clang 20.0.0git
BugReporterVisitors.cpp
Go to the documentation of this file.
1//===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a set of BugReporter "visitors" which can be used to
10// enhance the diagnostics reported for a bug.
11//
12//===----------------------------------------------------------------------===//
13
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclBase.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/Type.h"
27#include "clang/Analysis/CFG.h"
32#include "clang/Basic/LLVM.h"
35#include "clang/Lex/Lexer.h"
48#include "llvm/ADT/ArrayRef.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SmallPtrSet.h"
51#include "llvm/ADT/SmallString.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/ADT/StringRef.h"
55#include "llvm/Support/Casting.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/raw_ostream.h"
58#include <cassert>
59#include <deque>
60#include <memory>
61#include <optional>
62#include <stack>
63#include <string>
64#include <utility>
65
66using namespace clang;
67using namespace ento;
68using namespace bugreporter;
69
70//===----------------------------------------------------------------------===//
71// Utility functions.
72//===----------------------------------------------------------------------===//
73
75 if (B->isAdditiveOp() && B->getType()->isPointerType()) {
76 if (B->getLHS()->getType()->isPointerType()) {
77 return B->getLHS();
78 } else if (B->getRHS()->getType()->isPointerType()) {
79 return B->getRHS();
80 }
81 }
82 return nullptr;
83}
84
85/// \return A subexpression of @c Ex which represents the
86/// expression-of-interest.
87static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N);
88
89/// Given that expression S represents a pointer that would be dereferenced,
90/// try to find a sub-expression from which the pointer came from.
91/// This is used for tracking down origins of a null or undefined value:
92/// "this is null because that is null because that is null" etc.
93/// We wipe away field and element offsets because they merely add offsets.
94/// We also wipe away all casts except lvalue-to-rvalue casts, because the
95/// latter represent an actual pointer dereference; however, we remove
96/// the final lvalue-to-rvalue cast before returning from this function
97/// because it demonstrates more clearly from where the pointer rvalue was
98/// loaded. Examples:
99/// x->y.z ==> x (lvalue)
100/// foo()->y.z ==> foo() (rvalue)
102 const auto *E = dyn_cast<Expr>(S);
103 if (!E)
104 return nullptr;
105
106 while (true) {
107 if (const auto *CE = dyn_cast<CastExpr>(E)) {
108 if (CE->getCastKind() == CK_LValueToRValue) {
109 // This cast represents the load we're looking for.
110 break;
111 }
112 E = CE->getSubExpr();
113 } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
114 // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
115 if (const Expr *Inner = peelOffPointerArithmetic(B)) {
116 E = Inner;
117 } else if (B->isAssignmentOp()) {
118 // Follow LHS of assignments: '*p = 404' -> 'p'.
119 E = B->getLHS();
120 } else {
121 // Probably more arithmetic can be pattern-matched here,
122 // but for now give up.
123 break;
124 }
125 } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
126 if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
127 (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
128 // Operators '*' and '&' don't actually mean anything.
129 // We look at casts instead.
130 E = U->getSubExpr();
131 } else {
132 // Probably more arithmetic can be pattern-matched here,
133 // but for now give up.
134 break;
135 }
136 }
137 // Pattern match for a few useful cases: a[0], p->f, *p etc.
138 else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
139 // This handles the case when the dereferencing of a member reference
140 // happens. This is needed, because the AST for dereferencing a
141 // member reference looks like the following:
142 // |-MemberExpr
143 // `-DeclRefExpr
144 // Without this special case the notes would refer to the whole object
145 // (struct, class or union variable) instead of just the relevant member.
146
147 if (ME->getMemberDecl()->getType()->isReferenceType())
148 break;
149 E = ME->getBase();
150 } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
151 E = IvarRef->getBase();
152 } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
153 E = AE->getBase();
154 } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
155 E = PE->getSubExpr();
156 } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
157 E = FE->getSubExpr();
158 } else {
159 // Other arbitrary stuff.
160 break;
161 }
162 }
163
164 // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
165 // deeper into the sub-expression. This way we return the lvalue from which
166 // our pointer rvalue was loaded.
167 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
168 if (CE->getCastKind() == CK_LValueToRValue)
169 E = CE->getSubExpr();
170
171 return E;
172}
173
174static const VarDecl *getVarDeclForExpression(const Expr *E) {
175 if (const auto *DR = dyn_cast<DeclRefExpr>(E))
176 return dyn_cast<VarDecl>(DR->getDecl());
177 return nullptr;
178}
179
180static const MemRegion *
182 bool LookingForReference = true) {
183 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
184 // This handles null references from FieldRegions, for example:
185 // struct Wrapper { int &ref; };
186 // Wrapper w = { *(int *)0 };
187 // w.ref = 1;
188 const Expr *Base = ME->getBase();
190 if (!VD)
191 return nullptr;
192
193 const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
194 if (!FD)
195 return nullptr;
196
197 if (FD->getType()->isReferenceType()) {
198 SVal StructSVal = N->getState()->getLValue(VD, N->getLocationContext());
199 return N->getState()->getLValue(FD, StructSVal).getAsRegion();
200 }
201 return nullptr;
202 }
203
204 const VarDecl *VD = getVarDeclForExpression(E);
205 if (!VD)
206 return nullptr;
207 if (LookingForReference && !VD->getType()->isReferenceType())
208 return nullptr;
209 return N->getState()->getLValue(VD, N->getLocationContext()).getAsRegion();
210}
211
212/// Comparing internal representations of symbolic values (via
213/// SVal::operator==()) is a valid way to check if the value was updated,
214/// unless it's a LazyCompoundVal that may have a different internal
215/// representation every time it is loaded from the state. In this function we
216/// do an approximate comparison for lazy compound values, checking that they
217/// are the immediate snapshots of the tracked region's bindings within the
218/// node's respective states but not really checking that these snapshots
219/// actually contain the same set of bindings.
220static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
221 const ExplodedNode *RightNode, SVal RightVal) {
222 if (LeftVal == RightVal)
223 return true;
224
225 const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
226 if (!LLCV)
227 return false;
228
229 const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
230 if (!RLCV)
231 return false;
232
233 return LLCV->getRegion() == RLCV->getRegion() &&
234 LLCV->getStore() == LeftNode->getState()->getStore() &&
235 RLCV->getStore() == RightNode->getState()->getStore();
236}
237
238static std::optional<SVal> getSValForVar(const Expr *CondVarExpr,
239 const ExplodedNode *N) {
240 ProgramStateRef State = N->getState();
241 const LocationContext *LCtx = N->getLocationContext();
242
243 assert(CondVarExpr);
244 CondVarExpr = CondVarExpr->IgnoreImpCasts();
245
246 // The declaration of the value may rely on a pointer so take its l-value.
247 // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
248 // evaluate to a FieldRegion when it refers to a declaration of a lambda
249 // capture variable. We most likely need to duplicate that logic here.
250 if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
251 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
252 return State->getSVal(State->getLValue(VD, LCtx));
253
254 if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
255 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
256 if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
257 return State->getRawSVal(*FieldL, FD->getType());
258
259 return std::nullopt;
260}
261
262static std::optional<const llvm::APSInt *>
263getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
264
265 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
266 if (auto CI = V->getAs<nonloc::ConcreteInt>())
267 return CI->getValue().get();
268 return std::nullopt;
269}
270
271static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
272 const ExplodedNode *N,
273 const PathSensitiveBugReport *B) {
274 // Even if this condition is marked as interesting, it isn't *that*
275 // interesting if it didn't happen in a nested stackframe, the user could just
276 // follow the arrows.
278 return false;
279
280 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
281 if (std::optional<bugreporter::TrackingKind> K =
283 return *K == bugreporter::TrackingKind::Condition;
284
285 return false;
286}
287
288static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
289 const PathSensitiveBugReport *B) {
290 if (std::optional<SVal> V = getSValForVar(E, N))
291 return B->getInterestingnessKind(*V).has_value();
292 return false;
293}
294
295/// \return name of the macro inside the location \p Loc.
297 BugReporterContext &BRC) {
299 Loc,
300 BRC.getSourceManager(),
301 BRC.getASTContext().getLangOpts());
302}
303
304/// \return Whether given spelling location corresponds to an expansion
305/// of a function-like macro.
307 const SourceManager &SM) {
308 if (!Loc.isMacroID())
309 return false;
310 while (SM.isMacroArgExpansion(Loc))
311 Loc = SM.getImmediateExpansionRange(Loc).getBegin();
312 std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
313 SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
314 const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
315 return EInfo.isFunctionMacroExpansion();
316}
317
318/// \return Whether \c RegionOfInterest was modified at \p N,
319/// where \p ValueAfter is \c RegionOfInterest's value at the end of the
320/// stack frame.
321static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
322 const ExplodedNode *N,
323 SVal ValueAfter) {
324 ProgramStateRef State = N->getState();
325 ProgramStateManager &Mgr = N->getState()->getStateManager();
326
328 !N->getLocationAs<PostStmt>())
329 return false;
330
331 // Writing into region of interest.
332 if (auto PS = N->getLocationAs<PostStmt>())
333 if (auto *BO = PS->getStmtAs<BinaryOperator>())
334 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
335 N->getSVal(BO->getLHS()).getAsRegion()))
336 return true;
337
338 // SVal after the state is possibly different.
339 SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
340 if (!Mgr.getSValBuilder()
341 .areEqual(State, ValueAtN, ValueAfter)
343 (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
344 return true;
345
346 return false;
347}
348
349//===----------------------------------------------------------------------===//
350// Implementation of BugReporterVisitor.
351//===----------------------------------------------------------------------===//
352
354 const ExplodedNode *,
356 return nullptr;
357}
358
360 const ExplodedNode *,
362
365 const ExplodedNode *EndPathNode,
366 const PathSensitiveBugReport &BR) {
368 const auto &Ranges = BR.getRanges();
369
370 // Only add the statement itself as a range if we didn't specify any
371 // special ranges for this report.
372 auto P = std::make_shared<PathDiagnosticEventPiece>(
373 L, BR.getDescription(), Ranges.begin() == Ranges.end());
374 for (SourceRange Range : Ranges)
375 P->addRange(Range);
376
377 return P;
378}
379
380//===----------------------------------------------------------------------===//
381// Implementation of NoStateChangeFuncVisitor.
382//===----------------------------------------------------------------------===//
383
384bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
385 const LocationContext *Ctx = N->getLocationContext();
386 const StackFrameContext *SCtx = Ctx->getStackFrame();
387 if (!FramesModifyingCalculated.count(SCtx))
388 findModifyingFrames(N);
389 return FramesModifying.count(SCtx);
390}
391
392void NoStateChangeFuncVisitor::markFrameAsModifying(
393 const StackFrameContext *SCtx) {
394 while (!SCtx->inTopFrame()) {
395 auto p = FramesModifying.insert(SCtx);
396 if (!p.second)
397 break; // Frame and all its parents already inserted.
398
399 SCtx = SCtx->getParent()->getStackFrame();
400 }
401}
402
404 assert(N->getLocationAs<CallEnter>());
405 // The stackframe of the callee is only found in the nodes succeeding
406 // the CallEnter node. CallEnter's stack frame refers to the caller.
407 const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
408
409 // Similarly, the nodes preceding CallExitEnd refer to the callee's stack
410 // frame.
411 auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
412 return N->getLocationAs<CallExitEnd>() &&
413 OrigSCtx == N->getFirstPred()->getStackFrame();
414 };
415 while (N && !IsMatchingCallExitEnd(N)) {
416 assert(N->succ_size() <= 1 &&
417 "This function is to be used on the trimmed ExplodedGraph!");
418 N = N->getFirstSucc();
419 }
420 return N;
421}
422
423void NoStateChangeFuncVisitor::findModifyingFrames(
424 const ExplodedNode *const CallExitBeginN) {
425
426 assert(CallExitBeginN->getLocationAs<CallExitBegin>());
427
428 const StackFrameContext *const OriginalSCtx =
429 CallExitBeginN->getLocationContext()->getStackFrame();
430
431 const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
432 const StackFrameContext *CurrentSCtx = OriginalSCtx;
433
434 for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
435 CurrN = CurrN->getFirstPred()) {
436 // Found a new inlined call.
437 if (CurrN->getLocationAs<CallExitBegin>()) {
438 CurrCallExitBeginN = CurrN;
439 CurrentSCtx = CurrN->getStackFrame();
440 FramesModifyingCalculated.insert(CurrentSCtx);
441 // We won't see a change in between two identical exploded nodes: skip.
442 continue;
443 }
444
445 if (auto CE = CurrN->getLocationAs<CallEnter>()) {
446 if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
447 if (wasModifiedInFunction(CurrN, CallExitEndN))
448 markFrameAsModifying(CurrentSCtx);
449
450 // We exited this inlined call, lets actualize the stack frame.
451 CurrentSCtx = CurrN->getStackFrame();
452
453 // Stop calculating at the current function, but always regard it as
454 // modifying, so we can avoid notes like this:
455 // void f(Foo &F) {
456 // F.field = 0; // note: 0 assigned to 'F.field'
457 // // note: returning without writing to 'F.field'
458 // }
459 if (CE->getCalleeContext() == OriginalSCtx) {
460 markFrameAsModifying(CurrentSCtx);
461 break;
462 }
463 }
464
465 if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
466 markFrameAsModifying(CurrentSCtx);
467 }
468}
469
472
473 const LocationContext *Ctx = N->getLocationContext();
474 const StackFrameContext *SCtx = Ctx->getStackFrame();
475 ProgramStateRef State = N->getState();
476 auto CallExitLoc = N->getLocationAs<CallExitBegin>();
477
478 // No diagnostic if region was modified inside the frame.
479 if (!CallExitLoc || isModifiedInFrame(N))
480 return nullptr;
481
484
485 // Optimistically suppress uninitialized value bugs that result
486 // from system headers having a chance to initialize the value
487 // but failing to do so. It's too unlikely a system header's fault.
488 // It's much more likely a situation in which the function has a failure
489 // mode that the user decided not to check. If we want to hunt such
490 // omitted checks, we should provide an explicit function-specific note
491 // describing the precondition under which the function isn't supposed to
492 // initialize its out-parameter, and additionally check that such
493 // precondition can actually be fulfilled on the current path.
494 if (Call->isInSystemHeader()) {
495 // We make an exception for system header functions that have no branches.
496 // Such functions unconditionally fail to initialize the variable.
497 // If they call other functions that have more paths within them,
498 // this suppression would still apply when we visit these inner functions.
499 // One common example of a standard function that doesn't ever initialize
500 // its out parameter is operator placement new; it's up to the follow-up
501 // constructor (if any) to initialize the memory.
502 if (!N->getStackFrame()->getCFG()->isLinear()) {
503 static int i = 0;
504 R.markInvalid(&i, nullptr);
505 }
506 return nullptr;
507 }
508
509 if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
510 // If we failed to construct a piece for self, we still want to check
511 // whether the entity of interest is in a parameter.
513 return Piece;
514 }
515
516 if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
517 // Do not generate diagnostics for not modified parameters in
518 // constructors.
519 return maybeEmitNoteForCXXThis(R, *CCall, N);
520 }
521
522 return maybeEmitNoteForParameters(R, *Call, N);
523}
524
525/// \return Whether the method declaration \p Parent
526/// syntactically has a binary operation writing into the ivar \p Ivar.
528 const ObjCIvarDecl *Ivar) {
529 using namespace ast_matchers;
530 const char *IvarBind = "Ivar";
531 if (!Parent || !Parent->hasBody())
532 return false;
533 StatementMatcher WriteIntoIvarM = binaryOperator(
534 hasOperatorName("="),
535 hasLHS(ignoringParenImpCasts(
536 objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
537 StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
538 auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
539 for (BoundNodes &Match : Matches) {
540 auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
541 if (IvarRef->isFreeIvar())
542 return true;
543
544 const Expr *Base = IvarRef->getBase();
545 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
546 Base = ICE->getSubExpr();
547
548 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
549 if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
550 if (ID->getParameterKind() == ImplicitParamKind::ObjCSelf)
551 return true;
552
553 return false;
554 }
555 return false;
556}
557
558/// Attempts to find the region of interest in a given CXX decl,
559/// by either following the base classes or fields.
560/// Dereferences fields up to a given recursion limit.
561/// Note that \p Vec is passed by value, leading to quadratic copying cost,
562/// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
563/// \return A chain fields leading to the region of interest or std::nullopt.
564const std::optional<NoStoreFuncVisitor::RegionVector>
565NoStoreFuncVisitor::findRegionOfInterestInRecord(
566 const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
567 const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
568 int depth /* = 0 */) {
569
570 if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
571 return std::nullopt;
572
573 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
574 if (!RDX->hasDefinition())
575 return std::nullopt;
576
577 // Recursively examine the base classes.
578 // Note that following base classes does not increase the recursion depth.
579 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
580 for (const auto &II : RDX->bases())
581 if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
582 if (std::optional<RegionVector> Out =
583 findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
584 return Out;
585
586 for (const FieldDecl *I : RD->fields()) {
587 QualType FT = I->getType();
588 const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
589 const SVal V = State->getSVal(FR);
590 const MemRegion *VR = V.getAsRegion();
591
592 RegionVector VecF = Vec;
593 VecF.push_back(FR);
594
595 if (RegionOfInterest == VR)
596 return VecF;
597
598 if (const RecordDecl *RRD = FT->getAsRecordDecl())
599 if (auto Out =
600 findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
601 return Out;
602
603 QualType PT = FT->getPointeeType();
604 if (PT.isNull() || PT->isVoidType() || !VR)
605 continue;
606
607 if (const RecordDecl *RRD = PT->getAsRecordDecl())
608 if (std::optional<RegionVector> Out =
609 findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
610 return Out;
611 }
612
613 return std::nullopt;
614}
615
617NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
618 const ObjCMethodCall &Call,
619 const ExplodedNode *N) {
620 if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
621 const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
622 if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
623 potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
624 IvarR->getDecl()))
625 return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
626 /*FirstIsReferenceType=*/false, 1);
627 }
628 return nullptr;
629}
630
632NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
634 const ExplodedNode *N) {
635 const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
636 if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
637 return maybeEmitNote(R, Call, N, {}, ThisR, "this",
638 /*FirstIsReferenceType=*/false, 1);
639
640 // Do not generate diagnostics for not modified parameters in
641 // constructors.
642 return nullptr;
643}
644
645/// \return whether \p Ty points to a const type, or is a const reference.
646static bool isPointerToConst(QualType Ty) {
647 return !Ty->getPointeeType().isNull() &&
649}
650
651PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
652 PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
654 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
655 const ParmVarDecl *PVD = Parameters[I];
656 SVal V = Call.getArgSVal(I);
657 bool ParamIsReferenceType = PVD->getType()->isReferenceType();
658 std::string ParamName = PVD->getNameAsString();
659
660 unsigned IndirectionLevel = 1;
661 QualType T = PVD->getType();
662 while (const MemRegion *MR = V.getAsRegion()) {
663 if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
664 return maybeEmitNote(R, Call, N, {}, MR, ParamName,
665 ParamIsReferenceType, IndirectionLevel);
666
667 QualType PT = T->getPointeeType();
668 if (PT.isNull() || PT->isVoidType())
669 break;
670
671 ProgramStateRef State = N->getState();
672
673 if (const RecordDecl *RD = PT->getAsRecordDecl())
674 if (std::optional<RegionVector> P =
675 findRegionOfInterestInRecord(RD, State, MR))
676 return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
677 ParamIsReferenceType, IndirectionLevel);
678
679 V = State->getSVal(MR, PT);
680 T = PT;
681 IndirectionLevel++;
682 }
683 }
684
685 return nullptr;
686}
687
688bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
689 const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
690 return ::wasRegionOfInterestModifiedAt(
691 RegionOfInterest, CurrN,
692 CallExitBeginN->getState()->getSVal(RegionOfInterest));
693}
694
695static llvm::StringLiteral WillBeUsedForACondition =
696 ", which participates in a condition later";
697
698PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
700 const RegionVector &FieldChain, const MemRegion *MatchedRegion,
701 StringRef FirstElement, bool FirstIsReferenceType,
702 unsigned IndirectionLevel) {
703
706
707 // For now this shouldn't trigger, but once it does (as we add more
708 // functions to the body farm), we'll need to decide if these reports
709 // are worth suppressing as well.
710 if (!L.hasValidLocation())
711 return nullptr;
712
713 SmallString<256> sbuf;
714 llvm::raw_svector_ostream os(sbuf);
715 os << "Returning without writing to '";
716
717 // Do not generate the note if failed to pretty-print.
718 if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
719 FirstIsReferenceType, IndirectionLevel, os))
720 return nullptr;
721
722 os << "'";
725 return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
726}
727
728bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
729 const MemRegion *MatchedRegion,
730 StringRef FirstElement,
731 bool FirstIsReferenceType,
732 unsigned IndirectionLevel,
733 llvm::raw_svector_ostream &os) {
734
735 if (FirstIsReferenceType)
736 IndirectionLevel--;
737
738 RegionVector RegionSequence;
739
740 // Add the regions in the reverse order, then reverse the resulting array.
741 assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
742 const MemRegion *R = RegionOfInterest;
743 while (R != MatchedRegion) {
744 RegionSequence.push_back(R);
745 R = cast<SubRegion>(R)->getSuperRegion();
746 }
747 std::reverse(RegionSequence.begin(), RegionSequence.end());
748 RegionSequence.append(FieldChain.begin(), FieldChain.end());
749
750 StringRef Sep;
751 for (const MemRegion *R : RegionSequence) {
752
753 // Just keep going up to the base region.
754 // Element regions may appear due to casts.
755 if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
756 continue;
757
758 if (Sep.empty())
759 Sep = prettyPrintFirstElement(FirstElement,
760 /*MoreItemsExpected=*/true,
761 IndirectionLevel, os);
762
763 os << Sep;
764
765 // Can only reasonably pretty-print DeclRegions.
766 if (!isa<DeclRegion>(R))
767 return false;
768
769 const auto *DR = cast<DeclRegion>(R);
770 Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
771 DR->getDecl()->getDeclName().print(os, PP);
772 }
773
774 if (Sep.empty())
775 prettyPrintFirstElement(FirstElement,
776 /*MoreItemsExpected=*/false, IndirectionLevel, os);
777 return true;
778}
779
780StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
781 StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
782 llvm::raw_svector_ostream &os) {
783 StringRef Out = ".";
784
785 if (IndirectionLevel > 0 && MoreItemsExpected) {
786 IndirectionLevel--;
787 Out = "->";
788 }
789
790 if (IndirectionLevel > 0 && MoreItemsExpected)
791 os << "(";
792
793 for (int i = 0; i < IndirectionLevel; i++)
794 os << "*";
795 os << FirstElement;
796
797 if (IndirectionLevel > 0 && MoreItemsExpected)
798 os << ")";
799
800 return Out;
801}
802
803//===----------------------------------------------------------------------===//
804// Implementation of MacroNullReturnSuppressionVisitor.
805//===----------------------------------------------------------------------===//
806
807namespace {
808
809/// Suppress null-pointer-dereference bugs where dereferenced null was returned
810/// the macro.
811class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
812 const SubRegion *RegionOfInterest;
813 const SVal ValueAtDereference;
814
815 // Do not invalidate the reports where the value was modified
816 // after it got assigned to from the macro.
817 bool WasModified = false;
818
819public:
820 MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
821 : RegionOfInterest(R), ValueAtDereference(V) {}
822
823 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
825 PathSensitiveBugReport &BR) override {
826 if (WasModified)
827 return nullptr;
828
829 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
830 if (!BugPoint)
831 return nullptr;
832
833 const SourceManager &SMgr = BRC.getSourceManager();
834 if (auto Loc = matchAssignment(N)) {
835 if (isFunctionMacroExpansion(*Loc, SMgr)) {
836 std::string MacroName = std::string(getMacroName(*Loc, BRC));
837 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
838 if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
839 BR.markInvalid(getTag(), MacroName.c_str());
840 }
841 }
842
843 if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
844 WasModified = true;
845
846 return nullptr;
847 }
848
849 static void addMacroVisitorIfNecessary(
850 const ExplodedNode *N, const MemRegion *R,
851 bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
852 const SVal V) {
853 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
854 if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
855 isa<Loc>(V))
856 BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
857 V);
858 }
859
860 void* getTag() const {
861 static int Tag = 0;
862 return static_cast<void *>(&Tag);
863 }
864
865 void Profile(llvm::FoldingSetNodeID &ID) const override {
866 ID.AddPointer(getTag());
867 }
868
869private:
870 /// \return Source location of right hand side of an assignment
871 /// into \c RegionOfInterest, empty optional if none found.
872 std::optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
873 const Stmt *S = N->getStmtForDiagnostics();
874 ProgramStateRef State = N->getState();
875 auto *LCtx = N->getLocationContext();
876 if (!S)
877 return std::nullopt;
878
879 if (const auto *DS = dyn_cast<DeclStmt>(S)) {
880 if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
881 if (const Expr *RHS = VD->getInit())
882 if (RegionOfInterest->isSubRegionOf(
883 State->getLValue(VD, LCtx).getAsRegion()))
884 return RHS->getBeginLoc();
885 } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
886 const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
887 const Expr *RHS = BO->getRHS();
888 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
889 return RHS->getBeginLoc();
890 }
891 }
892 return std::nullopt;
893 }
894};
895
896} // end of anonymous namespace
897
898namespace {
899
900/// Emits an extra note at the return statement of an interesting stack frame.
901///
902/// The returned value is marked as an interesting value, and if it's null,
903/// adds a visitor to track where it became null.
904///
905/// This visitor is intended to be used when another visitor discovers that an
906/// interesting value comes from an inlined function call.
907class ReturnVisitor : public TrackingBugReporterVisitor {
908 const StackFrameContext *CalleeSFC;
909 enum {
910 Initial,
911 MaybeUnsuppress,
912 Satisfied
913 } Mode = Initial;
914
915 bool EnableNullFPSuppression;
916 bool ShouldInvalidate = true;
917 AnalyzerOptions& Options;
919
920public:
921 ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
922 bool Suppressed, AnalyzerOptions &Options,
924 : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
925 EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
926
927 static void *getTag() {
928 static int Tag = 0;
929 return static_cast<void *>(&Tag);
930 }
931
932 void Profile(llvm::FoldingSetNodeID &ID) const override {
933 ID.AddPointer(ReturnVisitor::getTag());
934 ID.AddPointer(CalleeSFC);
935 ID.AddBoolean(EnableNullFPSuppression);
936 }
937
938 PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
941 // Only print a message at the interesting return statement.
942 if (N->getLocationContext() != CalleeSFC)
943 return nullptr;
944
945 std::optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
946 if (!SP)
947 return nullptr;
948
949 const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
950 if (!Ret)
951 return nullptr;
952
953 // Okay, we're at the right return statement, but do we have the return
954 // value available?
955 ProgramStateRef State = N->getState();
956 SVal V = State->getSVal(Ret, CalleeSFC);
957 if (V.isUnknownOrUndef())
958 return nullptr;
959
960 // Don't print any more notes after this one.
961 Mode = Satisfied;
962
963 const Expr *RetE = Ret->getRetValue();
964 assert(RetE && "Tracking a return value for a void function");
965
966 // Handle cases where a reference is returned and then immediately used.
967 std::optional<Loc> LValue;
968 if (RetE->isGLValue()) {
969 if ((LValue = V.getAs<Loc>())) {
970 SVal RValue = State->getRawSVal(*LValue, RetE->getType());
971 if (isa<DefinedSVal>(RValue))
972 V = RValue;
973 }
974 }
975
976 // Ignore aggregate rvalues.
977 if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(V))
978 return nullptr;
979
980 RetE = RetE->IgnoreParenCasts();
981
982 // Let's track the return value.
983 getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
984
985 // Build an appropriate message based on the return value.
986 SmallString<64> Msg;
987 llvm::raw_svector_ostream Out(Msg);
988
989 bool WouldEventBeMeaningless = false;
990
991 if (State->isNull(V).isConstrainedTrue()) {
992 if (isa<Loc>(V)) {
993
994 // If we have counter-suppression enabled, make sure we keep visiting
995 // future nodes. We want to emit a path note as well, in case
996 // the report is resurrected as valid later on.
997 if (EnableNullFPSuppression &&
998 Options.ShouldAvoidSuppressingNullArgumentPaths)
999 Mode = MaybeUnsuppress;
1000
1001 if (RetE->getType()->isObjCObjectPointerType()) {
1002 Out << "Returning nil";
1003 } else {
1004 Out << "Returning null pointer";
1005 }
1006 } else {
1007 Out << "Returning zero";
1008 }
1009
1010 } else {
1011 if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1012 Out << "Returning the value " << CI->getValue();
1013 } else {
1014 // There is nothing interesting about returning a value, when it is
1015 // plain value without any constraints, and the function is guaranteed
1016 // to return that every time. We could use CFG::isLinear() here, but
1017 // constexpr branches are obvious to the compiler, not necesserily to
1018 // the programmer.
1019 if (N->getCFG().size() == 3)
1020 WouldEventBeMeaningless = true;
1021
1022 Out << (isa<Loc>(V) ? "Returning pointer" : "Returning value");
1023 }
1024 }
1025
1026 if (LValue) {
1027 if (const MemRegion *MR = LValue->getAsRegion()) {
1028 if (MR->canPrintPretty()) {
1029 Out << " (reference to ";
1030 MR->printPretty(Out);
1031 Out << ")";
1032 }
1033 }
1034 } else {
1035 // FIXME: We should have a more generalized location printing mechanism.
1036 if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
1037 if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
1038 Out << " (loaded from '" << *DD << "')";
1039 }
1040
1041 PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
1042 if (!L.isValid() || !L.asLocation().isValid())
1043 return nullptr;
1044
1045 if (TKind == bugreporter::TrackingKind::Condition)
1047
1048 auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
1049
1050 // If we determined that the note is meaningless, make it prunable, and
1051 // don't mark the stackframe interesting.
1052 if (WouldEventBeMeaningless)
1053 EventPiece->setPrunable(true);
1054 else
1055 BR.markInteresting(CalleeSFC);
1056
1057 return EventPiece;
1058 }
1059
1060 PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
1061 BugReporterContext &BRC,
1063 assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
1064
1065 // Are we at the entry node for this call?
1066 std::optional<CallEnter> CE = N->getLocationAs<CallEnter>();
1067 if (!CE)
1068 return nullptr;
1069
1070 if (CE->getCalleeContext() != CalleeSFC)
1071 return nullptr;
1072
1073 Mode = Satisfied;
1074
1075 // Don't automatically suppress a report if one of the arguments is
1076 // known to be a null pointer. Instead, start tracking /that/ null
1077 // value back to its origin.
1078 ProgramStateManager &StateMgr = BRC.getStateManager();
1079 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1080
1081 ProgramStateRef State = N->getState();
1082 CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
1083 for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
1084 std::optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
1085 if (!ArgV)
1086 continue;
1087
1088 const Expr *ArgE = Call->getArgExpr(I);
1089 if (!ArgE)
1090 continue;
1091
1092 // Is it possible for this argument to be non-null?
1093 if (!State->isNull(*ArgV).isConstrainedTrue())
1094 continue;
1095
1096 if (getParentTracker()
1097 .track(ArgE, N, {TKind, EnableNullFPSuppression})
1098 .FoundSomethingToTrack)
1099 ShouldInvalidate = false;
1100
1101 // If we /can't/ track the null pointer, we should err on the side of
1102 // false negatives, and continue towards marking this report invalid.
1103 // (We will still look at the other arguments, though.)
1104 }
1105
1106 return nullptr;
1107 }
1108
1109 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1110 BugReporterContext &BRC,
1111 PathSensitiveBugReport &BR) override {
1112 switch (Mode) {
1113 case Initial:
1114 return visitNodeInitial(N, BRC, BR);
1115 case MaybeUnsuppress:
1116 return visitNodeMaybeUnsuppress(N, BRC, BR);
1117 case Satisfied:
1118 return nullptr;
1119 }
1120
1121 llvm_unreachable("Invalid visit mode!");
1122 }
1123
1124 void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1125 PathSensitiveBugReport &BR) override {
1126 if (EnableNullFPSuppression && ShouldInvalidate)
1127 BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
1128 }
1129};
1130
1131//===----------------------------------------------------------------------===//
1132// StoreSiteFinder
1133//===----------------------------------------------------------------------===//
1134
1135/// Finds last store into the given region,
1136/// which is different from a given symbolic value.
1137class StoreSiteFinder final : public TrackingBugReporterVisitor {
1138 const MemRegion *R;
1139 SVal V;
1140 bool Satisfied = false;
1141
1142 TrackingOptions Options;
1143 const StackFrameContext *OriginSFC;
1144
1145public:
1146 /// \param V We're searching for the store where \c R received this value.
1147 /// \param R The region we're tracking.
1148 /// \param Options Tracking behavior options.
1149 /// \param OriginSFC Only adds notes when the last store happened in a
1150 /// different stackframe to this one. Disregarded if the tracking kind
1151 /// is thorough.
1152 /// This is useful, because for non-tracked regions, notes about
1153 /// changes to its value in a nested stackframe could be pruned, and
1154 /// this visitor can prevent that without polluting the bugpath too
1155 /// much.
1156 StoreSiteFinder(bugreporter::TrackerRef ParentTracker, SVal V,
1157 const MemRegion *R, TrackingOptions Options,
1158 const StackFrameContext *OriginSFC = nullptr)
1159 : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
1160 OriginSFC(OriginSFC) {
1161 assert(R);
1162 }
1163
1164 void Profile(llvm::FoldingSetNodeID &ID) const override;
1165
1166 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1167 BugReporterContext &BRC,
1168 PathSensitiveBugReport &BR) override;
1169};
1170} // namespace
1171
1172void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
1173 static int tag = 0;
1174 ID.AddPointer(&tag);
1175 ID.AddPointer(R);
1176 ID.Add(V);
1177 ID.AddInteger(static_cast<int>(Options.Kind));
1178 ID.AddBoolean(Options.EnableNullFPSuppression);
1179}
1180
1181/// Returns true if \p N represents the DeclStmt declaring and initializing
1182/// \p VR.
1183static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1184 std::optional<PostStmt> P = N->getLocationAs<PostStmt>();
1185 if (!P)
1186 return false;
1187
1188 const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1189 if (!DS)
1190 return false;
1191
1192 if (DS->getSingleDecl() != VR->getDecl())
1193 return false;
1194
1195 const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1196 const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1197 if (!FrameSpace) {
1198 // If we ever directly evaluate global DeclStmts, this assertion will be
1199 // invalid, but this still seems preferable to silently accepting an
1200 // initialization that may be for a path-sensitive variable.
1201 assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1202 return true;
1203 }
1204
1205 assert(VR->getDecl()->hasLocalStorage());
1206 const LocationContext *LCtx = N->getLocationContext();
1207 return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1208}
1209
1210static bool isObjCPointer(const MemRegion *R) {
1211 if (R->isBoundable())
1212 if (const auto *TR = dyn_cast<TypedValueRegion>(R))
1213 return TR->getValueType()->isObjCObjectPointerType();
1214
1215 return false;
1216}
1217
1218static bool isObjCPointer(const ValueDecl *D) {
1219 return D->getType()->isObjCObjectPointerType();
1220}
1221
1222/// Show diagnostics for initializing or declaring a region \p R with a bad value.
1223static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
1224 const bool HasPrefix = SI.Dest->canPrintPretty();
1225
1226 if (HasPrefix) {
1227 SI.Dest->printPretty(OS);
1228 OS << " ";
1229 }
1230
1231 const char *Action = nullptr;
1232
1233 switch (SI.StoreKind) {
1235 Action = HasPrefix ? "initialized to " : "Initializing to ";
1236 break;
1238 Action = HasPrefix ? "captured by block as " : "Captured by block as ";
1239 break;
1240 default:
1241 llvm_unreachable("Unexpected store kind");
1242 }
1243
1244 if (isa<loc::ConcreteInt>(SI.Value)) {
1245 OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
1246
1247 } else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
1248 OS << Action << CVal->getValue();
1249
1250 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1251 OS << Action << "the value of ";
1252 SI.Origin->printPretty(OS);
1253
1254 } else if (SI.StoreKind == StoreInfo::Initialization) {
1255 // We don't need to check here, all these conditions were
1256 // checked by StoreSiteFinder, when it figured out that it is
1257 // initialization.
1258 const auto *DS =
1259 cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
1260
1261 if (SI.Value.isUndef()) {
1262 if (isa<VarRegion>(SI.Dest)) {
1263 const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1264
1265 if (VD->getInit()) {
1266 OS << (HasPrefix ? "initialized" : "Initializing")
1267 << " to a garbage value";
1268 } else {
1269 OS << (HasPrefix ? "declared" : "Declaring")
1270 << " without an initial value";
1271 }
1272 }
1273 } else {
1274 OS << (HasPrefix ? "initialized" : "Initialized") << " here";
1275 }
1276 }
1277}
1278
1279/// Display diagnostics for passing bad region as a parameter.
1280static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
1281 StoreInfo SI) {
1282 const auto *VR = cast<VarRegion>(SI.Dest);
1283 const auto *D = VR->getDecl();
1284
1285 OS << "Passing ";
1286
1287 if (isa<loc::ConcreteInt>(SI.Value)) {
1288 OS << (isObjCPointer(D) ? "nil object reference" : "null pointer value");
1289
1290 } else if (SI.Value.isUndef()) {
1291 OS << "uninitialized value";
1292
1293 } else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
1294 OS << "the value " << CI->getValue();
1295
1296 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1297 SI.Origin->printPretty(OS);
1298
1299 } else {
1300 OS << "value";
1301 }
1302
1303 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1304 // Printed parameter indexes are 1-based, not 0-based.
1305 unsigned Idx = Param->getFunctionScopeIndex() + 1;
1306 OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1307 if (VR->canPrintPretty()) {
1308 OS << " ";
1309 VR->printPretty(OS);
1310 }
1311 } else if (const auto *ImplParam = dyn_cast<ImplicitParamDecl>(D)) {
1312 if (ImplParam->getParameterKind() == ImplicitParamKind::ObjCSelf) {
1313 OS << " via implicit parameter 'self'";
1314 }
1315 }
1316}
1317
1318/// Show default diagnostics for storing bad region.
1319static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
1320 StoreInfo SI) {
1321 const bool HasSuffix = SI.Dest->canPrintPretty();
1322
1323 if (isa<loc::ConcreteInt>(SI.Value)) {
1324 OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
1325 : (HasSuffix ? "Null pointer value stored"
1326 : "Storing null pointer value"));
1327
1328 } else if (SI.Value.isUndef()) {
1329 OS << (HasSuffix ? "Uninitialized value stored"
1330 : "Storing uninitialized value");
1331
1332 } else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
1333 if (HasSuffix)
1334 OS << "The value " << CV->getValue() << " is assigned";
1335 else
1336 OS << "Assigning " << CV->getValue();
1337
1338 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1339 if (HasSuffix) {
1340 OS << "The value of ";
1341 SI.Origin->printPretty(OS);
1342 OS << " is assigned";
1343 } else {
1344 OS << "Assigning the value of ";
1345 SI.Origin->printPretty(OS);
1346 }
1347
1348 } else {
1349 OS << (HasSuffix ? "Value assigned" : "Assigning value");
1350 }
1351
1352 if (HasSuffix) {
1353 OS << " to ";
1354 SI.Dest->printPretty(OS);
1355 }
1356}
1357
1359 if (!CE)
1360 return false;
1361
1362 const auto *CtorDecl = CE->getConstructor();
1363
1364 return CtorDecl->isCopyOrMoveConstructor() && CtorDecl->isTrivial();
1365}
1366
1368 const MemRegion *R) {
1369
1370 const auto *TVR = dyn_cast_or_null<TypedValueRegion>(R);
1371
1372 if (!TVR)
1373 return nullptr;
1374
1375 const auto ITy = ILE->getType().getCanonicalType();
1376
1377 // Push each sub-region onto the stack.
1378 std::stack<const TypedValueRegion *> TVRStack;
1379 while (isa<FieldRegion>(TVR) || isa<ElementRegion>(TVR)) {
1380 // We found a region that matches the type of the init list,
1381 // so we assume this is the outer-most region. This can happen
1382 // if the initializer list is inside a class. If our assumption
1383 // is wrong, we return a nullptr in the end.
1384 if (ITy == TVR->getValueType().getCanonicalType())
1385 break;
1386
1387 TVRStack.push(TVR);
1388 TVR = cast<TypedValueRegion>(TVR->getSuperRegion());
1389 }
1390
1391 // If the type of the outer most region doesn't match the type
1392 // of the ILE, we can't match the ILE and the region.
1393 if (ITy != TVR->getValueType().getCanonicalType())
1394 return nullptr;
1395
1396 const Expr *Init = ILE;
1397 while (!TVRStack.empty()) {
1398 TVR = TVRStack.top();
1399 TVRStack.pop();
1400
1401 // We hit something that's not an init list before
1402 // running out of regions, so we most likely failed.
1403 if (!isa<InitListExpr>(Init))
1404 return nullptr;
1405
1406 ILE = cast<InitListExpr>(Init);
1407 auto NumInits = ILE->getNumInits();
1408
1409 if (const auto *FR = dyn_cast<FieldRegion>(TVR)) {
1410 const auto *FD = FR->getDecl();
1411
1412 if (FD->getFieldIndex() >= NumInits)
1413 return nullptr;
1414
1415 Init = ILE->getInit(FD->getFieldIndex());
1416 } else if (const auto *ER = dyn_cast<ElementRegion>(TVR)) {
1417 const auto Ind = ER->getIndex();
1418
1419 // If index is symbolic, we can't figure out which expression
1420 // belongs to the region.
1421 if (!Ind.isConstant())
1422 return nullptr;
1423
1424 const auto IndVal = Ind.getAsInteger()->getLimitedValue();
1425 if (IndVal >= NumInits)
1426 return nullptr;
1427
1428 Init = ILE->getInit(IndVal);
1429 }
1430 }
1431
1432 return Init;
1433}
1434
1435PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
1436 BugReporterContext &BRC,
1438 if (Satisfied)
1439 return nullptr;
1440
1441 const ExplodedNode *StoreSite = nullptr;
1442 const ExplodedNode *Pred = Succ->getFirstPred();
1443 const Expr *InitE = nullptr;
1444 bool IsParam = false;
1445
1446 // First see if we reached the declaration of the region.
1447 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1448 if (isInitializationOfVar(Pred, VR)) {
1449 StoreSite = Pred;
1450 InitE = VR->getDecl()->getInit();
1451 }
1452 }
1453
1454 // If this is a post initializer expression, initializing the region, we
1455 // should track the initializer expression.
1456 if (std::optional<PostInitializer> PIP =
1457 Pred->getLocationAs<PostInitializer>()) {
1458 const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1459 if (FieldReg == R) {
1460 StoreSite = Pred;
1461 InitE = PIP->getInitializer()->getInit();
1462 }
1463 }
1464
1465 // Otherwise, see if this is the store site:
1466 // (1) Succ has this binding and Pred does not, i.e. this is
1467 // where the binding first occurred.
1468 // (2) Succ has this binding and is a PostStore node for this region, i.e.
1469 // the same binding was re-assigned here.
1470 if (!StoreSite) {
1471 if (Succ->getState()->getSVal(R) != V)
1472 return nullptr;
1473
1474 if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1475 std::optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1476 if (!PS || PS->getLocationValue() != R)
1477 return nullptr;
1478 }
1479
1480 StoreSite = Succ;
1481
1482 if (std::optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) {
1483 // If this is an assignment expression, we can track the value
1484 // being assigned.
1485 if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) {
1486 if (BO->isAssignmentOp())
1487 InitE = BO->getRHS();
1488 }
1489 // If we have a declaration like 'S s{1,2}' that needs special
1490 // handling, we handle it here.
1491 else if (const auto *DS = P->getStmtAs<DeclStmt>()) {
1492 const auto *Decl = DS->getSingleDecl();
1493 if (isa<VarDecl>(Decl)) {
1494 const auto *VD = cast<VarDecl>(Decl);
1495
1496 // FIXME: Here we only track the inner most region, so we lose
1497 // information, but it's still better than a crash or no information
1498 // at all.
1499 //
1500 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y',
1501 // and throw away the rest.
1502 if (const auto *ILE = dyn_cast<InitListExpr>(VD->getInit()))
1503 InitE = tryExtractInitializerFromList(ILE, R);
1504 }
1505 } else if (const auto *CE = P->getStmtAs<CXXConstructExpr>()) {
1506
1507 const auto State = Succ->getState();
1508
1509 if (isTrivialCopyOrMoveCtor(CE) && isa<SubRegion>(R)) {
1510 // Migrate the field regions from the current object to
1511 // the parent object. If we track 'a.y.e' and encounter
1512 // 'S a = b' then we need to track 'b.y.e'.
1513
1514 // Push the regions to a stack, from last to first, so
1515 // considering the example above the stack will look like
1516 // (bottom) 'e' -> 'y' (top).
1517
1518 std::stack<const SubRegion *> SRStack;
1519 const SubRegion *SR = cast<SubRegion>(R);
1520 while (isa<FieldRegion>(SR) || isa<ElementRegion>(SR)) {
1521 SRStack.push(SR);
1522 SR = cast<SubRegion>(SR->getSuperRegion());
1523 }
1524
1525 // Get the region for the object we copied/moved from.
1526 const auto *OriginEx = CE->getArg(0);
1527 const auto OriginVal =
1528 State->getSVal(OriginEx, Succ->getLocationContext());
1529
1530 // Pop the stored field regions and apply them to the origin
1531 // object in the same order we had them on the copy.
1532 // OriginField will evolve like 'b' -> 'b.y' -> 'b.y.e'.
1533 SVal OriginField = OriginVal;
1534 while (!SRStack.empty()) {
1535 const auto *TopR = SRStack.top();
1536 SRStack.pop();
1537
1538 if (const auto *FR = dyn_cast<FieldRegion>(TopR)) {
1539 OriginField = State->getLValue(FR->getDecl(), OriginField);
1540 } else if (const auto *ER = dyn_cast<ElementRegion>(TopR)) {
1541 OriginField = State->getLValue(ER->getElementType(),
1542 ER->getIndex(), OriginField);
1543 } else {
1544 // FIXME: handle other region type
1545 }
1546 }
1547
1548 // Track 'b.y.e'.
1549 getParentTracker().track(V, OriginField.getAsRegion(), Options);
1550 InitE = OriginEx;
1551 }
1552 }
1553 // This branch can occur in cases like `Ctor() : field{ x, y } {}'.
1554 else if (const auto *ILE = P->getStmtAs<InitListExpr>()) {
1555 // FIXME: Here we only track the top level region, so we lose
1556 // information, but it's still better than a crash or no information
1557 // at all.
1558 //
1559 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y', and
1560 // throw away the rest.
1561 InitE = tryExtractInitializerFromList(ILE, R);
1562 }
1563 }
1564
1565 // If this is a call entry, the variable should be a parameter.
1566 // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1567 // 'this' should never be NULL, but this visitor isn't just for NULL and
1568 // UndefinedVal.)
1569 if (std::optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1570 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1571
1572 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1573 ProgramStateManager &StateMgr = BRC.getStateManager();
1574 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1575
1576 CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1577 Succ->getState());
1578 InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1579 } else {
1580 // Handle Objective-C 'self'.
1581 assert(isa<ImplicitParamDecl>(VR->getDecl()));
1582 InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
1583 ->getInstanceReceiver()->IgnoreParenCasts();
1584 }
1585 IsParam = true;
1586 }
1587 }
1588
1589 // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1590 // is wrapped inside of it.
1591 if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1592 InitE = TmpR->getExpr();
1593 }
1594
1595 if (!StoreSite)
1596 return nullptr;
1597
1598 Satisfied = true;
1599
1600 // If we have an expression that provided the value, try to track where it
1601 // came from.
1602 if (InitE) {
1603 if (!IsParam)
1604 InitE = InitE->IgnoreParenCasts();
1605
1606 getParentTracker().track(InitE, StoreSite, Options);
1607 }
1608
1609 // Let's try to find the region where the value came from.
1610 const MemRegion *OldRegion = nullptr;
1611
1612 // If we have init expression, it might be simply a reference
1613 // to a variable, so we can use it.
1614 if (InitE) {
1615 // That region might still be not exactly what we are looking for.
1616 // In situations like `int &ref = val;`, we can't say that
1617 // `ref` is initialized with `val`, rather refers to `val`.
1618 //
1619 // In order, to mitigate situations like this, we check if the last
1620 // stored value in that region is the value that we track.
1621 //
1622 // TODO: support other situations better.
1623 if (const MemRegion *Candidate =
1624 getLocationRegionIfReference(InitE, Succ, false)) {
1626
1627 // Here we traverse the graph up to find the last node where the
1628 // candidate region is still in the store.
1629 for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
1630 if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
1631 // And if it was bound to the target value, we can use it.
1632 if (N->getState()->getSVal(Candidate) == V) {
1633 OldRegion = Candidate;
1634 }
1635 break;
1636 }
1637 }
1638 }
1639 }
1640
1641 // Otherwise, if the current region does indeed contain the value
1642 // we are looking for, we can look for a region where this value
1643 // was before.
1644 //
1645 // It can be useful for situations like:
1646 // new = identity(old)
1647 // where the analyzer knows that 'identity' returns the value of its
1648 // first argument.
1649 //
1650 // NOTE: If the region R is not a simple var region, it can contain
1651 // V in one of its subregions.
1652 if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
1653 // Let's go up the graph to find the node where the region is
1654 // bound to V.
1655 const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
1656 for (;
1657 NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
1658 NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
1659 }
1660
1661 if (NodeWithoutBinding) {
1662 // Let's try to find a unique binding for the value in that node.
1663 // We want to use this to find unique bindings because of the following
1664 // situations:
1665 // b = a;
1666 // c = identity(b);
1667 //
1668 // Telling the user that the value of 'a' is assigned to 'c', while
1669 // correct, can be confusing.
1670 StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
1671 BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
1672 if (FB)
1673 OldRegion = FB.getRegion();
1674 }
1675 }
1676
1677 if (Options.Kind == TrackingKind::Condition && OriginSFC &&
1678 !OriginSFC->isParentOf(StoreSite->getStackFrame()))
1679 return nullptr;
1680
1681 // Okay, we've found the binding. Emit an appropriate message.
1682 SmallString<256> sbuf;
1683 llvm::raw_svector_ostream os(sbuf);
1684
1685 StoreInfo SI = {StoreInfo::Assignment, // default kind
1686 StoreSite,
1687 InitE,
1688 V,
1689 R,
1690 OldRegion};
1691
1692 if (std::optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1693 const Stmt *S = PS->getStmt();
1694 const auto *DS = dyn_cast<DeclStmt>(S);
1695 const auto *VR = dyn_cast<VarRegion>(R);
1696
1697 if (DS) {
1699 } else if (isa<BlockExpr>(S)) {
1701 if (VR) {
1702 // See if we can get the BlockVarRegion.
1703 ProgramStateRef State = StoreSite->getState();
1704 SVal V = StoreSite->getSVal(S);
1705 if (const auto *BDR =
1706 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1707 if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1708 getParentTracker().track(State->getSVal(OriginalR), OriginalR,
1709 Options, OriginSFC);
1710 }
1711 }
1712 }
1713 }
1714 } else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
1715 isa<VarRegion>(SI.Dest)) {
1717 }
1718
1719 return getParentTracker().handle(SI, BRC, Options);
1720}
1721
1722//===----------------------------------------------------------------------===//
1723// Implementation of TrackConstraintBRVisitor.
1724//===----------------------------------------------------------------------===//
1725
1726void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1727 static int tag = 0;
1728 ID.AddPointer(&tag);
1729 ID.AddString(Message);
1730 ID.AddBoolean(Assumption);
1731 ID.Add(Constraint);
1732}
1733
1734/// Return the tag associated with this visitor. This tag will be used
1735/// to make all PathDiagnosticPieces created by this visitor.
1737 return "TrackConstraintBRVisitor";
1738}
1739
1740bool TrackConstraintBRVisitor::isZeroCheck() const {
1741 return !Assumption && Constraint.getAs<Loc>();
1742}
1743
1744bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1745 if (isZeroCheck())
1746 return N->getState()->isNull(Constraint).isUnderconstrained();
1747 return (bool)N->getState()->assume(Constraint, !Assumption);
1748}
1749
1752 const ExplodedNode *PrevN = N->getFirstPred();
1753 if (IsSatisfied)
1754 return nullptr;
1755
1756 // Start tracking after we see the first state in which the value is
1757 // constrained.
1758 if (!IsTrackingTurnedOn)
1759 if (!isUnderconstrained(N))
1760 IsTrackingTurnedOn = true;
1761 if (!IsTrackingTurnedOn)
1762 return nullptr;
1763
1764 // Check if in the previous state it was feasible for this constraint
1765 // to *not* be true.
1766 if (isUnderconstrained(PrevN)) {
1767 IsSatisfied = true;
1768
1769 // At this point, the negation of the constraint should be infeasible. If it
1770 // is feasible, make sure that the negation of the constrainti was
1771 // infeasible in the current state. If it is feasible, we somehow missed
1772 // the transition point.
1773 assert(!isUnderconstrained(N));
1774
1775 // Construct a new PathDiagnosticPiece.
1776 ProgramPoint P = N->getLocation();
1777
1778 // If this node already have a specialized note, it's probably better
1779 // than our generic note.
1780 // FIXME: This only looks for note tags, not for other ways to add a note.
1781 if (isa_and_nonnull<NoteTag>(P.getTag()))
1782 return nullptr;
1783
1786 if (!L.isValid())
1787 return nullptr;
1788
1789 auto X = std::make_shared<PathDiagnosticEventPiece>(L, Message);
1790 X->setTag(getTag());
1791 return std::move(X);
1792 }
1793
1794 return nullptr;
1795}
1796
1797//===----------------------------------------------------------------------===//
1798// Implementation of SuppressInlineDefensiveChecksVisitor.
1799//===----------------------------------------------------------------------===//
1800
1803 : V(Value) {
1804 // Check if the visitor is disabled.
1805 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1806 if (!Options.ShouldSuppressInlinedDefensiveChecks)
1807 IsSatisfied = true;
1808}
1809
1811 llvm::FoldingSetNodeID &ID) const {
1812 static int id = 0;
1813 ID.AddPointer(&id);
1814 ID.Add(V);
1815}
1816
1818 return "IDCVisitor";
1819}
1820
1823 BugReporterContext &BRC,
1825 const ExplodedNode *Pred = Succ->getFirstPred();
1826 if (IsSatisfied)
1827 return nullptr;
1828
1829 // Start tracking after we see the first state in which the value is null.
1830 if (!IsTrackingTurnedOn)
1831 if (Succ->getState()->isNull(V).isConstrainedTrue())
1832 IsTrackingTurnedOn = true;
1833 if (!IsTrackingTurnedOn)
1834 return nullptr;
1835
1836 // Check if in the previous state it was feasible for this value
1837 // to *not* be null.
1838 if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
1839 Succ->getState()->isNull(V).isConstrainedTrue()) {
1840 IsSatisfied = true;
1841
1842 // Check if this is inlined defensive checks.
1843 const LocationContext *CurLC = Succ->getLocationContext();
1844 const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1845 if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1846 BR.markInvalid("Suppress IDC", CurLC);
1847 return nullptr;
1848 }
1849
1850 // Treat defensive checks in function-like macros as if they were an inlined
1851 // defensive check. If the bug location is not in a macro and the
1852 // terminator for the current location is in a macro then suppress the
1853 // warning.
1854 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1855
1856 if (!BugPoint)
1857 return nullptr;
1858
1859 ProgramPoint CurPoint = Succ->getLocation();
1860 const Stmt *CurTerminatorStmt = nullptr;
1861 if (auto BE = CurPoint.getAs<BlockEdge>()) {
1862 CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1863 } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1864 const Stmt *CurStmt = SP->getStmt();
1865 if (!CurStmt->getBeginLoc().isMacroID())
1866 return nullptr;
1867
1869 CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
1870 } else {
1871 return nullptr;
1872 }
1873
1874 if (!CurTerminatorStmt)
1875 return nullptr;
1876
1877 SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1878 if (TerminatorLoc.isMacroID()) {
1879 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1880
1881 // Suppress reports unless we are in that same macro.
1882 if (!BugLoc.isMacroID() ||
1883 getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1884 BR.markInvalid("Suppress Macro IDC", CurLC);
1885 }
1886 return nullptr;
1887 }
1888 }
1889 return nullptr;
1890}
1891
1892//===----------------------------------------------------------------------===//
1893// TrackControlDependencyCondBRVisitor.
1894//===----------------------------------------------------------------------===//
1895
1896namespace {
1897/// Tracks the expressions that are a control dependency of the node that was
1898/// supplied to the constructor.
1899/// For example:
1900///
1901/// cond = 1;
1902/// if (cond)
1903/// 10 / 0;
1904///
1905/// An error is emitted at line 3. This visitor realizes that the branch
1906/// on line 2 is a control dependency of line 3, and tracks it's condition via
1907/// trackExpressionValue().
1908class TrackControlDependencyCondBRVisitor final
1910 const ExplodedNode *Origin;
1911 ControlDependencyCalculator ControlDeps;
1912 llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
1913
1914public:
1915 TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
1916 const ExplodedNode *O)
1917 : TrackingBugReporterVisitor(ParentTracker), Origin(O),
1918 ControlDeps(&O->getCFG()) {}
1919
1920 void Profile(llvm::FoldingSetNodeID &ID) const override {
1921 static int x = 0;
1922 ID.AddPointer(&x);
1923 }
1924
1925 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1926 BugReporterContext &BRC,
1927 PathSensitiveBugReport &BR) override;
1928};
1929} // end of anonymous namespace
1930
1931static std::shared_ptr<PathDiagnosticEventPiece>
1933 const ExplodedNode *N,
1934 BugReporterContext &BRC) {
1935
1937 !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
1938 return nullptr;
1939
1940 std::string ConditionText = std::string(Lexer::getSourceText(
1943
1944 return std::make_shared<PathDiagnosticEventPiece>(
1946 Cond, BRC.getSourceManager(), N->getLocationContext()),
1947 (Twine() + "Tracking condition '" + ConditionText + "'").str());
1948}
1949
1950static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
1951 if (B->succ_size() != 2)
1952 return false;
1953
1954 const CFGBlock *Then = B->succ_begin()->getReachableBlock();
1955 const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
1956
1957 if (!Then || !Else)
1958 return false;
1959
1960 if (Then->isInevitablySinking() != Else->isInevitablySinking())
1961 return true;
1962
1963 // For the following condition the following CFG would be built:
1964 //
1965 // ------------->
1966 // / \
1967 // [B1] -> [B2] -> [B3] -> [sink]
1968 // assert(A && B || C); \ \
1969 // -----------> [go on with the execution]
1970 //
1971 // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
1972 // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
1973 // reached the end of the condition!
1974 if (const Stmt *ElseCond = Else->getTerminatorCondition())
1975 if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
1976 if (BinOp->isLogicalOp())
1977 return isAssertlikeBlock(Else, Context);
1978
1979 return false;
1980}
1981
1983TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
1984 BugReporterContext &BRC,
1986 // We can only reason about control dependencies within the same stack frame.
1987 if (Origin->getStackFrame() != N->getStackFrame())
1988 return nullptr;
1989
1990 CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
1991
1992 // Skip if we already inspected this block.
1993 if (!VisitedBlocks.insert(NB).second)
1994 return nullptr;
1995
1996 CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
1997
1998 // TODO: Cache CFGBlocks for each ExplodedNode.
1999 if (!OriginB || !NB)
2000 return nullptr;
2001
2002 if (isAssertlikeBlock(NB, BRC.getASTContext()))
2003 return nullptr;
2004
2005 if (ControlDeps.isControlDependent(OriginB, NB)) {
2006 // We don't really want to explain for range loops. Evidence suggests that
2007 // the only thing that leads to is the addition of calls to operator!=.
2008 if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
2009 return nullptr;
2010
2011 if (const Expr *Condition = NB->getLastCondition()) {
2012
2013 // If we can't retrieve a sensible condition, just bail out.
2014 const Expr *InnerExpr = peelOffOuterExpr(Condition, N);
2015 if (!InnerExpr)
2016 return nullptr;
2017
2018 // If the condition was a function call, we likely won't gain much from
2019 // tracking it either. Evidence suggests that it will mostly trigger in
2020 // scenarios like this:
2021 //
2022 // void f(int *x) {
2023 // x = nullptr;
2024 // if (alwaysTrue()) // We don't need a whole lot of explanation
2025 // // here, the function name is good enough.
2026 // *x = 5;
2027 // }
2028 //
2029 // Its easy to create a counterexample where this heuristic would make us
2030 // lose valuable information, but we've never really seen one in practice.
2031 if (isa<CallExpr>(InnerExpr))
2032 return nullptr;
2033
2034 // Keeping track of the already tracked conditions on a visitor level
2035 // isn't sufficient, because a new visitor is created for each tracked
2036 // expression, hence the BugReport level set.
2037 if (BR.addTrackedCondition(N)) {
2038 getParentTracker().track(InnerExpr, N,
2040 /*EnableNullFPSuppression=*/false});
2042 }
2043 }
2044 }
2045
2046 return nullptr;
2047}
2048
2049//===----------------------------------------------------------------------===//
2050// Implementation of trackExpressionValue.
2051//===----------------------------------------------------------------------===//
2052
2053static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) {
2054
2055 Ex = Ex->IgnoreParenCasts();
2056 if (const auto *FE = dyn_cast<FullExpr>(Ex))
2057 return peelOffOuterExpr(FE->getSubExpr(), N);
2058 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
2059 return peelOffOuterExpr(OVE->getSourceExpr(), N);
2060 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
2061 const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
2062 if (PropRef && PropRef->isMessagingGetter()) {
2063 const Expr *GetterMessageSend =
2064 POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
2065 assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
2066 return peelOffOuterExpr(GetterMessageSend, N);
2067 }
2068 }
2069
2070 // Peel off the ternary operator.
2071 if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
2072 // Find a node where the branching occurred and find out which branch
2073 // we took (true/false) by looking at the ExplodedGraph.
2074 const ExplodedNode *NI = N;
2075 do {
2076 ProgramPoint ProgPoint = NI->getLocation();
2077 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2078 const CFGBlock *srcBlk = BE->getSrc();
2079 if (const Stmt *term = srcBlk->getTerminatorStmt()) {
2080 if (term == CO) {
2081 bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
2082 if (TookTrueBranch)
2083 return peelOffOuterExpr(CO->getTrueExpr(), N);
2084 else
2085 return peelOffOuterExpr(CO->getFalseExpr(), N);
2086 }
2087 }
2088 }
2089 NI = NI->getFirstPred();
2090 } while (NI);
2091 }
2092
2093 if (auto *BO = dyn_cast<BinaryOperator>(Ex))
2094 if (const Expr *SubEx = peelOffPointerArithmetic(BO))
2095 return peelOffOuterExpr(SubEx, N);
2096
2097 if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
2098 if (UO->getOpcode() == UO_LNot)
2099 return peelOffOuterExpr(UO->getSubExpr(), N);
2100
2101 // FIXME: There's a hack in our Store implementation that always computes
2102 // field offsets around null pointers as if they are always equal to 0.
2103 // The idea here is to report accesses to fields as null dereferences
2104 // even though the pointer value that's being dereferenced is actually
2105 // the offset of the field rather than exactly 0.
2106 // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
2107 // This code interacts heavily with this hack; otherwise the value
2108 // would not be null at all for most fields, so we'd be unable to track it.
2109 if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
2110 if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
2111 return peelOffOuterExpr(DerefEx, N);
2112 }
2113
2114 return Ex;
2115}
2116
2117/// Find the ExplodedNode where the lvalue (the value of 'Ex')
2118/// was computed.
2120 const Expr *Inner) {
2121 while (N) {
2122 if (N->getStmtForDiagnostics() == Inner)
2123 return N;
2124 N = N->getFirstPred();
2125 }
2126 return N;
2127}
2128
2129//===----------------------------------------------------------------------===//
2130// Tracker implementation
2131//===----------------------------------------------------------------------===//
2132
2134 BugReporterContext &BRC,
2135 StringRef NodeText) {
2136 // Construct a new PathDiagnosticPiece.
2139 if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
2141 P.getLocationContext());
2142
2143 if (!L.isValid() || !L.asLocation().isValid())
2145
2146 if (!L.isValid() || !L.asLocation().isValid())
2147 return nullptr;
2148
2149 return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
2150}
2151
2152namespace {
2153class DefaultStoreHandler final : public StoreHandler {
2154public:
2156
2158 TrackingOptions Opts) override {
2159 // Okay, we've found the binding. Emit an appropriate message.
2160 SmallString<256> Buffer;
2161 llvm::raw_svector_ostream OS(Buffer);
2162
2163 switch (SI.StoreKind) {
2166 showBRDiagnostics(OS, SI);
2167 break;
2169 showBRParamDiagnostics(OS, SI);
2170 break;
2173 break;
2174 }
2175
2176 if (Opts.Kind == bugreporter::TrackingKind::Condition)
2178
2179 return constructNote(SI, BRC, OS.str());
2180 }
2181};
2182
2183class ControlDependencyHandler final : public ExpressionHandler {
2184public:
2186
2187 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2188 const ExplodedNode *LVNode,
2189 TrackingOptions Opts) override {
2190 PathSensitiveBugReport &Report = getParentTracker().getReport();
2191
2192 // We only track expressions if we believe that they are important. Chances
2193 // are good that control dependencies to the tracking point are also
2194 // important because of this, let's explain why we believe control reached
2195 // this point.
2196 // TODO: Shouldn't we track control dependencies of every bug location,
2197 // rather than only tracked expressions?
2198 if (LVNode->getState()
2199 ->getAnalysisManager()
2200 .getAnalyzerOptions()
2201 .ShouldTrackConditions) {
2202 Report.addVisitor<TrackControlDependencyCondBRVisitor>(
2203 &getParentTracker(), InputNode);
2204 return {/*FoundSomethingToTrack=*/true};
2205 }
2206
2207 return {};
2208 }
2209};
2210
2211class NilReceiverHandler final : public ExpressionHandler {
2212public:
2214
2215 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2216 const ExplodedNode *LVNode,
2217 TrackingOptions Opts) override {
2218 // The message send could be nil due to the receiver being nil.
2219 // At this point in the path, the receiver should be live since we are at
2220 // the message send expr. If it is nil, start tracking it.
2221 if (const Expr *Receiver =
2223 return getParentTracker().track(Receiver, LVNode, Opts);
2224
2225 return {};
2226 }
2227};
2228
2229class ArrayIndexHandler final : public ExpressionHandler {
2230public:
2232
2233 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2234 const ExplodedNode *LVNode,
2235 TrackingOptions Opts) override {
2236 // Track the index if this is an array subscript.
2237 if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
2238 return getParentTracker().track(
2239 Arr->getIdx(), LVNode,
2240 {Opts.Kind, /*EnableNullFPSuppression*/ false});
2241
2242 return {};
2243 }
2244};
2245
2246// TODO: extract it into more handlers
2247class InterestingLValueHandler final : public ExpressionHandler {
2248public:
2250
2251 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2252 const ExplodedNode *LVNode,
2253 TrackingOptions Opts) override {
2254 ProgramStateRef LVState = LVNode->getState();
2255 const StackFrameContext *SFC = LVNode->getStackFrame();
2256 PathSensitiveBugReport &Report = getParentTracker().getReport();
2257 Tracker::Result Result;
2258
2259 // See if the expression we're interested refers to a variable.
2260 // If so, we can track both its contents and constraints on its value.
2262 SVal LVal = LVNode->getSVal(Inner);
2263
2264 const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
2265 bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
2266
2267 // If this is a C++ reference to a null pointer, we are tracking the
2268 // pointer. In addition, we should find the store at which the reference
2269 // got initialized.
2270 if (RR && !LVIsNull)
2271 Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
2272
2273 // In case of C++ references, we want to differentiate between a null
2274 // reference and reference to null pointer.
2275 // If the LVal is null, check if we are dealing with null reference.
2276 // For those, we want to track the location of the reference.
2277 const MemRegion *R =
2278 (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
2279
2280 if (R) {
2281
2282 // Mark both the variable region and its contents as interesting.
2283 SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
2284 Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
2285
2286 // When we got here, we do have something to track, and we will
2287 // interrupt.
2288 Result.FoundSomethingToTrack = true;
2289 Result.WasInterrupted = true;
2290
2291 MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
2292 LVNode, R, Opts.EnableNullFPSuppression, Report, V);
2293
2294 Report.markInteresting(V, Opts.Kind);
2295 Report.addVisitor<UndefOrNullArgVisitor>(R);
2296
2297 // If the contents are symbolic and null, find out when they became
2298 // null.
2299 if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
2300 if (LVState->isNull(V).isConstrainedTrue())
2301 Report.addVisitor<TrackConstraintBRVisitor>(
2302 V.castAs<DefinedSVal>(),
2303 /*Assumption=*/false, "Assuming pointer value is null");
2304
2305 // Add visitor, which will suppress inline defensive checks.
2306 if (auto DV = V.getAs<DefinedSVal>())
2307 if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
2308 // Note that LVNode may be too late (i.e., too far from the
2309 // InputNode) because the lvalue may have been computed before the
2310 // inlined call was evaluated. InputNode may as well be too early
2311 // here, because the symbol is already dead; this, however, is fine
2312 // because we can still find the node in which it collapsed to null
2313 // previously.
2315 InputNode);
2316 getParentTracker().track(V, R, Opts, SFC);
2317 }
2318 }
2319
2320 return Result;
2321 }
2322};
2323
2324/// Adds a ReturnVisitor if the given statement represents a call that was
2325/// inlined.
2326///
2327/// This will search back through the ExplodedGraph, starting from the given
2328/// node, looking for when the given statement was processed. If it turns out
2329/// the statement is a call that was inlined, we add the visitor to the
2330/// bug report, so it can print a note later.
2331class InlinedFunctionCallHandler final : public ExpressionHandler {
2333
2334 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2335 const ExplodedNode *ExprNode,
2336 TrackingOptions Opts) override {
2338 return {};
2339
2340 // First, find when we processed the statement.
2341 // If we work with a 'CXXNewExpr' that is going to be purged away before
2342 // its call take place. We would catch that purge in the last condition
2343 // as a 'StmtPoint' so we have to bypass it.
2344 const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
2345
2346 // This is moving forward when we enter into another context.
2347 const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
2348
2349 do {
2350 // If that is satisfied we found our statement as an inlined call.
2351 if (std::optional<CallExitEnd> CEE =
2352 ExprNode->getLocationAs<CallExitEnd>())
2353 if (CEE->getCalleeContext()->getCallSite() == E)
2354 break;
2355
2356 // Try to move forward to the end of the call-chain.
2357 ExprNode = ExprNode->getFirstPred();
2358 if (!ExprNode)
2359 break;
2360
2361 const StackFrameContext *PredSFC = ExprNode->getStackFrame();
2362
2363 // If that is satisfied we found our statement.
2364 // FIXME: This code currently bypasses the call site for the
2365 // conservatively evaluated allocator.
2366 if (!BypassCXXNewExprEval)
2367 if (std::optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
2368 // See if we do not enter into another context.
2369 if (SP->getStmt() == E && CurrentSFC == PredSFC)
2370 break;
2371
2372 CurrentSFC = PredSFC;
2373 } while (ExprNode->getStackFrame() == CurrentSFC);
2374
2375 // Next, step over any post-statement checks.
2376 while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
2377 ExprNode = ExprNode->getFirstPred();
2378 if (!ExprNode)
2379 return {};
2380
2381 // Finally, see if we inlined the call.
2382 std::optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
2383 if (!CEE)
2384 return {};
2385
2386 const StackFrameContext *CalleeContext = CEE->getCalleeContext();
2387 if (CalleeContext->getCallSite() != E)
2388 return {};
2389
2390 // Check the return value.
2391 ProgramStateRef State = ExprNode->getState();
2392 SVal RetVal = ExprNode->getSVal(E);
2393
2394 // Handle cases where a reference is returned and then immediately used.
2395 if (cast<Expr>(E)->isGLValue())
2396 if (std::optional<Loc> LValue = RetVal.getAs<Loc>())
2397 RetVal = State->getSVal(*LValue);
2398
2399 // See if the return value is NULL. If so, suppress the report.
2400 AnalyzerOptions &Options = State->getAnalysisManager().options;
2401
2402 bool EnableNullFPSuppression = false;
2403 if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
2404 if (std::optional<Loc> RetLoc = RetVal.getAs<Loc>())
2405 EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
2406
2407 PathSensitiveBugReport &Report = getParentTracker().getReport();
2408 Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
2409 EnableNullFPSuppression, Options,
2410 Opts.Kind);
2411 return {true};
2412 }
2413};
2414
2415class DefaultExpressionHandler final : public ExpressionHandler {
2416public:
2418
2419 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2420 const ExplodedNode *LVNode,
2421 TrackingOptions Opts) override {
2422 ProgramStateRef LVState = LVNode->getState();
2423 const StackFrameContext *SFC = LVNode->getStackFrame();
2424 PathSensitiveBugReport &Report = getParentTracker().getReport();
2425 Tracker::Result Result;
2426
2427 // If the expression is not an "lvalue expression", we can still
2428 // track the constraints on its contents.
2429 SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
2430
2431 // Is it a symbolic value?
2432 if (auto L = V.getAs<loc::MemRegionVal>()) {
2433 // FIXME: this is a hack for fixing a later crash when attempting to
2434 // dereference a void* pointer.
2435 // We should not try to dereference pointers at all when we don't care
2436 // what is written inside the pointer.
2437 bool CanDereference = true;
2438 if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
2439 if (SR->getPointeeStaticType()->isVoidType())
2440 CanDereference = false;
2441 } else if (L->getRegionAs<AllocaRegion>())
2442 CanDereference = false;
2443
2444 // At this point we are dealing with the region's LValue.
2445 // However, if the rvalue is a symbolic region, we should track it as
2446 // well. Try to use the correct type when looking up the value.
2447 SVal RVal;
2449 RVal = LVState->getRawSVal(*L, Inner->getType());
2450 else if (CanDereference)
2451 RVal = LVState->getSVal(L->getRegion());
2452
2453 if (CanDereference) {
2454 Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
2455 Result.FoundSomethingToTrack = true;
2456
2457 if (!RVal.isUnknown())
2458 Result.combineWith(
2459 getParentTracker().track(RVal, L->getRegion(), Opts, SFC));
2460 }
2461
2462 const MemRegion *RegionRVal = RVal.getAsRegion();
2463 if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
2464 Report.markInteresting(RegionRVal, Opts.Kind);
2465 Report.addVisitor<TrackConstraintBRVisitor>(
2466 loc::MemRegionVal(RegionRVal),
2467 /*Assumption=*/false, "Assuming pointer value is null");
2468 Result.FoundSomethingToTrack = true;
2469 }
2470 }
2471
2472 return Result;
2473 }
2474};
2475
2476/// Attempts to add visitors to track an RValue expression back to its point of
2477/// origin.
2478class PRValueHandler final : public ExpressionHandler {
2479public:
2481
2482 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2483 const ExplodedNode *ExprNode,
2484 TrackingOptions Opts) override {
2485 if (!E->isPRValue())
2486 return {};
2487
2488 const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
2489 if (!RVNode)
2490 return {};
2491
2492 Tracker::Result CombinedResult;
2493 Tracker &Parent = getParentTracker();
2494
2495 const auto track = [&CombinedResult, &Parent, ExprNode,
2496 Opts](const Expr *Inner) {
2497 CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
2498 };
2499
2500 // FIXME: Initializer lists can appear in many different contexts
2501 // and most of them needs a special handling. For now let's handle
2502 // what we can. If the initializer list only has 1 element, we track
2503 // that.
2504 // This snippet even handles nesting, e.g.: int *x{{{{{y}}}}};
2505 if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
2506 if (ILE->getNumInits() == 1) {
2507 track(ILE->getInit(0));
2508
2509 return CombinedResult;
2510 }
2511
2512 return {};
2513 }
2514
2515 ProgramStateRef RVState = RVNode->getState();
2516 SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
2517 const auto *BO = dyn_cast<BinaryOperator>(E);
2518
2519 if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
2520 return {};
2521
2522 SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
2523 SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
2524
2525 // Track both LHS and RHS of a multiplication.
2526 if (BO->getOpcode() == BO_Mul) {
2527 if (LHSV.isZeroConstant())
2528 track(BO->getLHS());
2529 if (RHSV.isZeroConstant())
2530 track(BO->getRHS());
2531 } else { // Track only the LHS of a division or a modulo.
2532 if (LHSV.isZeroConstant())
2533 track(BO->getLHS());
2534 }
2535
2536 return CombinedResult;
2537 }
2538};
2539} // namespace
2540
2542 // Default expression handlers.
2543 addLowPriorityHandler<ControlDependencyHandler>();
2544 addLowPriorityHandler<NilReceiverHandler>();
2545 addLowPriorityHandler<ArrayIndexHandler>();
2546 addLowPriorityHandler<InterestingLValueHandler>();
2547 addLowPriorityHandler<InlinedFunctionCallHandler>();
2548 addLowPriorityHandler<DefaultExpressionHandler>();
2549 addLowPriorityHandler<PRValueHandler>();
2550 // Default store handlers.
2551 addHighPriorityHandler<DefaultStoreHandler>();
2552}
2553
2555 TrackingOptions Opts) {
2556 if (!E || !N)
2557 return {};
2558
2559 const Expr *Inner = peelOffOuterExpr(E, N);
2560 const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
2561 if (!LVNode)
2562 return {};
2563
2564 Result CombinedResult;
2565 // Iterate through the handlers in the order according to their priorities.
2566 for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
2567 CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
2568 if (CombinedResult.WasInterrupted) {
2569 // There is no need to confuse our users here.
2570 // We got interrupted, but our users don't need to know about it.
2571 CombinedResult.WasInterrupted = false;
2572 break;
2573 }
2574 }
2575
2576 return CombinedResult;
2577}
2578
2580 const StackFrameContext *Origin) {
2581 if (!V.isUnknown()) {
2582 Report.addVisitor<StoreSiteFinder>(this, V, R, Opts, Origin);
2583 return {true};
2584 }
2585 return {};
2586}
2587
2589 TrackingOptions Opts) {
2590 // Iterate through the handlers in the order according to their priorities.
2591 for (StoreHandlerPtr &Handler : StoreHandlers) {
2592 if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
2593 // If the handler produced a non-null piece, return it.
2594 // There is no need in asking other handlers.
2595 return Result;
2596 }
2597 return {};
2598}
2599
2601 const Expr *E,
2602
2604 TrackingOptions Opts) {
2605 return Tracker::create(Report)
2606 ->track(E, InputNode, Opts)
2607 .FoundSomethingToTrack;
2608}
2609
2612 TrackingOptions Opts,
2613 const StackFrameContext *Origin) {
2614 Tracker::create(Report)->track(V, R, Opts, Origin);
2615}
2616
2617//===----------------------------------------------------------------------===//
2618// Implementation of NulReceiverBRVisitor.
2619//===----------------------------------------------------------------------===//
2620
2622 const ExplodedNode *N) {
2623 const auto *ME = dyn_cast<ObjCMessageExpr>(S);
2624 if (!ME)
2625 return nullptr;
2626 if (const Expr *Receiver = ME->getInstanceReceiver()) {
2627 ProgramStateRef state = N->getState();
2628 SVal V = N->getSVal(Receiver);
2629 if (state->isNull(V).isConstrainedTrue())
2630 return Receiver;
2631 }
2632 return nullptr;
2633}
2634
2638 std::optional<PreStmt> P = N->getLocationAs<PreStmt>();
2639 if (!P)
2640 return nullptr;
2641
2642 const Stmt *S = P->getStmt();
2643 const Expr *Receiver = getNilReceiver(S, N);
2644 if (!Receiver)
2645 return nullptr;
2646
2648 llvm::raw_svector_ostream OS(Buf);
2649
2650 if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
2651 OS << "'";
2652 ME->getSelector().print(OS);
2653 OS << "' not called";
2654 }
2655 else {
2656 OS << "No method is called";
2657 }
2658 OS << " because the receiver is nil";
2659
2660 // The receiver was nil, and hence the method was skipped.
2661 // Register a BugReporterVisitor to issue a message telling us how
2662 // the receiver was null.
2663 bugreporter::trackExpressionValue(N, Receiver, BR,
2665 /*EnableNullFPSuppression*/ false});
2666 // Issue a message saying that the method was skipped.
2667 PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
2668 N->getLocationContext());
2669 return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
2670}
2671
2672//===----------------------------------------------------------------------===//
2673// Visitor that tries to report interesting diagnostics from conditions.
2674//===----------------------------------------------------------------------===//
2675
2676/// Return the tag associated with this visitor. This tag will be used
2677/// to make all PathDiagnosticPieces created by this visitor.
2678const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
2679
2683 auto piece = VisitNodeImpl(N, BRC, BR);
2684 if (piece) {
2685 piece->setTag(getTag());
2686 if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
2687 ev->setPrunable(true, /* override */ false);
2688 }
2689 return piece;
2690}
2691
2694 BugReporterContext &BRC,
2696 ProgramPoint ProgPoint = N->getLocation();
2697 const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
2699
2700 // If an assumption was made on a branch, it should be caught
2701 // here by looking at the state transition.
2702 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2703 const CFGBlock *SrcBlock = BE->getSrc();
2704 if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
2705 // If the tag of the previous node is 'Eagerly Assume...' the current
2706 // 'BlockEdge' has the same constraint information. We do not want to
2707 // report the value as it is just an assumption on the predecessor node
2708 // which will be caught in the next VisitNode() iteration as a 'PostStmt'.
2709 const ProgramPointTag *PreviousNodeTag =
2711 if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
2712 return nullptr;
2713
2714 return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
2715 }
2716 return nullptr;
2717 }
2718
2719 if (std::optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
2720 const ProgramPointTag *CurrentNodeTag = PS->getTag();
2721 if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
2722 return nullptr;
2723
2724 bool TookTrue = CurrentNodeTag == Tags.first;
2725 return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
2726 }
2727
2728 return nullptr;
2729}
2730
2732 const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
2733 const CFGBlock *dstBlk, PathSensitiveBugReport &R,
2734 BugReporterContext &BRC) {
2735 const Expr *Cond = nullptr;
2736
2737 // In the code below, Term is a CFG terminator and Cond is a branch condition
2738 // expression upon which the decision is made on this terminator.
2739 //
2740 // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
2741 // and "x == 0" is the respective condition.
2742 //
2743 // Another example: in "if (x && y)", we've got two terminators and two
2744 // conditions due to short-circuit nature of operator "&&":
2745 // 1. The "if (x && y)" statement is a terminator,
2746 // and "y" is the respective condition.
2747 // 2. Also "x && ..." is another terminator,
2748 // and "x" is its condition.
2749
2750 switch (Term->getStmtClass()) {
2751 // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
2752 // more tricky because there are more than two branches to account for.
2753 default:
2754 return nullptr;
2755 case Stmt::IfStmtClass:
2756 Cond = cast<IfStmt>(Term)->getCond();
2757 break;
2758 case Stmt::ConditionalOperatorClass:
2759 Cond = cast<ConditionalOperator>(Term)->getCond();
2760 break;
2761 case Stmt::BinaryOperatorClass:
2762 // When we encounter a logical operator (&& or ||) as a CFG terminator,
2763 // then the condition is actually its LHS; otherwise, we'd encounter
2764 // the parent, such as if-statement, as a terminator.
2765 const auto *BO = cast<BinaryOperator>(Term);
2766 assert(BO->isLogicalOp() &&
2767 "CFG terminator is not a short-circuit operator!");
2768 Cond = BO->getLHS();
2769 break;
2770 }
2771
2772 Cond = Cond->IgnoreParens();
2773
2774 // However, when we encounter a logical operator as a branch condition,
2775 // then the condition is actually its RHS, because LHS would be
2776 // the condition for the logical operator terminator.
2777 while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
2778 if (!InnerBO->isLogicalOp())
2779 break;
2780 Cond = InnerBO->getRHS()->IgnoreParens();
2781 }
2782
2783 assert(Cond);
2784 assert(srcBlk->succ_size() == 2);
2785 const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
2786 return VisitTrueTest(Cond, BRC, R, N, TookTrue);
2787}
2788
2792 const ExplodedNode *N, bool TookTrue) {
2793 ProgramStateRef CurrentState = N->getState();
2794 ProgramStateRef PrevState = N->getFirstPred()->getState();
2795 const LocationContext *LCtx = N->getLocationContext();
2796
2797 // If the constraint information is changed between the current and the
2798 // previous program state we assuming the newly seen constraint information.
2799 // If we cannot evaluate the condition (and the constraints are the same)
2800 // the analyzer has no information about the value and just assuming it.
2801 // FIXME: This logic is not entirely correct, because e.g. in code like
2802 // void f(unsigned arg) {
2803 // if (arg >= 0) {
2804 // // ...
2805 // }
2806 // }
2807 // it will say that the "arg >= 0" check is _assuming_ something new because
2808 // the constraint that "$arg >= 0" is 1 was added to the list of known
2809 // constraints. However, the unsigned value is always >= 0 so semantically
2810 // this is not a "real" assumption.
2811 bool IsAssuming =
2812 !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
2813 CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
2814
2815 // These will be modified in code below, but we need to preserve the original
2816 // values in case we want to throw the generic message.
2817 const Expr *CondTmp = Cond;
2818 bool TookTrueTmp = TookTrue;
2819
2820 while (true) {
2821 CondTmp = CondTmp->IgnoreParenCasts();
2822 switch (CondTmp->getStmtClass()) {
2823 default:
2824 break;
2825 case Stmt::BinaryOperatorClass:
2826 if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
2827 BRC, R, N, TookTrueTmp, IsAssuming))
2828 return P;
2829 break;
2830 case Stmt::DeclRefExprClass:
2831 if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
2832 BRC, R, N, TookTrueTmp, IsAssuming))
2833 return P;
2834 break;
2835 case Stmt::MemberExprClass:
2836 if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
2837 BRC, R, N, TookTrueTmp, IsAssuming))
2838 return P;
2839 break;
2840 case Stmt::UnaryOperatorClass: {
2841 const auto *UO = cast<UnaryOperator>(CondTmp);
2842 if (UO->getOpcode() == UO_LNot) {
2843 TookTrueTmp = !TookTrueTmp;
2844 CondTmp = UO->getSubExpr();
2845 continue;
2846 }
2847 break;
2848 }
2849 }
2850 break;
2851 }
2852
2853 // Condition too complex to explain? Just say something so that the user
2854 // knew we've made some path decision at this point.
2855 // If it is too complex and we know the evaluation of the condition do not
2856 // repeat the note from 'BugReporter.cpp'
2857 if (!IsAssuming)
2858 return nullptr;
2859
2860 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2861 if (!Loc.isValid() || !Loc.asLocation().isValid())
2862 return nullptr;
2863
2864 return std::make_shared<PathDiagnosticEventPiece>(
2865 Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
2866}
2867
2868bool ConditionBRVisitor::patternMatch(const Expr *Ex, const Expr *ParentEx,
2869 raw_ostream &Out, BugReporterContext &BRC,
2870 PathSensitiveBugReport &report,
2871 const ExplodedNode *N,
2872 std::optional<bool> &prunable,
2873 bool IsSameFieldName) {
2874 const Expr *OriginalExpr = Ex;
2875 Ex = Ex->IgnoreParenCasts();
2876
2878 FloatingLiteral>(Ex)) {
2879 // Use heuristics to determine if the expression is a macro
2880 // expanding to a literal and if so, use the macro's name.
2881 SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2882 SourceLocation EndLoc = OriginalExpr->getEndLoc();
2883 if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2884 const SourceManager &SM = BRC.getSourceManager();
2885 const LangOptions &LO = BRC.getASTContext().getLangOpts();
2886 if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2887 Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2888 CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2889 Out << Lexer::getSourceText(R, SM, LO);
2890 return false;
2891 }
2892 }
2893 }
2894
2895 if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2896 const bool quotes = isa<VarDecl>(DR->getDecl());
2897 if (quotes) {
2898 Out << '\'';
2899 const LocationContext *LCtx = N->getLocationContext();
2900 const ProgramState *state = N->getState().get();
2901 if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2902 LCtx).getAsRegion()) {
2903 if (report.isInteresting(R))
2904 prunable = false;
2905 else {
2906 const ProgramState *state = N->getState().get();
2907 SVal V = state->getSVal(R);
2908 if (report.isInteresting(V))
2909 prunable = false;
2910 }
2911 }
2912 }
2913 Out << DR->getDecl()->getDeclName().getAsString();
2914 if (quotes)
2915 Out << '\'';
2916 return quotes;
2917 }
2918
2919 if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
2920 QualType OriginalTy = OriginalExpr->getType();
2921 if (OriginalTy->isPointerType()) {
2922 if (IL->getValue() == 0) {
2923 Out << "null";
2924 return false;
2925 }
2926 }
2927 else if (OriginalTy->isObjCObjectPointerType()) {
2928 if (IL->getValue() == 0) {
2929 Out << "nil";
2930 return false;
2931 }
2932 }
2933
2934 Out << IL->getValue();
2935 return false;
2936 }
2937
2938 if (const auto *ME = dyn_cast<MemberExpr>(Ex)) {
2939 if (!IsSameFieldName)
2940 Out << "field '" << ME->getMemberDecl()->getName() << '\'';
2941 else
2942 Out << '\''
2946 nullptr)
2947 << '\'';
2948 }
2949
2950 return false;
2951}
2952
2954 const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC,
2955 PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue,
2956 bool IsAssuming) {
2957 bool shouldInvert = false;
2958 std::optional<bool> shouldPrune;
2959
2960 // Check if the field name of the MemberExprs is ambiguous. Example:
2961 // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'.
2962 bool IsSameFieldName = false;
2963 const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts());
2964 const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts());
2965
2966 if (LhsME && RhsME)
2967 IsSameFieldName =
2968 LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName();
2969
2970 SmallString<128> LhsString, RhsString;
2971 {
2972 llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
2973 const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R,
2974 N, shouldPrune, IsSameFieldName);
2975 const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R,
2976 N, shouldPrune, IsSameFieldName);
2977
2978 shouldInvert = !isVarLHS && isVarRHS;
2979 }
2980
2981 BinaryOperator::Opcode Op = BExpr->getOpcode();
2982
2984 // For assignment operators, all that we care about is that the LHS
2985 // evaluates to "true" or "false".
2986 return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N,
2987 TookTrue);
2988 }
2989
2990 // For non-assignment operations, we require that we can understand
2991 // both the LHS and RHS.
2992 if (LhsString.empty() || RhsString.empty() ||
2993 !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
2994 return nullptr;
2995
2996 // Should we invert the strings if the LHS is not a variable name?
2997 SmallString<256> buf;
2998 llvm::raw_svector_ostream Out(buf);
2999 Out << (IsAssuming ? "Assuming " : "")
3000 << (shouldInvert ? RhsString : LhsString) << " is ";
3001
3002 // Do we need to invert the opcode?
3003 if (shouldInvert)
3004 switch (Op) {
3005 default: break;
3006 case BO_LT: Op = BO_GT; break;
3007 case BO_GT: Op = BO_LT; break;
3008 case BO_LE: Op = BO_GE; break;
3009 case BO_GE: Op = BO_LE; break;
3010 }
3011
3012 if (!TookTrue)
3013 switch (Op) {
3014 case BO_EQ: Op = BO_NE; break;
3015 case BO_NE: Op = BO_EQ; break;
3016 case BO_LT: Op = BO_GE; break;
3017 case BO_GT: Op = BO_LE; break;
3018 case BO_LE: Op = BO_GT; break;
3019 case BO_GE: Op = BO_LT; break;
3020 default:
3021 return nullptr;
3022 }
3023
3024 switch (Op) {
3025 case BO_EQ:
3026 Out << "equal to ";
3027 break;
3028 case BO_NE:
3029 Out << "not equal to ";
3030 break;
3031 default:
3032 Out << BinaryOperator::getOpcodeStr(Op) << ' ';
3033 break;
3034 }
3035
3036 Out << (shouldInvert ? LhsString : RhsString);
3037 const LocationContext *LCtx = N->getLocationContext();
3038 const SourceManager &SM = BRC.getSourceManager();
3039
3040 if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) ||
3041 isVarAnInterestingCondition(BExpr->getRHS(), N, &R))
3043
3044 // Convert 'field ...' to 'Field ...' if it is a MemberExpr.
3045 std::string Message = std::string(Out.str());
3046 Message[0] = toupper(Message[0]);
3047
3048 // If we know the value create a pop-up note to the value part of 'BExpr'.
3049 if (!IsAssuming) {
3051 if (!shouldInvert) {
3052 if (LhsME && LhsME->getMemberLoc().isValid())
3053 Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM);
3054 else
3055 Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx);
3056 } else {
3057 if (RhsME && RhsME->getMemberLoc().isValid())
3058 Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM);
3059 else
3060 Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx);
3061 }
3062
3063 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message);
3064 }
3065
3066 PathDiagnosticLocation Loc(Cond, SM, LCtx);
3067 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message);
3068 if (shouldPrune)
3069 event->setPrunable(*shouldPrune);
3070 return event;
3071}
3072
3074 StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC,
3075 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) {
3076 // FIXME: If there's already a constraint tracker for this variable,
3077 // we shouldn't emit anything here (c.f. the double note in
3078 // test/Analysis/inlining/path-notes.c)
3079 SmallString<256> buf;
3080 llvm::raw_svector_ostream Out(buf);
3081 Out << "Assuming " << LhsString << " is ";
3082
3083 if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true))
3084 return nullptr;
3085
3086 const LocationContext *LCtx = N->getLocationContext();
3087 PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
3088
3089 if (isVarAnInterestingCondition(CondVarExpr, N, &report))
3091
3092 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3093
3094 if (isInterestingExpr(CondVarExpr, N, &report))
3095 event->setPrunable(false);
3096
3097 return event;
3098}
3099
3101 const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC,
3102 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3103 bool IsAssuming) {
3104 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
3105 if (!VD)
3106 return nullptr;
3107
3108 SmallString<256> Buf;
3109 llvm::raw_svector_ostream Out(Buf);
3110
3111 Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is ";
3112
3113 if (!printValue(DRE, Out, N, TookTrue, IsAssuming))
3114 return nullptr;
3115
3116 const LocationContext *LCtx = N->getLocationContext();
3117
3118 if (isVarAnInterestingCondition(DRE, N, &report))
3120
3121 // If we know the value create a pop-up note to the 'DRE'.
3122 if (!IsAssuming) {
3124 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3125 }
3126
3127 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
3128 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3129
3130 if (isInterestingExpr(DRE, N, &report))
3131 event->setPrunable(false);
3132
3133 return std::move(event);
3134}
3135
3137 const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC,
3138 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3139 bool IsAssuming) {
3140 SmallString<256> Buf;
3141 llvm::raw_svector_ostream Out(Buf);
3142
3143 Out << (IsAssuming ? "Assuming field '" : "Field '")
3144 << ME->getMemberDecl()->getName() << "' is ";
3145
3146 if (!printValue(ME, Out, N, TookTrue, IsAssuming))
3147 return nullptr;
3148
3149 const LocationContext *LCtx = N->getLocationContext();
3151
3152 // If we know the value create a pop-up note to the member of the MemberExpr.
3153 if (!IsAssuming && ME->getMemberLoc().isValid())
3155 else
3156 Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx);
3157
3158 if (!Loc.isValid() || !Loc.asLocation().isValid())
3159 return nullptr;
3160
3161 if (isVarAnInterestingCondition(ME, N, &report))
3163
3164 // If we know the value create a pop-up note.
3165 if (!IsAssuming)
3166 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3167
3168 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3169 if (isInterestingExpr(ME, N, &report))
3170 event->setPrunable(false);
3171 return event;
3172}
3173
3174bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out,
3175 const ExplodedNode *N, bool TookTrue,
3176 bool IsAssuming) {
3177 QualType Ty = CondVarExpr->getType();
3178
3179 if (Ty->isPointerType()) {
3180 Out << (TookTrue ? "non-null" : "null");
3181 return true;
3182 }
3183
3184 if (Ty->isObjCObjectPointerType()) {
3185 Out << (TookTrue ? "non-nil" : "nil");
3186 return true;
3187 }
3188
3189 if (!Ty->isIntegralOrEnumerationType())
3190 return false;
3191
3192 std::optional<const llvm::APSInt *> IntValue;
3193 if (!IsAssuming)
3194 IntValue = getConcreteIntegerValue(CondVarExpr, N);
3195
3196 if (IsAssuming || !IntValue) {
3197 if (Ty->isBooleanType())
3198 Out << (TookTrue ? "true" : "false");
3199 else
3200 Out << (TookTrue ? "not equal to 0" : "0");
3201 } else {
3202 if (Ty->isBooleanType())
3203 Out << ((*IntValue)->getBoolValue() ? "true" : "false");
3204 else
3205 Out << **IntValue;
3206 }
3207
3208 return true;
3209}
3210
3211constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage;
3212constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage;
3213
3215 const PathDiagnosticPiece *Piece) {
3216 return Piece->getString() == GenericTrueMessage ||
3217 Piece->getString() == GenericFalseMessage;
3218}
3219
3220//===----------------------------------------------------------------------===//
3221// Implementation of LikelyFalsePositiveSuppressionBRVisitor.
3222//===----------------------------------------------------------------------===//
3223
3225 BugReporterContext &BRC, const ExplodedNode *N,
3227 // Here we suppress false positives coming from system headers. This list is
3228 // based on known issues.
3229 const AnalyzerOptions &Options = BRC.getAnalyzerOptions();
3230 const Decl *D = N->getLocationContext()->getDecl();
3231
3233 // Skip reports within the 'std' namespace. Although these can sometimes be
3234 // the user's fault, we currently don't report them very well, and
3235 // Note that this will not help for any other data structure libraries, like
3236 // TR1, Boost, or llvm/ADT.
3237 if (Options.ShouldSuppressFromCXXStandardLibrary) {
3238 BR.markInvalid(getTag(), nullptr);
3239 return;
3240 } else {
3241 // If the complete 'std' suppression is not enabled, suppress reports
3242 // from the 'std' namespace that are known to produce false positives.
3243
3244 // The analyzer issues a false use-after-free when std::list::pop_front
3245 // or std::list::pop_back are called multiple times because we cannot
3246 // reason about the internal invariants of the data structure.
3247 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3248 const CXXRecordDecl *CD = MD->getParent();
3249 if (CD->getName() == "list") {
3250 BR.markInvalid(getTag(), nullptr);
3251 return;
3252 }
3253 }
3254
3255 // The analyzer issues a false positive when the constructor of
3256 // std::__independent_bits_engine from algorithms is used.
3257 if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
3258 const CXXRecordDecl *CD = MD->getParent();
3259 if (CD->getName() == "__independent_bits_engine") {
3260 BR.markInvalid(getTag(), nullptr);
3261 return;
3262 }
3263 }
3264
3265 for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
3266 LCtx = LCtx->getParent()) {
3267 const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
3268 if (!MD)
3269 continue;
3270
3271 const CXXRecordDecl *CD = MD->getParent();
3272 // The analyzer issues a false positive on
3273 // std::basic_string<uint8_t> v; v.push_back(1);
3274 // and
3275 // std::u16string s; s += u'a';
3276 // because we cannot reason about the internal invariants of the
3277 // data structure.
3278 if (CD->getName() == "basic_string") {
3279 BR.markInvalid(getTag(), nullptr);
3280 return;
3281 }
3282
3283 // The analyzer issues a false positive on
3284 // std::shared_ptr<int> p(new int(1)); p = nullptr;
3285 // because it does not reason properly about temporary destructors.
3286 if (CD->getName() == "shared_ptr") {
3287 BR.markInvalid(getTag(), nullptr);
3288 return;
3289 }
3290 }
3291 }
3292 }
3293
3294 // Skip reports within the sys/queue.h macros as we do not have the ability to
3295 // reason about data structure shapes.
3296 const SourceManager &SM = BRC.getSourceManager();
3298 while (Loc.isMacroID()) {
3299 Loc = Loc.getSpellingLoc();
3300 if (SM.getFilename(Loc).ends_with("sys/queue.h")) {
3301 BR.markInvalid(getTag(), nullptr);
3302 return;
3303 }
3304 }
3305}
3306
3307//===----------------------------------------------------------------------===//
3308// Implementation of UndefOrNullArgVisitor.
3309//===----------------------------------------------------------------------===//
3310
3314 ProgramStateRef State = N->getState();
3315 ProgramPoint ProgLoc = N->getLocation();
3316
3317 // We are only interested in visiting CallEnter nodes.
3318 std::optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
3319 if (!CEnter)
3320 return nullptr;
3321
3322 // Check if one of the arguments is the region the visitor is tracking.
3324 CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
3325 unsigned Idx = 0;
3326 ArrayRef<ParmVarDecl *> parms = Call->parameters();
3327
3328 for (const auto ParamDecl : parms) {
3329 const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
3330 ++Idx;
3331
3332 // Are we tracking the argument or its subregion?
3333 if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
3334 continue;
3335
3336 // Check the function parameter type.
3337 assert(ParamDecl && "Formal parameter has no decl?");
3338 QualType T = ParamDecl->getType();
3339
3340 if (!(T->isAnyPointerType() || T->isReferenceType())) {
3341 // Function can only change the value passed in by address.
3342 continue;
3343 }
3344
3345 // If it is a const pointer value, the function does not intend to
3346 // change the value.
3348 continue;
3349
3350 // Mark the call site (LocationContext) as interesting if the value of the
3351 // argument is undefined or '0'/'NULL'.
3352 SVal BoundVal = State->getSVal(R);
3353 if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
3354 BR.markInteresting(CEnter->getCalleeContext());
3355 return nullptr;
3356 }
3357 }
3358 return nullptr;
3359}
3360
3361//===----------------------------------------------------------------------===//
3362// Implementation of TagVisitor.
3363//===----------------------------------------------------------------------===//
3364
3365int NoteTag::Kind = 0;
3366
3367void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
3368 static int Tag = 0;
3369 ID.AddPointer(&Tag);
3370}
3371
3373 BugReporterContext &BRC,
3375 ProgramPoint PP = N->getLocation();
3376 const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
3377 if (!T)
3378 return nullptr;
3379
3380 if (std::optional<std::string> Msg = T->generateMessage(BRC, R)) {
3383 auto Piece = std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
3384 Piece->setPrunable(T->isPrunable());
3385 return Piece;
3386 }
3387
3388 return nullptr;
3389}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3443
NodeId Parent
Definition: ASTDiff.cpp:191
StringRef P
This file defines AnalysisDeclContext, a class that manages the analysis context data for context sen...
static char ID
Definition: Arena.cpp:183
#define SM(sm)
Definition: Cuda.cpp:84
static bool isInterestingExpr(const Expr *E, const ExplodedNode *N, const PathSensitiveBugReport *B)
static const ExplodedNode * findNodeForExpression(const ExplodedNode *N, const Expr *Inner)
Find the ExplodedNode where the lvalue (the value of 'Ex') was computed.
static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI)
Display diagnostics for passing bad region as a parameter.
static const Expr * peelOffPointerArithmetic(const BinaryOperator *B)
static const Expr * tryExtractInitializerFromList(const InitListExpr *ILE, const MemRegion *R)
static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest, const ExplodedNode *N, SVal ValueAfter)
static llvm::StringLiteral WillBeUsedForACondition
static bool isFunctionMacroExpansion(SourceLocation Loc, const SourceManager &SM)
static std::shared_ptr< PathDiagnosticEventPiece > constructDebugPieceForTrackedCondition(const Expr *Cond, const ExplodedNode *N, BugReporterContext &BRC)
static const MemRegion * getLocationRegionIfReference(const Expr *E, const ExplodedNode *N, bool LookingForReference=true)
static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal, const ExplodedNode *RightNode, SVal RightVal)
Comparing internal representations of symbolic values (via SVal::operator==()) is a valid way to chec...
static bool potentiallyWritesIntoIvar(const Decl *Parent, const ObjCIvarDecl *Ivar)
static std::optional< const llvm::APSInt * > getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N)
static bool isVarAnInterestingCondition(const Expr *CondVarExpr, const ExplodedNode *N, const PathSensitiveBugReport *B)
static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI)
Show default diagnostics for storing bad region.
static std::optional< SVal > getSValForVar(const Expr *CondVarExpr, const ExplodedNode *N)
static const Expr * peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N)
static const VarDecl * getVarDeclForExpression(const Expr *E)
static bool isTrivialCopyOrMoveCtor(const CXXConstructExpr *CE)
static StringRef getMacroName(SourceLocation Loc, BugReporterContext &BRC)
static bool isObjCPointer(const MemRegion *R)
static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context)
static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR)
Returns true if N represents the DeclStmt declaring and initializing VR.
static const ExplodedNode * getMatchingCallExitEnd(const ExplodedNode *N)
static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI)
Show diagnostics for initializing or declaring a region R with a bad value.
const Decl * D
Expr * E
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the clang::Expr interface and subclasses for C++ expressions.
Defines the clang::IdentifierInfo, clang::IdentifierTable, and clang::Selector interfaces.
#define X(type, name)
Definition: Value.h:144
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified.
Defines the clang::SourceLocation class and associated facilities.
Defines the SourceManager interface.
C Language Family Type Representation.
static bool isPointerToConst(const QualType &QT)
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
const LangOptions & getLangOpts() const
Definition: ASTContext.h:834
static bool isInStdNamespace(const Decl *D)
Stores options for the analyzer from the command line.
AnalysisDiagClients AnalysisDiagOpt
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3909
Expr * getLHS() const
Definition: Expr.h:3959
bool isComparisonOp() const
Definition: Expr.h:4010
StringRef getOpcodeStr() const
Definition: Expr.h:3975
Expr * getRHS() const
Definition: Expr.h:3961
static bool isAdditiveOp(Opcode Opc)
Definition: Expr.h:3995
Opcode getOpcode() const
Definition: Expr.h:3954
bool isAssignmentOp() const
Definition: Expr.h:4048
Represents a single basic block in a source-level CFG.
Definition: CFG.h:604
bool isInevitablySinking() const
Returns true if the block would eventually end with a sink (a noreturn node).
Definition: CFG.cpp:6204
succ_iterator succ_begin()
Definition: CFG.h:984
Stmt * getTerminatorStmt()
Definition: CFG.h:1081
const Expr * getLastCondition() const
Definition: CFG.cpp:6242
Stmt * getTerminatorCondition(bool StripParens=true)
Definition: CFG.cpp:6270
unsigned succ_size() const
Definition: CFG.h:1002
CFGBlock * getBlock(Stmt *S)
Returns the CFGBlock the specified Stmt* appears in.
Definition: CFGStmtMap.cpp:27
unsigned size() const
Return the total number of CFGBlocks within the CFG This is simply a renaming of the getNumBlockIDs()...
Definition: CFG.h:1407
bool isLinear() const
Returns true if the CFG has no branches.
Definition: CFG.cpp:5249
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:720
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1546
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1609
bool isCopyOrMoveConstructor(unsigned &TypeQuals) const
Determine whether this is a copy or move constructor.
Definition: DeclCXX.cpp:2865
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
Represents a point when we begin processing an inlined call.
Definition: ProgramPoint.h:628
Represents a point when we start the call exit sequence (for inlined call).
Definition: ProgramPoint.h:666
Represents a point when we finish the call exit sequence (for inlined call).
Definition: ProgramPoint.h:686
Represents a character-granular source range.
static CharSourceRange getTokenRange(SourceRange R)
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:2089
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1265
ValueDecl * getDecl()
Definition: Expr.h:1333
DeclStmt - Adaptor class for mixing declarations with statements and expressions.
Definition: Stmt.h:1519
const Decl * getSingleDecl() const
Definition: Stmt.h:1534
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
This represents one expression.
Definition: Expr.h:110
bool isGLValue() const
Definition: Expr.h:280
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3095
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3086
bool isPRValue() const
Definition: Expr.h:278
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3070
QualType getType() const
Definition: Expr.h:142
Represents a member of a struct/union/class.
Definition: Decl.h:3033
A SourceLocation and its associated SourceManager.
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:4716
Describes an C or C++ initializer list.
Definition: Expr.h:5088
unsigned getNumInits() const
Definition: Expr.h:5118
const Expr * getInit(unsigned Init) const
Definition: Expr.h:5134
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:499
static StringRef getSourceText(CharSourceRange Range, const SourceManager &SM, const LangOptions &LangOpts, bool *Invalid=nullptr)
Returns a string for the source that the range encompasses.
Definition: Lexer.cpp:1023
static StringRef getImmediateMacroName(SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts)
Retrieve the name of the immediate macro expansion.
Definition: Lexer.cpp:1059
static CharSourceRange getAsCharRange(SourceRange Range, const SourceManager &SM, const LangOptions &LangOpts)
Given a token range, produce a corresponding CharSourceRange that is not a token range.
Definition: Lexer.h:430
static bool isAtStartOfMacroExpansion(SourceLocation loc, const SourceManager &SM, const LangOptions &LangOpts, SourceLocation *MacroBegin=nullptr)
Returns true if the given MacroID location points at the first token of the macro expansion.
Definition: Lexer.cpp:871
static bool isAtEndOfMacroExpansion(SourceLocation loc, const SourceManager &SM, const LangOptions &LangOpts, SourceLocation *MacroEnd=nullptr)
Returns true if the given MacroID location points at the last token of the macro expansion.
Definition: Lexer.cpp:893
It wraps the AnalysisDeclContext to represent both the call stack with the help of StackFrameContext ...
bool isParentOf(const LocationContext *LC) const
const Decl * getDecl() const
LLVM_ATTRIBUTE_RETURNS_NONNULL AnalysisDeclContext * getAnalysisDeclContext() const
const LocationContext * getParent() const
It might return null.
const StackFrameContext * getStackFrame() const
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:3236
SourceLocation getMemberLoc() const
getMemberLoc - Return the location of the "member", in X->F, it is the location of 'F'.
Definition: Expr.h:3425
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:3319
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:280
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:296
ObjCBoolLiteralExpr - Objective-C Boolean Literal.
Definition: ExprObjC.h:87
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1951
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:549
Represents a parameter to a function.
Definition: Decl.h:1725
Represents a program point after a store evaluation.
Definition: ProgramPoint.h:426
ProgramPoints can be "tagged" as representing points specific to a given analysis entity.
Definition: ProgramPoint.h:38
const ProgramPointTag * getTag() const
Definition: ProgramPoint.h:173
std::optional< T > getAs() const
Convert to the specified ProgramPoint type, returning std::nullopt if this ProgramPoint is not of the...
Definition: ProgramPoint.h:147
A (possibly-)qualified type.
Definition: Type.h:929
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:996
QualType getCanonicalType() const
Definition: Type.h:7983
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:8004
Represents a struct/union/class.
Definition: Decl.h:4148
field_range fields() const
Definition: Decl.h:4354
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
This class handles loading and caching of source files into memory.
A trivial tuple used to represent a source range.
Each ExpansionInfo encodes the expansion location - where the token was ultimately expanded,...
bool isFunctionMacroExpansion() const
This is a discriminated union of FileInfo and ExpansionInfo.
const ExpansionInfo & getExpansion() const
It represents a stack frame of the call stack (based on CallEvent).
const Stmt * getCallSite() const
bool inTopFrame() const override
const Stmt * getStmt() const
Definition: ProgramPoint.h:274
Stmt - This represents one statement.
Definition: Stmt.h:84
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:357
StmtClass getStmtClass() const
Definition: Stmt.h:1380
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:333
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:345
bool isVoidType() const
Definition: Type.h:8510
bool isBooleanType() const
Definition: Type.h:8638
bool isPointerType() const
Definition: Type.h:8186
bool isReferenceType() const
Definition: Type.h:8204
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:8625
bool isObjCObjectPointerType() const
Definition: Type.h:8328
bool isAnyPointerType() const
Definition: Type.h:8194
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition: Type.cpp:1920
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:671
QualType getType() const
Definition: Decl.h:682
Represents a variable declaration or definition.
Definition: Decl.h:882
bool isStaticLocal() const
Returns true if a variable with function scope is a static local variable.
Definition: Decl.h:1159
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1135
Maps string IDs to AST nodes matched by parts of a matcher.
Definition: ASTMatchers.h:109
AllocaRegion - A region that represents an untyped blob of bytes created by a call to 'alloca'.
Definition: MemRegion.h:478
StringRef getDescription() const
A verbose warning message that is appropriate for displaying next to the source code that introduces ...
Definition: BugReporter.h:157
ASTContext & getASTContext() const
Definition: BugReporter.h:733
ProgramStateManager & getStateManager() const
Definition: BugReporter.h:729
const SourceManager & getSourceManager() const
Definition: BugReporter.h:737
const AnalyzerOptions & getAnalyzerOptions() const
Definition: BugReporter.h:741
BugReporterVisitors are used to add custom diagnostics along a path.
static PathDiagnosticPieceRef getDefaultEndPath(const BugReporterContext &BRC, const ExplodedNode *N, const PathSensitiveBugReport &BR)
Generates the default final diagnostic piece.
virtual PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, const ExplodedNode *N, PathSensitiveBugReport &BR)
Provide custom definition for the final diagnostic piece on the path - the piece, which is displayed ...
virtual void finalizeVisitor(BugReporterContext &BRC, const ExplodedNode *EndPathNode, PathSensitiveBugReport &BR)
Last function called on the visitor, no further calls to VisitNode would follow.
Represents a call to a C++ constructor.
Definition: CallEvent.h:984
Manages the lifetime of CallEvent objects.
Definition: CallEvent.h:1361
CallEventRef getCaller(const StackFrameContext *CalleeCtx, ProgramStateRef State)
Gets an outside caller given a callee context.
Definition: CallEvent.cpp:1438
Represents an abstract call to a function or method along a particular path.
Definition: CallEvent.h:153
static bool isCallStmt(const Stmt *S)
Returns true if this is a statement is a function or method call of some kind.
Definition: CallEvent.cpp:348
PathDiagnosticPieceRef VisitTerminator(const Stmt *Term, const ExplodedNode *N, const CFGBlock *SrcBlk, const CFGBlock *DstBlk, PathSensitiveBugReport &R, BugReporterContext &BRC)
bool printValue(const Expr *CondVarExpr, raw_ostream &Out, const ExplodedNode *N, bool TookTrue, bool IsAssuming)
Tries to print the value of the given expression.
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
bool patternMatch(const Expr *Ex, const Expr *ParentEx, raw_ostream &Out, BugReporterContext &BRC, PathSensitiveBugReport &R, const ExplodedNode *N, std::optional< bool > &prunable, bool IsSameFieldName)
static bool isPieceMessageGeneric(const PathDiagnosticPiece *Piece)
PathDiagnosticPieceRef VisitConditionVariable(StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC, PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue)
PathDiagnosticPieceRef VisitTrueTest(const Expr *Cond, BugReporterContext &BRC, PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue)
static const char * getTag()
Return the tag associated with this visitor.
PathDiagnosticPieceRef VisitNodeImpl(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR)
bool isConstrainedTrue() const
Return true if the constraint is perfectly constrained to 'true'.
bool isValid() const =delete
static bool isInterestingLValueExpr(const Expr *Ex)
Returns true if nodes for the given expression kind are always kept around.
const CFGBlock * getCFGBlock() const
const ProgramStateRef & getState() const
const Stmt * getStmtForDiagnostics() const
If the node's program point corresponds to a statement, retrieve that statement.
ProgramPoint getLocation() const
getLocation - Returns the edge associated with the given node.
ExplodedNode * getFirstSucc()
const StackFrameContext * getStackFrame() const
SVal getSVal(const Stmt *S) const
Get the value of an arbitrary expression at this node.
const LocationContext * getLocationContext() const
std::optional< T > getLocationAs() const &
ExplodedNode * getFirstPred()
unsigned succ_size() const
static std::pair< const ProgramPointTag *, const ProgramPointTag * > getEagerlyAssumeBifurcationTags()
LLVM_ATTRIBUTE_RETURNS_NONNULL const FieldDecl * getDecl() const override
Definition: MemRegion.h:1125
void finalizeVisitor(BugReporterContext &BRC, const ExplodedNode *N, PathSensitiveBugReport &BR) override
Last function called on the visitor, no further calls to VisitNode would follow.
const FieldRegion * getFieldRegion(const FieldDecl *fd, const SubRegion *superRegion)
getFieldRegion - Retrieve or create the memory region associated with a specified FieldDecl.
Definition: MemRegion.cpp:1238
MemRegion - The root abstract class for all memory regions.
Definition: MemRegion.h:97
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemSpaceRegion * getMemorySpace() const
Definition: MemRegion.cpp:1351
virtual bool isBoundable() const
Definition: MemRegion.h:183
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * StripCasts(bool StripBaseAndDerivedCasts=true) const
Definition: MemRegion.cpp:1412
virtual bool isSubRegionOf(const MemRegion *R) const
Check if the region is a subregion of the given region.
Definition: MemRegion.cpp:1404
virtual void printPretty(raw_ostream &os) const
Print the region for use in diagnostics.
Definition: MemRegion.cpp:652
const RegionTy * getAs() const
Definition: MemRegion.h:1388
virtual bool canPrintPretty() const
Returns true if this region can be printed in a user-friendly way.
Definition: MemRegion.cpp:633
MemSpaceRegion - A memory region that represents a "memory space"; for example, the set of global var...
Definition: MemRegion.h:208
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
static const Expr * getNilReceiver(const Stmt *S, const ExplodedNode *N)
If the statement is a message send expression with nil receiver, returns the receiver expression.
virtual bool wasModifiedBeforeCallExit(const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN)
virtual PathDiagnosticPieceRef maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, const ObjCMethodCall &Call, const ExplodedNode *N)=0
Consume the information on the non-modifying stack frame in order to either emit a note or not.
virtual PathDiagnosticPieceRef maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, const CXXConstructorCall &Call, const ExplodedNode *N)=0
Consume the information on the non-modifying stack frame in order to either emit a note or not.
virtual bool wasModifiedInFunction(const ExplodedNode *CallEnterN, const ExplodedNode *CallExitEndN)
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) final
Return a diagnostic piece which should be associated with the given node.
virtual PathDiagnosticPieceRef maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N)=0
Consume the information on the non-modifying stack frame in order to either emit a note or not.
Put a diagnostic on return statement of all inlined functions for which the region of interest Region...
The tag upon which the TagVisitor reacts.
Definition: BugReporter.h:779
Represents any expression that calls an Objective-C method.
Definition: CallEvent.h:1248
static PathDiagnosticLocation createBegin(const Decl *D, const SourceManager &SM)
Create a location for the beginning of the declaration.
static PathDiagnosticLocation create(const Decl *D, const SourceManager &SM)
Create a location corresponding to the given declaration.
void markInteresting(SymbolRef sym, bugreporter::TrackingKind TKind=bugreporter::TrackingKind::Thorough)
Marks a symbol as interesting.
PathDiagnosticLocation getLocation() const override
The primary location of the bug report that points at the undesirable behavior in the code.
ArrayRef< SourceRange > getRanges() const override
Get the SourceRanges associated with the report.
const ExplodedNode * getErrorNode() const
Definition: BugReporter.h:402
bool addTrackedCondition(const ExplodedNode *Cond)
Notes that the condition of the CFGBlock associated with Cond is being tracked.
Definition: BugReporter.h:515
void markInvalid(const void *Tag, const void *Data)
Marks the current report as invalid, meaning that it is probably a false positive and should not be r...
Definition: BugReporter.h:481
void addVisitor(std::unique_ptr< BugReporterVisitor > visitor)
Add custom or predefined bug report visitors to this report.
std::optional< bugreporter::TrackingKind > getInterestingnessKind(SymbolRef sym) const
bool isInteresting(SymbolRef sym) const
CallEventManager & getCallEventManager()
Definition: ProgramState.h:571
bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const
Definition: ProgramState.h:602
void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler &F)
Definition: ProgramState.h:594
ProgramState - This class encapsulates:
Definition: ProgramState.h:71
Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const
Get the lvalue for a base class object reference.
Definition: ProgramState.h:749
SVal getSVal(const Stmt *S, const LocationContext *LCtx) const
Returns the SVal bound to the statement 'S' in the state's environment.
Definition: ProgramState.h:785
A Range represents the closed range [from, to].
ConditionTruthVal areEqual(ProgramStateRef state, SVal lhs, SVal rhs)
SVal - This represents a symbolic expression, which can be either an L-value or an R-value.
Definition: SVals.h:56
bool isUndef() const
Definition: SVals.h:107
bool isZeroConstant() const
Definition: SVals.cpp:258
std::optional< T > getAs() const
Convert to the specified SVal type, returning std::nullopt if this SVal is not of the desired type.
Definition: SVals.h:87
const MemRegion * getAsRegion() const
Definition: SVals.cpp:120
bool isUnknown() const
Definition: SVals.h:105
SubRegion - A region that subsets another larger region.
Definition: MemRegion.h:446
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * getSuperRegion() const
Definition: MemRegion.h:459
bool isSubRegionOf(const MemRegion *R) const override
Check if the region is a subregion of the given region.
Definition: MemRegion.cpp:140
PathDiagnosticPieceRef VisitNode(const ExplodedNode *Succ, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
SuppressInlineDefensiveChecksVisitor(DefinedSVal Val, const ExplodedNode *N)
static const char * getTag()
Return the tag associated with this visitor.
void Profile(llvm::FoldingSetNodeID &ID) const override
SymbolicRegion - A special, "non-concrete" region.
Definition: MemRegion.h:780
void Profile(llvm::FoldingSetNodeID &ID) const override
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &R) override
Return a diagnostic piece which should be associated with the given node.
void Profile(llvm::FoldingSetNodeID &ID) const override
static const char * getTag()
Return the tag associated with this visitor.
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
When a region containing undefined value or '0' value is passed as an argument in a call,...
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
const VarDecl * getDecl() const override=0
Handles expressions during the tracking.
Handles stores during the tracking.
PathDiagnosticPieceRef constructNote(StoreInfo SI, BugReporterContext &BRC, StringRef NodeText)
A generalized component for tracking expressions, values, and stores.
static TrackerRef create(PathSensitiveBugReport &Report)
virtual PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC, TrackingOptions Opts)
Handle the store operation and produce the note.
Tracker(PathSensitiveBugReport &Report)
virtual Result track(const Expr *E, const ExplodedNode *N, TrackingOptions Opts={})
Track expression value back to its point of origin.
Visitor that tracks expressions and values.
Value representing integer constant.
Definition: SVals.h:300
While nonloc::CompoundVal covers a few simple use cases, nonloc::LazyCompoundVal is a more performant...
Definition: SVals.h:389
LLVM_ATTRIBUTE_RETURNS_NONNULL const TypedValueRegion * getRegion() const
This function itself is immaterial.
Definition: SVals.cpp:194
const internal::VariadicDynCastAllOfMatcher< Stmt, ObjCIvarRefExpr > objcIvarRefExpr
Matches a reference to an ObjCIvar.
const internal::ArgumentAdaptingMatcherFunc< internal::HasDescendantMatcher > hasDescendant
Matches AST nodes that have descendant AST nodes that match the provided matcher.
SmallVector< BoundNodes, 1 > match(MatcherT Matcher, const NodeT &Node, ASTContext &Context)
Returns the results of matching Matcher on Node.
const internal::VariadicDynCastAllOfMatcher< Stmt, BinaryOperator > binaryOperator
Matches binary operator expressions.
internal::Matcher< Stmt > StatementMatcher
Definition: ASTMatchers.h:144
static std::string getMacroName(MacroType Macro, GtestCmp Cmp)
internal::PolymorphicMatcher< internal::HasDeclarationMatcher, void(internal::HasDeclarationSupportedTypes), internal::Matcher< Decl > > hasDeclaration(const internal::Matcher< Decl > &InnerMatcher)
Matches a node if the declaration associated with that node matches the given matcher.
Definition: ASTMatchers.h:3664
const internal::VariadicAllOfMatcher< Stmt > stmt
Matches statements.
const Expr * getDerefExpr(const Stmt *S)
Given that expression S represents a pointer that would be dereferenced, try to find a sub-expression...
bool trackExpressionValue(const ExplodedNode *N, const Expr *E, PathSensitiveBugReport &R, TrackingOptions Opts={})
Attempts to add visitors to track expression value back to its point of origin.
void trackStoredValue(SVal V, const MemRegion *R, PathSensitiveBugReport &Report, TrackingOptions Opts={}, const StackFrameContext *Origin=nullptr)
Track how the value got stored into the given region and where it came from.
TrackingKind
Specifies the type of tracking for an expression.
@ Thorough
Default tracking kind – specifies that as much information should be gathered about the tracked expre...
@ Condition
Specifies that a more moderate tracking should be used for the expression value.
@ OS
Indicates that the tracking object is a descendant of a referenced-counted OSObject,...
std::shared_ptr< PathDiagnosticPiece > PathDiagnosticPieceRef
bool Ret(InterpState &S, CodePtr &PC)
Definition: Interp.h:318
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
Definition: Address.h:328
BinaryOperatorKind
const FunctionProtoType * T
@ ObjCSelf
Parameter for Objective-C 'self' argument.
Describes an event when the value got stored into a memory region.
@ Assignment
The value got stored into the region during assignment: int x; x = 42;.
@ CallArgument
The value got stored into the parameter region as the result of a call.
@ BlockCapture
The value got stored into the region as block capture.
@ Initialization
The value got stored into the region during initialization: int x = 42;.
const Expr * SourceOfTheValue
The expression where the value comes from.
const ExplodedNode * StoreSite
The node where the store happened.
Kind StoreKind
The type of store operation.
SVal Value
Symbolic value that is being stored.
const MemRegion * Dest
Memory regions involved in the store operation.
Describes a tracking result with the most basic information of what was actually done (or not done).
void combineWith(const Result &Other)
Combines the current result with the given result.
bool WasInterrupted
Signifies that the tracking was interrupted at some point.
Defines a set of options altering tracking behavior.
bool EnableNullFPSuppression
Specifies whether we should employ false positive suppression (inlined defensive checks,...
TrackingKind Kind
Specifies the kind of tracking.