move(P));
2853 }
2854
2855 if (!R->isValid())
2856 break;
2857
2858 NextNode = Pred;
2859 }
2860
2861 return Notes;
2862}
2863
2864std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2866 PathSensitiveBugReporter &Reporter) {
2867 Z3CrosscheckOracle Z3Oracle(Reporter.getAnalyzerOptions());
2868
2869 BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2870
2871 while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2872 // Find the BugReport with the original location.
2873 PathSensitiveBugReport *R = BugPath->Report;
2874 assert(R && "No original report found for sliced graph.");
2875 assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2876 const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2877
2878 // Register refutation visitors first, if they mark the bug invalid no
2879 // further analysis is required
2881
2882 // Register additional node visitors.
2885 R->addVisitor<TagVisitor>();
2886
2887 BugReporterContext BRC(Reporter);
2888
2889 // Run all visitors on a given graph, once.
2890 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2891 generateVisitorsDiagnostics(R, ErrorNode, BRC);
2892
2893 if (R->isValid()) {
2894 if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2895 // If crosscheck is enabled, remove all visitors, add the refutation
2896 // visitor and check again
2897 R->clearVisitors();
2898 Z3CrosscheckVisitor::Z3Result CrosscheckResult;
2899 R->addVisitor<Z3CrosscheckVisitor>(CrosscheckResult,
2900 Reporter.getAnalyzerOptions());
2901
2902 // We don't overwrite the notes inserted by other visitors because the
2903 // refutation manager does not add any new note to the path
2904 generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
2905 switch (Z3Oracle.interpretQueryResult(CrosscheckResult)) {
2907 ++NumTimesReportRefuted;
2908 R->markInvalid("Infeasible constraints", /*Data=*/nullptr);
2909 continue;
2911 ++NumTimesReportEQClassAborted;
2912 return {};
2914 ++NumTimesReportPassesZ3;
2915 break;
2916 }
2917 }
2918
2919 assert(R->isValid());
2920 return PathDiagnosticBuilder(std::move(BRC), std::move(BugPath->BugPath),
2921 BugPath->Report, BugPath->ErrorNode,
2922 std::move(visitorNotes));
2923 }
2924 }
2925
2926 ++NumTimesReportEQClassWasExhausted;
2927 return {};
2928}
2929
2930std::unique_ptr<DiagnosticForConsumerMapTy>
2934 assert(!bugReports.empty());
2935
2936 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2937
2938 std::optional<PathDiagnosticBuilder> PDB =
2939 PathDiagnosticBuilder::findValidReport(bugReports, *this);
2940
2941 if (PDB) {
2942 for (PathDiagnosticConsumer *PC : consumers) {
2943 if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
2944 (*Out)[PC] = std::move(PD);
2945 }
2946 }
2947 }
2948
2949 return Out;
2950}
2951
2952void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2953 bool ValidSourceLoc = R->getLocation().isValid();
2954 assert(ValidSourceLoc);
2955 // If we mess up in a release build, we'd still prefer to just drop the bug
2956 // instead of trying to go on.
2957 if (!ValidSourceLoc)
2958 return;
2959
2960 // If the user asked to suppress this report, we should skip it.
2961 if (UserSuppressions.isSuppressed(*R))
2962 return;
2963
2964 // Compute the bug report's hash to determine its equivalence class.
2965 llvm::FoldingSetNodeID ID;
2966 R->Profile(ID);
2967
2968 // Lookup the equivance class. If there isn't one, create it.
2969 void *InsertPos;
2970 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2971
2972 if (!EQ) {
2973 EQ = new BugReportEquivClass(std::move(R));
2974 EQClasses.InsertNode(EQ, InsertPos);
2975 EQClassesVector.push_back(EQ);
2976 } else
2977 EQ->AddReport(std::move(R));
2978}
2979
2980void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2981 if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
2982 if (const ExplodedNode *E = PR->getErrorNode()) {
2983 // An error node must either be a sink or have a tag, otherwise
2984 // it could get reclaimed before the path diagnostic is created.
2985 assert((E->isSink() || E->getLocation().getTag()) &&
2986 "Error node must either be a sink or have a tag");
2987
2988 const AnalysisDeclContext *DeclCtx =
2989 E->getLocationContext()->getAnalysisDeclContext();
2990 // The source of autosynthesized body can be handcrafted AST or a model
2991 // file. The locations from handcrafted ASTs have no valid source
2992 // locations and have to be discarded. Locations from model files should
2993 // be preserved for processing and reporting.
2994 if (DeclCtx->isBodyAutosynthesized() &&
2996 return;
2997 }
2998
2999 BugReporter::emitReport(std::move(R));
3000}
3001
3002//===----------------------------------------------------------------------===//
3003// Emitting reports in equivalence classes.
3004//===----------------------------------------------------------------------===//
3005
3006namespace {
3007
3008struct FRIEC_WLItem {
3009 const ExplodedNode *N;
3011
3012 FRIEC_WLItem(const ExplodedNode *n)
3013 : N(n), I(N->succ_begin()), E(N->succ_end()) {}
3014};
3015
3016} // namespace
3017
3018BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
3020 // If we don't need to suppress any of the nodes because they are
3021 // post-dominated by a sink, simply add all the nodes in the equivalence class
3022 // to 'Nodes'. Any of the reports will serve as a "representative" report.
3023 assert(EQ.getReports().size() > 0);
3024 const BugType& BT = EQ.getReports()[0]->getBugType();
3025 if (!BT.isSuppressOnSink()) {
3026 BugReport *R = EQ.getReports()[0].get();
3027 for (auto &J : EQ.getReports()) {
3028 if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
3029 R = PR;
3030 bugReports.push_back(PR);
3031 }
3032 }
3033 return R;
3034 }
3035
3036 // For bug reports that should be suppressed when all paths are post-dominated
3037 // by a sink node, iterate through the reports in the equivalence class
3038 // until we find one that isn't post-dominated (if one exists). We use a
3039 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
3040 // this as a recursive function, but we don't want to risk blowing out the
3041 // stack for very long paths.
3042 BugReport *exampleReport = nullptr;
3043
3044 for (const auto &I: EQ.getReports()) {
3045 auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
3046 if (!R)
3047 continue;
3048
3049 const ExplodedNode *errorNode = R->getErrorNode();
3050 if (errorNode->isSink()) {
3051 llvm_unreachable(
3052 "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3053 }
3054 // No successors? By definition this nodes isn't post-dominated by a sink.
3055 if (errorNode->succ_empty()) {
3056 bugReports.push_back(R);
3057 if (!exampleReport)
3058 exampleReport = R;
3059 continue;
3060 }
3061
3062 // See if we are in a no-return CFG block. If so, treat this similarly
3063 // to being post-dominated by a sink. This works better when the analysis
3064 // is incomplete and we have never reached the no-return function call(s)
3065 // that we'd inevitably bump into on this path.
3066 if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
3067 if (ErrorB->isInevitablySinking())
3068 continue;
3069
3070 // At this point we know that 'N' is not a sink and it has at least one
3071 // successor. Use a DFS worklist to find a non-sink end-of-path node.
3072 using WLItem = FRIEC_WLItem;
3073 using DFSWorkList = SmallVector<WLItem, 10>;
3074
3075 llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3076
3077 DFSWorkList WL;
3078 WL.push_back(errorNode);
3079 Visited[errorNode] = 1;
3080
3081 while (!WL.empty()) {
3082 WLItem &WI = WL.back();
3083 assert(!WI.N->succ_empty());
3084
3085 for (; WI.I != WI.E; ++WI.I) {
3086 const ExplodedNode *Succ = *WI.I;
3087 // End-of-path node?
3088 if (Succ->succ_empty()) {
3089 // If we found an end-of-path node that is not a sink.
3090 if (!Succ->isSink()) {
3091 bugReports.push_back(R);
3092 if (!exampleReport)
3093 exampleReport = R;
3094 WL.clear();
3095 break;
3096 }
3097 // Found a sink? Continue on to the next successor.
3098 continue;
3099 }
3100 // Mark the successor as visited. If it hasn't been explored,
3101 // enqueue it to the DFS worklist.
3102 unsigned &mark = Visited[Succ];
3103 if (!mark) {
3104 mark = 1;
3105 WL.push_back(Succ);
3106 break;
3107 }
3108 }
3109
3110 // The worklist may have been cleared at this point. First
3111 // check if it is empty before checking the last item.
3112 if (!WL.empty() && &WL.back() == &WI)
3113 WL.pop_back();
3114 }
3115 }
3116
3117 // ExampleReport will be NULL if all the nodes in the equivalence class
3118 // were post-dominated by sinks.
3119 return exampleReport;
3120}
3121
3122void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3123 SmallVector<BugReport*, 10> bugReports;
3124 BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
3125 if (!report)
3126 return;
3127
3128 // See whether we need to silence the checker/package.
3129 for (const std::string &CheckerOrPackage :
3130 getAnalyzerOptions().SilencedCheckersAndPackages) {
3131 if (report->getBugType().getCheckerName().starts_with(CheckerOrPackage))
3132 return;
3133 }
3134
3136 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3137 generateDiagnosticForConsumerMap(report, Consumers, bugReports);
3138
3139 for (auto &P : *Diagnostics) {
3140 PathDiagnosticConsumer *Consumer = P.first;
3141 std::unique_ptr<PathDiagnostic> &PD = P.second;
3142
3143 // If the path is empty, generate a single step path with the location
3144 // of the issue.
3145 if (PD->path.empty()) {
3146 PathDiagnosticLocation L = report->getLocation();
3147 auto piece = std::make_unique<PathDiagnosticEventPiece>(
3148 L, report->getDescription());
3149 for (SourceRange Range : report->getRanges())
3150 piece->addRange(Range);
3151 PD->setEndOfPath(std::move(piece));
3152 }
3153
3154 PathPieces &Pieces = PD->getMutablePieces();
3155 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3156 // For path diagnostic consumers that don't support extra notes,
3157 // we may optionally convert those to path notes.
3158 for (const auto &I : llvm::reverse(report->getNotes())) {
3159 PathDiagnosticNotePiece *Piece = I.get();
3160 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3161 Piece->getLocation(), Piece->getString());
3162 for (const auto &R: Piece->getRanges())
3163 ConvertedPiece->addRange(R);
3164
3165 Pieces.push_front(std::move(ConvertedPiece));
3166 }
3167 } else {
3168 for (const auto &I : llvm::reverse(report->getNotes()))
3169 Pieces.push_front(I);
3170 }
3171
3172 for (const auto &I : report->getFixits())
3173 Pieces.back()->addFixit(I);
3174
3176
3177 // If we are debugging, let's have the entry point as the first note.
3178 if (getAnalyzerOptions().AnalyzerDisplayProgress ||
3179 getAnalyzerOptions().AnalyzerNoteAnalysisEntryPoints) {
3180 const Decl *EntryPoint = getAnalysisEntryPoint();
3181 Pieces.push_front(std::make_shared<PathDiagnosticEventPiece>(
3183 "[debug] analyzing from " +
3185 }
3186 Consumer->HandlePathDiagnostic(std::move(PD));
3187 }
3188}
3189
3190/// Insert all lines participating in the function signature \p Signature
3191/// into \p ExecutedLines.
3193 const Decl *Signature, const SourceManager &SM,
3194 FilesToLineNumsMap &ExecutedLines) {
3195 SourceRange SignatureSourceRange;
3196 const Stmt* Body = Signature->getBody();
3197 if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3198 SignatureSourceRange = FD->getSourceRange();
3199 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3200 SignatureSourceRange = OD->getSourceRange();
3201 } else {
3202 return;
3203 }
3204 SourceLocation Start = SignatureSourceRange.getBegin();
3205 SourceLocation End = Body ? Body->getSourceRange().getBegin()
3206 : SignatureSourceRange.getEnd();
3207 if (!Start.isValid() || !End.isValid())
3208 return;
3209 unsigned StartLine = SM.getExpansionLineNumber(Start);
3210 unsigned EndLine = SM.getExpansionLineNumber(End);
3211
3212 FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3213 for (unsigned Line = StartLine; Line <= EndLine; Line++)
3214 ExecutedLines[FID].insert(Line);
3215}
3216
3218 const Stmt *S, const SourceManager &SM,
3219 FilesToLineNumsMap &ExecutedLines) {
3220 SourceLocation Loc = S->getSourceRange().getBegin();
3221 if (!Loc.isValid())
3222 return;
3223 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3224 FileID FID = SM.getFileID(ExpansionLoc);
3225 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3226 ExecutedLines[FID].insert(LineNo);
3227}
3228
3229/// \return all executed lines including function signatures on the path
3230/// starting from \p N.
3231static std::unique_ptr<FilesToLineNumsMap>
3233 auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3234
3235 while (N) {
3236 if (N->getFirstPred() == nullptr) {
3237 // First node: show signature of the entrance point.
3238 const Decl *D = N->getLocationContext()->getDecl();
3240 } else if (auto CE = N->getLocationAs<CallEnter>()) {
3241 // Inlined function: show signature.
3242 const Decl* D = CE->getCalleeContext()->getDecl();
3244 } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3245 populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3246
3247 // Show extra context for some parent kinds.
3248 const Stmt *P = N->getParentMap().getParent(S);
3249
3250 // The path exploration can die before the node with the associated
3251 // return statement is generated, but we do want to show the whole
3252 // return.
3253 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3254 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3255 P = N->getParentMap().getParent(RS);
3256 }
3257
3258 if (isa_and_nonnull<SwitchCase, LabelStmt>(P))
3259 populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3260 }
3261
3262 N = N->getFirstPred();
3263 }
3264 return ExecutedLines;
3265}
3266
3267std::unique_ptr<DiagnosticForConsumerMapTy>
3269 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3270 ArrayRef<BugReport *> bugReports) {
3271 auto *basicReport = cast<BasicBugReport>(exampleReport);
3272 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3273 for (auto *Consumer : consumers)
3274 (*Out)[Consumer] =
3275 generateDiagnosticForBasicReport(basicReport, AnalysisEntryPoint);
3276 return Out;
3277}
3278
3281 const SourceManager &SMgr) {
3282 SourceLocation CallLoc = CP->callEnter.asLocation();
3283
3284 // If the call is within a macro, don't do anything (for now).
3285 if (CallLoc.isMacroID())
3286 return nullptr;
3287
3288 assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3289 "The call piece should not be in a header file.");
3290
3291 // Check if CP represents a path through a function outside of the main file.
3293 return CP;
3294
3295 const PathPieces &Path = CP->path;
3296 if (Path.empty())
3297 return nullptr;
3298
3299 // Check if the last piece in the callee path is a call to a function outside
3300 // of the main file.
3301 if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
3302 return getFirstStackedCallToHeaderFile(CPInner, SMgr);
3303
3304 // Otherwise, the last piece is in the main file.
3305 return nullptr;
3306}
3307
3309 if (PD.path.empty())
3310 return;
3311
3312 PathDiagnosticPiece *LastP = PD.path.back().get();
3313 assert(LastP);
3314 const SourceManager &SMgr = LastP->getLocation().getManager();
3315
3316 // We only need to check if the report ends inside headers, if the last piece
3317 // is a call piece.
3318 if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
3319 CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3320 if (CP) {
3321 // Mark the piece.
3323
3324 // Update the path diagnostic message.
3325 const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
3326 if (ND) {
3327 SmallString<200> buf;
3328 llvm::raw_svector_ostream os(buf);
3329 os << " (within a call to '" << ND->getDeclName() << "')";
3330 PD.appendToDesc(os.str());
3331 }
3332
3333 // Reset the report containing declaration and location.
3334 PD.setDeclWithIssue(CP->getCaller());
3335 PD.setLocation(CP->getLocation());
3336
3337 return;
3338 }
3339 }
3340}
3341
3342
3343
3344std::unique_ptr<DiagnosticForConsumerMapTy>
3345PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3346 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3347 ArrayRef<BugReport *> bugReports) {
3348 std::vector<BasicBugReport *> BasicBugReports;
3349 std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3350 if (isa<BasicBugReport>(exampleReport))
3352 consumers, bugReports);
3353
3354 // Generate the full path sensitive diagnostic, using the generation scheme
3355 // specified by the PathDiagnosticConsumer. Note that we have to generate
3356 // path diagnostics even for consumers which do not support paths, because
3357 // the BugReporterVisitors may mark this bug as a false positive.
3358 assert(!bugReports.empty());
3359 MaxBugClassSize.updateMax(bugReports.size());
3360
3361 // Avoid copying the whole array because there may be a lot of reports.
3362 ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3363 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3364 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3365 std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3366 consumers, convertedArrayOfReports);
3367
3368 if (Out->empty())
3369 return Out;
3370
3371 MaxValidBugClassSize.updateMax(bugReports.size());
3372
3373 // Examine the report and see if the last piece is in a header. Reset the
3374 // report location to the last piece in the main source file.
3375 const AnalyzerOptions &Opts = getAnalyzerOptions();
3376 for (auto const &P : *Out)
3377 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3379
3380 return Out;
3381}
3382
3383void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3384 const CheckerBase *Checker, StringRef Name,
3385 StringRef Category, StringRef Str,
3387 ArrayRef<SourceRange> Ranges,
3388 ArrayRef<FixItHint> Fixits) {
3389 EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
3390 Loc, Ranges, Fixits);
3391}
3392
3393void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3394 CheckerNameRef CheckName,
3395 StringRef name, StringRef category,
3396 StringRef str, PathDiagnosticLocation Loc,
3397 ArrayRef<SourceRange> Ranges,
3398 ArrayRef<FixItHint> Fixits) {
3399 // 'BT' is owned by BugReporter.
3400 BugType *BT = getBugTypeForName(CheckName, name, category);
3401 auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
3402 R->setDeclWithIssue(DeclWithIssue);
3403 for (const auto &SR : Ranges)
3404 R->addRange(SR);
3405 for (const auto &FH : Fixits)
3406 R->addFixItHint(FH);
3407 emitReport(std::move(R));
3408}
3409
3410BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3411 StringRef name, StringRef category) {
3412 SmallString<136> fullDesc;
3413 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3414 << ":" << category;
3415 std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3416 if (!BT)
3417 BT = std::make_unique<BugType>(CheckName, name, category);
3418 return BT.get();
3419}
#define V(N, I)
Definition: ASTContext.h:3443
NodeId Parent
Definition: ASTDiff.cpp:191
BoundNodesTreeBuilder Nodes
DynTypedNode Node
StringRef P
This file defines AnalysisDeclContext, a class that manages the analysis context data for context sen...
#define SM(sm)
Definition: Cuda.cpp:84
static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C, PathPieces &Path)
Drop the very first edge in a path, which should be a function entry edge.
constexpr llvm::StringLiteral StrLoopRangeEmpty
static PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC, bool allowNestedContexts=false)
static std::unique_ptr< FilesToLineNumsMap > findExecutedLines(const SourceManager &SM, const ExplodedNode *N)
static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond)
static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD)
Populate executes lines with lines containing at least one diagnostics.
static void removeRedundantMsgs(PathPieces &path)
An optimization pass over PathPieces that removes redundant diagnostics generated by both ConditionBR...
constexpr llvm::StringLiteral StrLoopCollectionEmpty
static void adjustCallLocations(PathPieces &Pieces, PathDiagnosticLocation *LastCallLocation=nullptr)
Recursively scan through a path and make sure that all call pieces have valid locations.
static void removeIdenticalEvents(PathPieces &path)
static const Stmt * getTerminatorCondition(const CFGBlock *B)
A customized wrapper for CFGBlock::getTerminatorCondition() which returns the element for ObjCForColl...
static std::unique_ptr< VisitorsDiagnosticsTy > generateVisitorsDiagnostics(PathSensitiveBugReport *R, const ExplodedNode *ErrorNode, BugReporterContext &BRC)
Generate notes from all visitors.
static bool removeUnneededCalls(const PathDiagnosticConstruct &C, PathPieces &pieces, const PathSensitiveBugReport *R, bool IsInteresting=false)
Recursively scan through a path and prune out calls and macros pieces that aren't needed.
static const Stmt * findReasonableStmtCloseToFunctionExit(const ExplodedNode *N)
static void populateExecutedLinesWithStmt(const Stmt *S, const SourceManager &SM, FilesToLineNumsMap &ExecutedLines)
static bool isJumpToFalseBranch(const BlockEdge *BE)
static std::optional< size_t > getLengthOnSingleLine(const SourceManager &SM, SourceRange Range)
Returns the number of bytes in the given (character-based) SourceRange.
static bool isLoop(const Stmt *Term)
static bool isContainedByStmt(const ParentMap &PM, const Stmt *S, const Stmt *SubS)
constexpr llvm::StringLiteral StrEnteringLoop
static void addEdgeToPath(PathPieces &path, PathDiagnosticLocation &PrevLoc, PathDiagnosticLocation NewLoc)
Adds a sanitized control-flow diagnostic edge to a path.
static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL)
static std::unique_ptr< PathDiagnostic > generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R, const SourceManager &SM, const Decl *AnalysisEntryPoint)
static void removeContextCycles(PathPieces &Path, const SourceManager &SM)
Eliminate two-edge cycles created by addContextEdges().
static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y)
Return true if X is contained by Y.
static std::unique_ptr< PathDiagnostic > generateDiagnosticForBasicReport(const BasicBugReport *R, const Decl *AnalysisEntryPoint)
static void removePopUpNotes(PathPieces &Path)
Same logic as above to remove extra pieces.
STATISTIC(MaxBugClassSize, "The maximum number of bug reports in the same equivalence class")
static void insertToInterestingnessMap(llvm::DenseMap< T, bugreporter::TrackingKind > &InterestingnessMap, T Val, bugreporter::TrackingKind TKind)
constexpr llvm::StringLiteral StrLoopBodyZero
static const Stmt * getEnclosingParent(const Stmt *S, const ParentMap &PM)
static void removePunyEdges(PathPieces &path, const SourceManager &SM, const ParentMap &PM)
static const Stmt * getStmtParent(const Stmt *S, const ParentMap &PM)
static bool exitingDestructor(const ExplodedNode *N)
static void CompactMacroExpandedPieces(PathPieces &path, const SourceManager &SM)
CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic object and collapses PathDi...
static void simplifySimpleBranches(PathPieces &pieces)
Move edges from a branch condition to a branch target when the condition is simple.
static void populateExecutedLinesWithFunctionSignature(const Decl *Signature, const SourceManager &SM, FilesToLineNumsMap &ExecutedLines)
Insert all lines participating in the function signature Signature into ExecutedLines.
static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD)
static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path, OptimizedCallsSet &OCS)
static bool hasImplicitBody(const Decl *D)
Returns true if the given decl has been implicitly given a body, either by the analyzer or by the com...
static PathDiagnosticCallPiece * getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP, const SourceManager &SMgr)
llvm::DenseSet< const PathDiagnosticCallPiece * > OptimizedCallsSet
static void addContextEdges(PathPieces &pieces, const LocationContext *LC)
Adds synthetic edges from top-level statements to their subexpressions.
static LLVM_ATTRIBUTE_USED bool isDependency(const CheckerRegistryData &Registry, StringRef CheckerName)
static PathDiagnosticEventPiece * eventsDescribeSameCondition(PathDiagnosticEventPiece *X, PathDiagnosticEventPiece *Y)
static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term)
static void removeEdgesToDefaultInitializers(PathPieces &Pieces)
Remove edges in and out of C++ default initializer expressions.
static const Stmt * getStmtBeforeCond(const ParentMap &PM, const Stmt *Term, const ExplodedNode *N)
static void removePiecesWithInvalidLocations(PathPieces &Pieces)
Remove all pieces with invalid locations as these cannot be serialized.
static LLVM_ATTRIBUTE_USED bool isHidden(const CheckerRegistryData &Registry, StringRef CheckerName)
const Decl * D
IndirectLocalPath & Path
Expr * E
Defines the clang::Expr interface and subclasses for C++ expressions.
int Priority
Definition: Format.cpp:3036
int Category
Definition: Format.cpp:3035
llvm::DenseSet< const void * > Visited
Definition: HTMLLogger.cpp:145
#define X(type, name)
Definition: Value.h:144
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified.
Defines the clang::SourceLocation class and associated facilities.
Defines the SourceManager interface.
Defines the Objective-C statement AST node classes.
SourceManager & getSourceManager()
Definition: ASTContext.h:741
AnalysisDeclContext contains the context data for the function, method or block under analysis.
static std::string getFunctionName(const Decl *D)
Stores options for the analyzer from the command line.
const CFGBlock * getSrc() const
Definition: ProgramPoint.h:506
const CFGBlock * getDst() const
Definition: ProgramPoint.h:510
Represents a single basic block in a source-level CFG.
Definition: CFG.h:604
Stmt * getLabel()
Definition: CFG.h:1100
succ_iterator succ_begin()
Definition: CFG.h:984
Stmt * getTerminatorStmt()
Definition: CFG.h:1081
const Stmt * getLoopTarget() const
Definition: CFG.h:1098
Stmt * getTerminatorCondition(bool StripParens=true)
Definition: CFG.cpp:6270
unsigned succ_size() const
Definition: CFG.h:1002
CFGBlock & getExit()
Definition: CFG.h:1324
CXXForRangeStmt - This represents C++0x [stmt.ranged]'s ranged for statement, represented as 'for (ra...
Definition: StmtCXX.h:135
Represents a point when we begin processing an inlined call.
Definition: ProgramPoint.h:628
Represents a point when we finish the call exit sequence (for inlined call).
Definition: ProgramPoint.h:686
const StackFrameContext * getCalleeContext() const
Definition: ProgramPoint.h:693
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:520
bool isImplicit() const
isImplicit - Indicates whether the declaration was implicitly generated by the implementation.
Definition: DeclBase.h:596
virtual Stmt * getBody() const
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: DeclBase.h:1076
virtual bool hasBody() const
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: DeclBase.h:1082
SourceLocation getLocation() const
Definition: DeclBase.h:442
This represents one expression.
Definition: Expr.h:110
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition: Expr.cpp:3090
An opaque identifier used by SourceManager which refers to a source file (MemoryBuffer) along with it...
bool isValid() const
ForStmt - This represents a 'for (init;cond;inc)' stmt.
Definition: Stmt.h:2808
A SourceLocation and its associated SourceManager.
IfStmt - This represents an if/then/else.
Definition: Stmt.h:2165
It wraps the AnalysisDeclContext to represent both the call stack with the help of StackFrameContext ...
const Decl * getDecl() const
const ParentMap & getParentMap() const
const StackFrameContext * getStackFrame() const
Represents Objective-C's collection statement.
Definition: StmtObjC.h:23
bool isConsumedExpr(Expr *E) const
Definition: ParentMap.cpp:174
Stmt * getParent(Stmt *) const
Definition: ParentMap.cpp:135
Stmt * getParentIgnoreParens(Stmt *) const
Definition: ParentMap.cpp:140
Represents a point after we ran remove dead bindings AFTER processing the given statement.
Definition: ProgramPoint.h:484
Represents a program point just before an implicit call event.
Definition: ProgramPoint.h:579
std::optional< T > getAs() const
Convert to the specified ProgramPoint type, returning std::nullopt if this ProgramPoint is not of the...
Definition: ProgramPoint.h:147
const LocationContext * getLocationContext() const
Definition: ProgramPoint.h:175
ReturnStmt - This represents a return, optionally of an expression: return; return 4;.
Definition: Stmt.h:3046
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
This class handles loading and caching of source files into memory.
A trivial tuple used to represent a source range.
SourceLocation getEnd() const
SourceLocation getBegin() const
It represents a stack frame of the call stack (based on CallEvent).
const Stmt * getCallSite() const
Stmt - This represents one statement.
Definition: Stmt.h:84
StmtClass getStmtClass() const
Definition: Stmt.h:1380
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:333
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:345
WhileStmt - This represents a 'while' stmt.
Definition: Stmt.h:2611
static bool isInCodeFile(SourceLocation SL, const SourceManager &SM)
const Decl * getDeclWithIssue() const override
The smallest declaration that contains the bug location.
Definition: BugReporter.h:268
PathDiagnosticLocation getUniqueingLocation() const override
Get the location on which the report should be uniqued.
Definition: BugReporter.h:272
void Profile(llvm::FoldingSetNodeID &hash) const override
Reports are uniqued to ensure that we do not emit multiple diagnostics for each bug.
const Decl * getUniqueingDecl() const override
Get the declaration that corresponds to (usually contains) the uniqueing location.
Definition: BugReporter.h:276
This class provides an interface through which checkers can create individual bug reports.
Definition: BugReporter.h:119
llvm::ArrayRef< FixItHint > getFixits() const
Definition: BugReporter.h:244
void addRange(SourceRange R)
Add a range to a bug report.
Definition: BugReporter.h:222
SmallVector< SourceRange, 4 > Ranges
Definition: BugReporter.h:132
virtual PathDiagnosticLocation getLocation() const =0
The primary location of the bug report that points at the undesirable behavior in the code.
ArrayRef< std::shared_ptr< PathDiagnosticNotePiece > > getNotes()
Definition: BugReporter.h:211
void addFixItHint(const FixItHint &F)
Add a fix-it hint to the bug report.
Definition: BugReporter.h:240
StringRef getDescription() const
A verbose warning message that is appropriate for displaying next to the source code that introduces ...
Definition: BugReporter.h:157
const BugType & BT
Definition: BugReporter.h:128
const BugType & getBugType() const
Definition: BugReporter.h:149
StringRef getShortDescription(bool UseFallback=true) const
A short general warning message that is appropriate for displaying in the list of all reported bugs.
Definition: BugReporter.h:163
Kind getKind() const
Definition: BugReporter.h:147
virtual ArrayRef< SourceRange > getRanges() const
Get the SourceRanges associated with the report.
Definition: BugReporter.h:229
static PathDiagnosticPieceRef getDefaultEndPath(const BugReporterContext &BRC, const ExplodedNode *N, const PathSensitiveBugReport &BR)
Generates the default final diagnostic piece.
virtual std::unique_ptr< DiagnosticForConsumerMapTy > generateDiagnosticForConsumerMap(BugReport *exampleReport, ArrayRef< PathDiagnosticConsumer * > consumers, ArrayRef< BugReport * > bugReports)
Generate the diagnostics for the given bug report.
void FlushReports()
Generate and flush diagnostics for all bug reports.
BugReporter(BugReporterData &d)
const SourceManager & getSourceManager()
Definition: BugReporter.h:623
const Decl * getAnalysisEntryPoint() const
Get the top-level entry point for the issue to be reported.
Definition: BugReporter.h:630
const AnalyzerOptions & getAnalyzerOptions()
Definition: BugReporter.h:625
void EmitBasicReport(const Decl *DeclWithIssue, const CheckerBase *Checker, StringRef BugName, StringRef BugCategory, StringRef BugStr, PathDiagnosticLocation Loc, ArrayRef< SourceRange > Ranges={}, ArrayRef< FixItHint > Fixits={})
virtual void emitReport(std::unique_ptr< BugReport > R)
Add the given report to the set of reports tracked by BugReporter.
ArrayRef< PathDiagnosticConsumer * > getPathDiagnosticConsumers()
Definition: BugReporter.h:611
bool isSuppressed(const BugReport &)
Return true if the given bug report was explicitly suppressed by the user.
bool isSuppressOnSink() const
isSuppressOnSink - Returns true if bug reports associated with this bug type should be suppressed if ...
Definition: BugType.h:64
StringRef getCategory() const
Definition: BugType.h:49
StringRef getDescription() const
Definition: BugType.h:48
StringRef getCheckerName() const
Definition: BugType.h:50
CheckerNameRef getCheckerName() const
Definition: Checker.cpp:25
This wrapper is used to ensure that only StringRefs originating from the CheckerRegistry are used as ...
Visitor that tries to report interesting diagnostics from conditions.
static bool isPieceMessageGeneric(const PathDiagnosticPiece *Piece)
static const char * getTag()
Return the tag associated with this visitor.
bool isValid() const =delete
std::unique_ptr< ExplodedGraph > trim(ArrayRef< const NodeTy * > Nodes, InterExplodedGraphMap *ForwardMap=nullptr, InterExplodedGraphMap *InverseMap=nullptr) const
Creates a trimmed version of the graph that only contains paths leading to the given nodes.
const CFGBlock * getCFGBlock() const
const ProgramStateRef & getState() const
pred_iterator pred_end()
pred_iterator pred_begin()
const Stmt * getStmtForDiagnostics() const
If the node's program point corresponds to a statement, retrieve that statement.
const Stmt * getPreviousStmtForDiagnostics() const
Find the statement that was executed immediately before this node.
ProgramPoint getLocation() const
getLocation - Returns the edge associated with the given node.
void addPredecessor(ExplodedNode *V, ExplodedGraph &G)
addPredeccessor - Adds a predecessor to the current node, and in tandem add this node as a successor ...
const Stmt * getNextStmtForDiagnostics() const
Find the next statement that was executed on this node's execution path.
const ParentMap & getParentMap() const
SVal getSVal(const Stmt *S) const
Get the value of an arbitrary expression at this node.
const LocationContext * getLocationContext() const
std::optional< T > getLocationAs() const &
const Stmt * getCurrentOrPreviousStmtForDiagnostics() const
Find the statement that was executed at or immediately before this node.
ExplodedNode * getFirstPred()
const ExplodedNode *const * const_succ_iterator
ProgramStateManager & getStateManager()
Definition: ExprEngine.h:414
ExplodedGraph & getGraph()
Definition: ExprEngine.h:256
Suppress reports that might lead to known false positives.
MemRegion - The root abstract class for all memory regions.
Definition: MemRegion.h:97
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * getBaseRegion() const
Definition: MemRegion.cpp:1377
Prints path notes when a message is sent to a nil receiver.
PathDiagnosticLocation getLocation() const override
static std::shared_ptr< PathDiagnosticCallPiece > construct(const CallExitEnd &CE, const SourceManager &SM)
PathDiagnosticLocation callEnterWithin
virtual bool supportsLogicalOpControlFlow() const
void HandlePathDiagnostic(std::unique_ptr< PathDiagnostic > D)
PathDiagnosticLocation getStartLocation() const
void setStartLocation(const PathDiagnosticLocation &L)
PathDiagnosticLocation getEndLocation() const
static PathDiagnosticLocation createMemberLoc(const MemberExpr *ME, const SourceManager &SM)
For member expressions, return the location of the '.
void Profile(llvm::FoldingSetNodeID &ID) const
const SourceManager & getManager() const
static PathDiagnosticLocation createOperatorLoc(const BinaryOperator *BO, const SourceManager &SM)
Create the location for the operator of the binary expression.
static PathDiagnosticLocation createEndBrace(const CompoundStmt *CS, const SourceManager &SM)
Create a location for the end of the compound statement.
static SourceLocation getValidSourceLocation(const Stmt *S, LocationOrAnalysisDeclContext LAC, bool UseEndOfStatement=false)
Construct a source location that corresponds to either the beginning or the end of the given statemen...
static PathDiagnosticLocation createEnd(const Stmt *S, const SourceManager &SM, const LocationOrAnalysisDeclContext LAC)
Create a location for the end of the statement.
static PathDiagnosticLocation createBegin(const Decl *D, const SourceManager &SM)
Create a location for the beginning of the declaration.
static PathDiagnosticLocation createDeclEnd(const LocationContext *LC, const SourceManager &SM)
Constructs a location for the end of the enclosing declaration body.
static PathDiagnosticLocation createSingleLocation(const PathDiagnosticLocation &PDL)
Convert the given location into a single kind location.
ArrayRef< SourceRange > getRanges() const
Return the SourceRanges associated with this PathDiagnosticPiece.
virtual PathDiagnosticLocation getLocation() const =0
const void * getTag() const
Return the opaque tag (if any) on the PathDiagnosticPiece.
PathDiagnosticLocation getLocation() const override
PathDiagnostic - PathDiagnostic objects represent a single path-sensitive diagnostic.
void setDeclWithIssue(const Decl *D)
void appendToDesc(StringRef S)
void setLocation(PathDiagnosticLocation NewLoc)
const FilesToLineNumsMap & getExecutedLines() const
PathPieces flatten(bool ShouldFlattenMacros) const
llvm::SmallSet< const LocationContext *, 2 > InterestingLocationContexts
A set of location contexts that correspoind to call sites which should be considered "interesting".
Definition: BugReporter.h:323
void markInteresting(SymbolRef sym, bugreporter::TrackingKind TKind=bugreporter::TrackingKind::Thorough)
Marks a symbol as interesting.
PathDiagnosticLocation getUniqueingLocation() const override
Get the location on which the report should be uniqued.
Definition: BugReporter.h:412
VisitorList Callbacks
A set of custom visitors which generate "event" diagnostics at interesting points in the path.
Definition: BugReporter.h:327
PathDiagnosticLocation getLocation() const override
The primary location of the bug report that points at the undesirable behavior in the code.
const Decl * getDeclWithIssue() const override
The smallest declaration that contains the bug location.
bool shouldPrunePath() const
Indicates whether or not any path pruning should take place when generating a PathDiagnostic from thi...
Definition: BugReporter.h:406
ArrayRef< SourceRange > getRanges() const override
Get the SourceRanges associated with the report.
llvm::DenseMap< SymbolRef, bugreporter::TrackingKind > InterestingSymbols
Profile to identify equivalent bug reports for error report coalescing.
Definition: BugReporter.h:311
const Decl * getUniqueingDecl() const override
Get the declaration containing the uniqueing location.
Definition: BugReporter.h:417
const ExplodedNode * getErrorNode() const
Definition: BugReporter.h:402
PathSensitiveBugReport(const BugType &bt, StringRef desc, const ExplodedNode *errorNode)
Definition: BugReporter.h:369
const ExplodedNode * ErrorNode
The ExplodedGraph node against which the report was thrown.
Definition: BugReporter.h:298
void markInvalid(const void *Tag, const void *Data)
Marks the current report as invalid, meaning that it is probably a false positive and should not be r...
Definition: BugReporter.h:481
void Profile(llvm::FoldingSetNodeID &hash) const override
Profile to identify equivalent bug reports for error report coalescing.
void clearVisitors()
Remove all visitors attached to this bug report.
void addVisitor(std::unique_ptr< BugReporterVisitor > visitor)
Add custom or predefined bug report visitors to this report.
bool isValid() const
Returns whether or not this report should be considered valid.
Definition: BugReporter.h:468
std::optional< bugreporter::TrackingKind > getInterestingnessKind(SymbolRef sym) const
void markNotInteresting(SymbolRef sym)
llvm::DenseMap< const MemRegion *, bugreporter::TrackingKind > InterestingRegions
A (stack of) set of regions that are registered with this report as being "interesting",...
Definition: BugReporter.h:319
bool isInteresting(SymbolRef sym) const
const SourceRange ErrorNodeRange
The range that corresponds to ErrorNode's program point.
Definition: BugReporter.h:302
llvm::FoldingSet< BugReporterVisitor > CallbacksSet
Used for ensuring the visitors are only added once.
Definition: BugReporter.h:330
GRBugReporter is used for generating path-sensitive reports.
Definition: BugReporter.h:679
const ExplodedGraph & getGraph() const
getGraph - Get the exploded graph created by the analysis engine for the analyzed method or function.
std::unique_ptr< DiagnosticForConsumerMapTy > generatePathDiagnostics(ArrayRef< PathDiagnosticConsumer * > consumers, ArrayRef< PathSensitiveBugReport * > &bugReports)
bugReports A set of bug reports within a single equivalence class
void emitReport(std::unique_ptr< BugReport > R) override
Add the given report to the set of reports tracked by BugReporter.
ProgramStateManager & getStateManager() const
getStateManager - Return the state manager used by the analysis engine.
A Range represents the closed range [from, to].
SVal - This represents a symbolic expression, which can be either an L-value or an R-value.
Definition: SVals.h:56
std::optional< T > getAs() const
Convert to the specified SVal type, returning std::nullopt if this SVal is not of the desired type.
Definition: SVals.h:87
SymbolRef getAsLocSymbol(bool IncludeBaseRegions=false) const
If this SVal is a location and wraps a symbol, return that SymbolRef.
Definition: SVals.cpp:68
std::string getMessage(const ExplodedNode *N) override
Search the call expression for the symbol Sym and dispatch the 'getMessageForX()' methods to construc...
virtual std::string getMessageForSymbolNotFound()
Definition: BugReporter.h:112
virtual std::string getMessageForReturn(const CallExpr *CallExpr)
Definition: BugReporter.h:108
virtual std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex)
Produces the message of the following form: 'Msg via Nth parameter'.
Symbolic value.
Definition: SymExpr.h:30
The visitor detects NoteTags and displays the event notes they contain.
static const char * getTag()
Return the tag associated with this visitor.
The oracle will decide if a report should be accepted or rejected based on the results of the Z3 solv...
The bug visitor will walk all the nodes in a path and collect all the constraints.
TrackingKind
Specifies the type of tracking for an expression.
@ Thorough
Default tracking kind – specifies that as much information should be gathered about the tracked expre...
@ Condition
Specifies that a more moderate tracking should be used for the expression value.
llvm::DenseMap< const ExplodedNode *, const ExplodedNode * > InterExplodedGraphMap
std::map< FileID, std::set< unsigned > > FilesToLineNumsMap
File IDs mapped to sets of line numbers.
@ CF
Indicates that the tracked object is a CF object.
std::shared_ptr< PathDiagnosticPiece > PathDiagnosticPieceRef
bool EQ(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1126
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
Definition: Address.h:328
@ Result
The result type of a method or function.
const FunctionProtoType * T
Diagnostic wrappers for TextAPI types for error reporting.
Definition: Dominators.h:30
Specifies a checker.
llvm::SmallVector< std::pair< StringRef, StringRef >, 0 > Dependencies