clang 20.0.0git
ThreadSafety.cpp
Go to the documentation of this file.
1//===- ThreadSafety.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// A intra-procedural analysis for thread safety (e.g. deadlocks and race
10// conditions), based off of an annotation system.
11//
12// See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13// for more information.
14//
15//===----------------------------------------------------------------------===//
16
18#include "clang/AST/Attr.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclGroup.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
25#include "clang/AST/Stmt.h"
27#include "clang/AST/Type.h"
34#include "clang/Analysis/CFG.h"
36#include "clang/Basic/LLVM.h"
40#include "llvm/ADT/ArrayRef.h"
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/ImmutableMap.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/StringRef.h"
46#include "llvm/Support/Allocator.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <cassert>
52#include <functional>
53#include <iterator>
54#include <memory>
55#include <optional>
56#include <string>
57#include <type_traits>
58#include <utility>
59#include <vector>
60
61using namespace clang;
62using namespace threadSafety;
63
64// Key method definition
66
67/// Issue a warning about an invalid lock expression
69 const Expr *MutexExp, const NamedDecl *D,
70 const Expr *DeclExp, StringRef Kind) {
72 if (DeclExp)
73 Loc = DeclExp->getExprLoc();
74
75 // FIXME: add a note about the attribute location in MutexExp or D
76 if (Loc.isValid())
78}
79
80namespace {
81
82/// A set of CapabilityExpr objects, which are compiled from thread safety
83/// attributes on a function.
84class CapExprSet : public SmallVector<CapabilityExpr, 4> {
85public:
86 /// Push M onto list, but discard duplicates.
87 void push_back_nodup(const CapabilityExpr &CapE) {
88 if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) {
89 return CapE.equals(CapE2);
90 }))
91 push_back(CapE);
92 }
93};
94
95class FactManager;
96class FactSet;
97
98/// This is a helper class that stores a fact that is known at a
99/// particular point in program execution. Currently, a fact is a capability,
100/// along with additional information, such as where it was acquired, whether
101/// it is exclusive or shared, etc.
102///
103/// FIXME: this analysis does not currently support re-entrant locking.
104class FactEntry : public CapabilityExpr {
105public:
106 enum FactEntryKind { Lockable, ScopedLockable };
107
108 /// Where a fact comes from.
109 enum SourceKind {
110 Acquired, ///< The fact has been directly acquired.
111 Asserted, ///< The fact has been asserted to be held.
112 Declared, ///< The fact is assumed to be held by callers.
113 Managed, ///< The fact has been acquired through a scoped capability.
114 };
115
116private:
117 const FactEntryKind Kind : 8;
118
119 /// Exclusive or shared.
120 LockKind LKind : 8;
121
122 // How it was acquired.
123 SourceKind Source : 8;
124
125 /// Where it was acquired.
126 SourceLocation AcquireLoc;
127
128public:
129 FactEntry(FactEntryKind FK, const CapabilityExpr &CE, LockKind LK,
130 SourceLocation Loc, SourceKind Src)
131 : CapabilityExpr(CE), Kind(FK), LKind(LK), Source(Src), AcquireLoc(Loc) {}
132 virtual ~FactEntry() = default;
133
134 LockKind kind() const { return LKind; }
135 SourceLocation loc() const { return AcquireLoc; }
136 FactEntryKind getFactEntryKind() const { return Kind; }
137
138 bool asserted() const { return Source == Asserted; }
139 bool declared() const { return Source == Declared; }
140 bool managed() const { return Source == Managed; }
141
142 virtual void
143 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
144 SourceLocation JoinLoc, LockErrorKind LEK,
145 ThreadSafetyHandler &Handler) const = 0;
146 virtual void handleLock(FactSet &FSet, FactManager &FactMan,
147 const FactEntry &entry,
148 ThreadSafetyHandler &Handler) const = 0;
149 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
150 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
151 bool FullyRemove,
152 ThreadSafetyHandler &Handler) const = 0;
153
154 // Return true if LKind >= LK, where exclusive > shared
155 bool isAtLeast(LockKind LK) const {
156 return (LKind == LK_Exclusive) || (LK == LK_Shared);
157 }
158};
159
160using FactID = unsigned short;
161
162/// FactManager manages the memory for all facts that are created during
163/// the analysis of a single routine.
164class FactManager {
165private:
166 std::vector<std::unique_ptr<const FactEntry>> Facts;
167
168public:
169 FactID newFact(std::unique_ptr<FactEntry> Entry) {
170 Facts.push_back(std::move(Entry));
171 return static_cast<unsigned short>(Facts.size() - 1);
172 }
173
174 const FactEntry &operator[](FactID F) const { return *Facts[F]; }
175};
176
177/// A FactSet is the set of facts that are known to be true at a
178/// particular program point. FactSets must be small, because they are
179/// frequently copied, and are thus implemented as a set of indices into a
180/// table maintained by a FactManager. A typical FactSet only holds 1 or 2
181/// locks, so we can get away with doing a linear search for lookup. Note
182/// that a hashtable or map is inappropriate in this case, because lookups
183/// may involve partial pattern matches, rather than exact matches.
184class FactSet {
185private:
186 using FactVec = SmallVector<FactID, 4>;
187
188 FactVec FactIDs;
189
190public:
191 using iterator = FactVec::iterator;
192 using const_iterator = FactVec::const_iterator;
193
194 iterator begin() { return FactIDs.begin(); }
195 const_iterator begin() const { return FactIDs.begin(); }
196
197 iterator end() { return FactIDs.end(); }
198 const_iterator end() const { return FactIDs.end(); }
199
200 bool isEmpty() const { return FactIDs.size() == 0; }
201
202 // Return true if the set contains only negative facts
203 bool isEmpty(FactManager &FactMan) const {
204 for (const auto FID : *this) {
205 if (!FactMan[FID].negative())
206 return false;
207 }
208 return true;
209 }
210
211 void addLockByID(FactID ID) { FactIDs.push_back(ID); }
212
213 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
214 FactID F = FM.newFact(std::move(Entry));
215 FactIDs.push_back(F);
216 return F;
217 }
218
219 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
220 unsigned n = FactIDs.size();
221 if (n == 0)
222 return false;
223
224 for (unsigned i = 0; i < n-1; ++i) {
225 if (FM[FactIDs[i]].matches(CapE)) {
226 FactIDs[i] = FactIDs[n-1];
227 FactIDs.pop_back();
228 return true;
229 }
230 }
231 if (FM[FactIDs[n-1]].matches(CapE)) {
232 FactIDs.pop_back();
233 return true;
234 }
235 return false;
236 }
237
238 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
239 return std::find_if(begin(), end(), [&](FactID ID) {
240 return FM[ID].matches(CapE);
241 });
242 }
243
244 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
245 auto I = std::find_if(begin(), end(), [&](FactID ID) {
246 return FM[ID].matches(CapE);
247 });
248 return I != end() ? &FM[*I] : nullptr;
249 }
250
251 const FactEntry *findLockUniv(FactManager &FM,
252 const CapabilityExpr &CapE) const {
253 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
254 return FM[ID].matchesUniv(CapE);
255 });
256 return I != end() ? &FM[*I] : nullptr;
257 }
258
259 const FactEntry *findPartialMatch(FactManager &FM,
260 const CapabilityExpr &CapE) const {
261 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
262 return FM[ID].partiallyMatches(CapE);
263 });
264 return I != end() ? &FM[*I] : nullptr;
265 }
266
267 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
268 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
269 return FM[ID].valueDecl() == Vd;
270 });
271 return I != end();
272 }
273};
274
275class ThreadSafetyAnalyzer;
276
277} // namespace
278
279namespace clang {
280namespace threadSafety {
281
283private:
285
286 struct BeforeInfo {
287 BeforeVect Vect;
288 int Visited = 0;
289
290 BeforeInfo() = default;
291 BeforeInfo(BeforeInfo &&) = default;
292 };
293
294 using BeforeMap =
295 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
296 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
297
298public:
299 BeforeSet() = default;
300
301 BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
302 ThreadSafetyAnalyzer& Analyzer);
303
304 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
305 ThreadSafetyAnalyzer &Analyzer);
306
307 void checkBeforeAfter(const ValueDecl* Vd,
308 const FactSet& FSet,
309 ThreadSafetyAnalyzer& Analyzer,
310 SourceLocation Loc, StringRef CapKind);
311
312private:
313 BeforeMap BMap;
314 CycleMap CycMap;
315};
316
317} // namespace threadSafety
318} // namespace clang
319
320namespace {
321
322class LocalVariableMap;
323
324using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
325
326/// A side (entry or exit) of a CFG node.
327enum CFGBlockSide { CBS_Entry, CBS_Exit };
328
329/// CFGBlockInfo is a struct which contains all the information that is
330/// maintained for each block in the CFG. See LocalVariableMap for more
331/// information about the contexts.
332struct CFGBlockInfo {
333 // Lockset held at entry to block
334 FactSet EntrySet;
335
336 // Lockset held at exit from block
337 FactSet ExitSet;
338
339 // Context held at entry to block
340 LocalVarContext EntryContext;
341
342 // Context held at exit from block
343 LocalVarContext ExitContext;
344
345 // Location of first statement in block
346 SourceLocation EntryLoc;
347
348 // Location of last statement in block.
349 SourceLocation ExitLoc;
350
351 // Used to replay contexts later
352 unsigned EntryIndex;
353
354 // Is this block reachable?
355 bool Reachable = false;
356
357 const FactSet &getSet(CFGBlockSide Side) const {
358 return Side == CBS_Entry ? EntrySet : ExitSet;
359 }
360
361 SourceLocation getLocation(CFGBlockSide Side) const {
362 return Side == CBS_Entry ? EntryLoc : ExitLoc;
363 }
364
365private:
366 CFGBlockInfo(LocalVarContext EmptyCtx)
367 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
368
369public:
370 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
371};
372
373// A LocalVariableMap maintains a map from local variables to their currently
374// valid definitions. It provides SSA-like functionality when traversing the
375// CFG. Like SSA, each definition or assignment to a variable is assigned a
376// unique name (an integer), which acts as the SSA name for that definition.
377// The total set of names is shared among all CFG basic blocks.
378// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
379// with their SSA-names. Instead, we compute a Context for each point in the
380// code, which maps local variables to the appropriate SSA-name. This map
381// changes with each assignment.
382//
383// The map is computed in a single pass over the CFG. Subsequent analyses can
384// then query the map to find the appropriate Context for a statement, and use
385// that Context to look up the definitions of variables.
386class LocalVariableMap {
387public:
388 using Context = LocalVarContext;
389
390 /// A VarDefinition consists of an expression, representing the value of the
391 /// variable, along with the context in which that expression should be
392 /// interpreted. A reference VarDefinition does not itself contain this
393 /// information, but instead contains a pointer to a previous VarDefinition.
394 struct VarDefinition {
395 public:
396 friend class LocalVariableMap;
397
398 // The original declaration for this variable.
399 const NamedDecl *Dec;
400
401 // The expression for this variable, OR
402 const Expr *Exp = nullptr;
403
404 // Reference to another VarDefinition
405 unsigned Ref = 0;
406
407 // The map with which Exp should be interpreted.
408 Context Ctx;
409
410 bool isReference() const { return !Exp; }
411
412 private:
413 // Create ordinary variable definition
414 VarDefinition(const NamedDecl *D, const Expr *E, Context C)
415 : Dec(D), Exp(E), Ctx(C) {}
416
417 // Create reference to previous definition
418 VarDefinition(const NamedDecl *D, unsigned R, Context C)
419 : Dec(D), Ref(R), Ctx(C) {}
420 };
421
422private:
423 Context::Factory ContextFactory;
424 std::vector<VarDefinition> VarDefinitions;
425 std::vector<std::pair<const Stmt *, Context>> SavedContexts;
426
427public:
428 LocalVariableMap() {
429 // index 0 is a placeholder for undefined variables (aka phi-nodes).
430 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
431 }
432
433 /// Look up a definition, within the given context.
434 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
435 const unsigned *i = Ctx.lookup(D);
436 if (!i)
437 return nullptr;
438 assert(*i < VarDefinitions.size());
439 return &VarDefinitions[*i];
440 }
441
442 /// Look up the definition for D within the given context. Returns
443 /// NULL if the expression is not statically known. If successful, also
444 /// modifies Ctx to hold the context of the return Expr.
445 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
446 const unsigned *P = Ctx.lookup(D);
447 if (!P)
448 return nullptr;
449
450 unsigned i = *P;
451 while (i > 0) {
452 if (VarDefinitions[i].Exp) {
453 Ctx = VarDefinitions[i].Ctx;
454 return VarDefinitions[i].Exp;
455 }
456 i = VarDefinitions[i].Ref;
457 }
458 return nullptr;
459 }
460
461 Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
462
463 /// Return the next context after processing S. This function is used by
464 /// clients of the class to get the appropriate context when traversing the
465 /// CFG. It must be called for every assignment or DeclStmt.
466 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
467 if (SavedContexts[CtxIndex+1].first == S) {
468 CtxIndex++;
469 Context Result = SavedContexts[CtxIndex].second;
470 return Result;
471 }
472 return C;
473 }
474
475 void dumpVarDefinitionName(unsigned i) {
476 if (i == 0) {
477 llvm::errs() << "Undefined";
478 return;
479 }
480 const NamedDecl *Dec = VarDefinitions[i].Dec;
481 if (!Dec) {
482 llvm::errs() << "<<NULL>>";
483 return;
484 }
485 Dec->printName(llvm::errs());
486 llvm::errs() << "." << i << " " << ((const void*) Dec);
487 }
488
489 /// Dumps an ASCII representation of the variable map to llvm::errs()
490 void dump() {
491 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
492 const Expr *Exp = VarDefinitions[i].Exp;
493 unsigned Ref = VarDefinitions[i].Ref;
494
495 dumpVarDefinitionName(i);
496 llvm::errs() << " = ";
497 if (Exp) Exp->dump();
498 else {
499 dumpVarDefinitionName(Ref);
500 llvm::errs() << "\n";
501 }
502 }
503 }
504
505 /// Dumps an ASCII representation of a Context to llvm::errs()
506 void dumpContext(Context C) {
507 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
508 const NamedDecl *D = I.getKey();
509 D->printName(llvm::errs());
510 llvm::errs() << " -> ";
511 dumpVarDefinitionName(I.getData());
512 llvm::errs() << "\n";
513 }
514 }
515
516 /// Builds the variable map.
517 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
518 std::vector<CFGBlockInfo> &BlockInfo);
519
520protected:
521 friend class VarMapBuilder;
522
523 // Get the current context index
524 unsigned getContextIndex() { return SavedContexts.size()-1; }
525
526 // Save the current context for later replay
527 void saveContext(const Stmt *S, Context C) {
528 SavedContexts.push_back(std::make_pair(S, C));
529 }
530
531 // Adds a new definition to the given context, and returns a new context.
532 // This method should be called when declaring a new variable.
533 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
534 assert(!Ctx.contains(D));
535 unsigned newID = VarDefinitions.size();
536 Context NewCtx = ContextFactory.add(Ctx, D, newID);
537 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
538 return NewCtx;
539 }
540
541 // Add a new reference to an existing definition.
542 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
543 unsigned newID = VarDefinitions.size();
544 Context NewCtx = ContextFactory.add(Ctx, D, newID);
545 VarDefinitions.push_back(VarDefinition(D, i, Ctx));
546 return NewCtx;
547 }
548
549 // Updates a definition only if that definition is already in the map.
550 // This method should be called when assigning to an existing variable.
551 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
552 if (Ctx.contains(D)) {
553 unsigned newID = VarDefinitions.size();
554 Context NewCtx = ContextFactory.remove(Ctx, D);
555 NewCtx = ContextFactory.add(NewCtx, D, newID);
556 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
557 return NewCtx;
558 }
559 return Ctx;
560 }
561
562 // Removes a definition from the context, but keeps the variable name
563 // as a valid variable. The index 0 is a placeholder for cleared definitions.
564 Context clearDefinition(const NamedDecl *D, Context Ctx) {
565 Context NewCtx = Ctx;
566 if (NewCtx.contains(D)) {
567 NewCtx = ContextFactory.remove(NewCtx, D);
568 NewCtx = ContextFactory.add(NewCtx, D, 0);
569 }
570 return NewCtx;
571 }
572
573 // Remove a definition entirely frmo the context.
574 Context removeDefinition(const NamedDecl *D, Context Ctx) {
575 Context NewCtx = Ctx;
576 if (NewCtx.contains(D)) {
577 NewCtx = ContextFactory.remove(NewCtx, D);
578 }
579 return NewCtx;
580 }
581
582 Context intersectContexts(Context C1, Context C2);
583 Context createReferenceContext(Context C);
584 void intersectBackEdge(Context C1, Context C2);
585};
586
587} // namespace
588
589// This has to be defined after LocalVariableMap.
590CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
591 return CFGBlockInfo(M.getEmptyContext());
592}
593
594namespace {
595
596/// Visitor which builds a LocalVariableMap
597class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
598public:
599 LocalVariableMap* VMap;
600 LocalVariableMap::Context Ctx;
601
602 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
603 : VMap(VM), Ctx(C) {}
604
605 void VisitDeclStmt(const DeclStmt *S);
606 void VisitBinaryOperator(const BinaryOperator *BO);
607};
608
609} // namespace
610
611// Add new local variables to the variable map
612void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
613 bool modifiedCtx = false;
614 const DeclGroupRef DGrp = S->getDeclGroup();
615 for (const auto *D : DGrp) {
616 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
617 const Expr *E = VD->getInit();
618
619 // Add local variables with trivial type to the variable map
620 QualType T = VD->getType();
621 if (T.isTrivialType(VD->getASTContext())) {
622 Ctx = VMap->addDefinition(VD, E, Ctx);
623 modifiedCtx = true;
624 }
625 }
626 }
627 if (modifiedCtx)
628 VMap->saveContext(S, Ctx);
629}
630
631// Update local variable definitions in variable map
632void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
633 if (!BO->isAssignmentOp())
634 return;
635
636 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
637
638 // Update the variable map and current context.
639 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
640 const ValueDecl *VDec = DRE->getDecl();
641 if (Ctx.lookup(VDec)) {
642 if (BO->getOpcode() == BO_Assign)
643 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
644 else
645 // FIXME -- handle compound assignment operators
646 Ctx = VMap->clearDefinition(VDec, Ctx);
647 VMap->saveContext(BO, Ctx);
648 }
649 }
650}
651
652// Computes the intersection of two contexts. The intersection is the
653// set of variables which have the same definition in both contexts;
654// variables with different definitions are discarded.
655LocalVariableMap::Context
656LocalVariableMap::intersectContexts(Context C1, Context C2) {
657 Context Result = C1;
658 for (const auto &P : C1) {
659 const NamedDecl *Dec = P.first;
660 const unsigned *i2 = C2.lookup(Dec);
661 if (!i2) // variable doesn't exist on second path
662 Result = removeDefinition(Dec, Result);
663 else if (*i2 != P.second) // variable exists, but has different definition
664 Result = clearDefinition(Dec, Result);
665 }
666 return Result;
667}
668
669// For every variable in C, create a new variable that refers to the
670// definition in C. Return a new context that contains these new variables.
671// (We use this for a naive implementation of SSA on loop back-edges.)
672LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
673 Context Result = getEmptyContext();
674 for (const auto &P : C)
675 Result = addReference(P.first, P.second, Result);
676 return Result;
677}
678
679// This routine also takes the intersection of C1 and C2, but it does so by
680// altering the VarDefinitions. C1 must be the result of an earlier call to
681// createReferenceContext.
682void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
683 for (const auto &P : C1) {
684 unsigned i1 = P.second;
685 VarDefinition *VDef = &VarDefinitions[i1];
686 assert(VDef->isReference());
687
688 const unsigned *i2 = C2.lookup(P.first);
689 if (!i2 || (*i2 != i1))
690 VDef->Ref = 0; // Mark this variable as undefined
691 }
692}
693
694// Traverse the CFG in topological order, so all predecessors of a block
695// (excluding back-edges) are visited before the block itself. At
696// each point in the code, we calculate a Context, which holds the set of
697// variable definitions which are visible at that point in execution.
698// Visible variables are mapped to their definitions using an array that
699// contains all definitions.
700//
701// At join points in the CFG, the set is computed as the intersection of
702// the incoming sets along each edge, E.g.
703//
704// { Context | VarDefinitions }
705// int x = 0; { x -> x1 | x1 = 0 }
706// int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
707// if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
708// else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
709// ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
710//
711// This is essentially a simpler and more naive version of the standard SSA
712// algorithm. Those definitions that remain in the intersection are from blocks
713// that strictly dominate the current block. We do not bother to insert proper
714// phi nodes, because they are not used in our analysis; instead, wherever
715// a phi node would be required, we simply remove that definition from the
716// context (E.g. x above).
717//
718// The initial traversal does not capture back-edges, so those need to be
719// handled on a separate pass. Whenever the first pass encounters an
720// incoming back edge, it duplicates the context, creating new definitions
721// that refer back to the originals. (These correspond to places where SSA
722// might have to insert a phi node.) On the second pass, these definitions are
723// set to NULL if the variable has changed on the back-edge (i.e. a phi
724// node was actually required.) E.g.
725//
726// { Context | VarDefinitions }
727// int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
728// while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
729// x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
730// ... { y -> y1 | x3 = 2, x2 = 1, ... }
731void LocalVariableMap::traverseCFG(CFG *CFGraph,
732 const PostOrderCFGView *SortedGraph,
733 std::vector<CFGBlockInfo> &BlockInfo) {
734 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
735
736 for (const auto *CurrBlock : *SortedGraph) {
737 unsigned CurrBlockID = CurrBlock->getBlockID();
738 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
739
740 VisitedBlocks.insert(CurrBlock);
741
742 // Calculate the entry context for the current block
743 bool HasBackEdges = false;
744 bool CtxInit = true;
745 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
746 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
747 // if *PI -> CurrBlock is a back edge, so skip it
748 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
749 HasBackEdges = true;
750 continue;
751 }
752
753 unsigned PrevBlockID = (*PI)->getBlockID();
754 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
755
756 if (CtxInit) {
757 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
758 CtxInit = false;
759 }
760 else {
761 CurrBlockInfo->EntryContext =
762 intersectContexts(CurrBlockInfo->EntryContext,
763 PrevBlockInfo->ExitContext);
764 }
765 }
766
767 // Duplicate the context if we have back-edges, so we can call
768 // intersectBackEdges later.
769 if (HasBackEdges)
770 CurrBlockInfo->EntryContext =
771 createReferenceContext(CurrBlockInfo->EntryContext);
772
773 // Create a starting context index for the current block
774 saveContext(nullptr, CurrBlockInfo->EntryContext);
775 CurrBlockInfo->EntryIndex = getContextIndex();
776
777 // Visit all the statements in the basic block.
778 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
779 for (const auto &BI : *CurrBlock) {
780 switch (BI.getKind()) {
782 CFGStmt CS = BI.castAs<CFGStmt>();
783 VMapBuilder.Visit(CS.getStmt());
784 break;
785 }
786 default:
787 break;
788 }
789 }
790 CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
791
792 // Mark variables on back edges as "unknown" if they've been changed.
793 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
794 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
795 // if CurrBlock -> *SI is *not* a back edge
796 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
797 continue;
798
799 CFGBlock *FirstLoopBlock = *SI;
800 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
801 Context LoopEnd = CurrBlockInfo->ExitContext;
802 intersectBackEdge(LoopBegin, LoopEnd);
803 }
804 }
805
806 // Put an extra entry at the end of the indexed context array
807 unsigned exitID = CFGraph->getExit().getBlockID();
808 saveContext(nullptr, BlockInfo[exitID].ExitContext);
809}
810
811/// Find the appropriate source locations to use when producing diagnostics for
812/// each block in the CFG.
813static void findBlockLocations(CFG *CFGraph,
814 const PostOrderCFGView *SortedGraph,
815 std::vector<CFGBlockInfo> &BlockInfo) {
816 for (const auto *CurrBlock : *SortedGraph) {
817 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
818
819 // Find the source location of the last statement in the block, if the
820 // block is not empty.
821 if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
822 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
823 } else {
824 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
825 BE = CurrBlock->rend(); BI != BE; ++BI) {
826 // FIXME: Handle other CFGElement kinds.
827 if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
828 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
829 break;
830 }
831 }
832 }
833
834 if (CurrBlockInfo->ExitLoc.isValid()) {
835 // This block contains at least one statement. Find the source location
836 // of the first statement in the block.
837 for (const auto &BI : *CurrBlock) {
838 // FIXME: Handle other CFGElement kinds.
839 if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
840 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
841 break;
842 }
843 }
844 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
845 CurrBlock != &CFGraph->getExit()) {
846 // The block is empty, and has a single predecessor. Use its exit
847 // location.
848 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
849 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
850 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) {
851 // The block is empty, and has a single successor. Use its entry
852 // location.
853 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
854 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc;
855 }
856 }
857}
858
859namespace {
860
861class LockableFactEntry : public FactEntry {
862public:
863 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
864 SourceKind Src = Acquired)
865 : FactEntry(Lockable, CE, LK, Loc, Src) {}
866
867 void
868 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
869 SourceLocation JoinLoc, LockErrorKind LEK,
870 ThreadSafetyHandler &Handler) const override {
871 if (!asserted() && !negative() && !isUniversal()) {
872 Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc,
873 LEK);
874 }
875 }
876
877 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
878 ThreadSafetyHandler &Handler) const override {
879 Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(),
880 entry.loc());
881 }
882
883 void handleUnlock(FactSet &FSet, FactManager &FactMan,
884 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
885 bool FullyRemove,
886 ThreadSafetyHandler &Handler) const override {
887 FSet.removeLock(FactMan, Cp);
888 if (!Cp.negative()) {
889 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
890 !Cp, LK_Exclusive, UnlockLoc));
891 }
892 }
893
894 static bool classof(const FactEntry *A) {
895 return A->getFactEntryKind() == Lockable;
896 }
897};
898
899class ScopedLockableFactEntry : public FactEntry {
900private:
901 enum UnderlyingCapabilityKind {
902 UCK_Acquired, ///< Any kind of acquired capability.
903 UCK_ReleasedShared, ///< Shared capability that was released.
904 UCK_ReleasedExclusive, ///< Exclusive capability that was released.
905 };
906
907 struct UnderlyingCapability {
908 CapabilityExpr Cap;
909 UnderlyingCapabilityKind Kind;
910 };
911
912 SmallVector<UnderlyingCapability, 2> UnderlyingMutexes;
913
914public:
915 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc,
916 SourceKind Src)
917 : FactEntry(ScopedLockable, CE, LK_Exclusive, Loc, Src) {}
918
919 CapExprSet getUnderlyingMutexes() const {
920 CapExprSet UnderlyingMutexesSet;
921 for (const UnderlyingCapability &UnderlyingMutex : UnderlyingMutexes)
922 UnderlyingMutexesSet.push_back(UnderlyingMutex.Cap);
923 return UnderlyingMutexesSet;
924 }
925
926 void addLock(const CapabilityExpr &M) {
927 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired});
928 }
929
930 void addExclusiveUnlock(const CapabilityExpr &M) {
931 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive});
932 }
933
934 void addSharedUnlock(const CapabilityExpr &M) {
935 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared});
936 }
937
938 void
939 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
940 SourceLocation JoinLoc, LockErrorKind LEK,
941 ThreadSafetyHandler &Handler) const override {
943 return;
944
945 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
946 const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap);
947 if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) ||
948 (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) {
949 // If this scoped lock manages another mutex, and if the underlying
950 // mutex is still/not held, then warn about the underlying mutex.
951 Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(),
952 UnderlyingMutex.Cap.toString(), loc(),
953 JoinLoc, LEK);
954 }
955 }
956 }
957
958 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
959 ThreadSafetyHandler &Handler) const override {
960 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
961 if (UnderlyingMutex.Kind == UCK_Acquired)
962 lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(),
963 &Handler);
964 else
965 unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler);
966 }
967 }
968
969 void handleUnlock(FactSet &FSet, FactManager &FactMan,
970 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
971 bool FullyRemove,
972 ThreadSafetyHandler &Handler) const override {
973 assert(!Cp.negative() && "Managing object cannot be negative.");
974 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
975 // Remove/lock the underlying mutex if it exists/is still unlocked; warn
976 // on double unlocking/locking if we're not destroying the scoped object.
977 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
978 if (UnderlyingMutex.Kind == UCK_Acquired) {
979 unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler);
980 } else {
981 LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared
982 ? LK_Shared
983 : LK_Exclusive;
984 lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler);
985 }
986 }
987 if (FullyRemove)
988 FSet.removeLock(FactMan, Cp);
989 }
990
991 static bool classof(const FactEntry *A) {
992 return A->getFactEntryKind() == ScopedLockable;
993 }
994
995private:
996 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
997 LockKind kind, SourceLocation loc,
998 ThreadSafetyHandler *Handler) const {
999 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
1000 if (Handler)
1001 Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(),
1002 loc);
1003 } else {
1004 FSet.removeLock(FactMan, !Cp);
1005 FSet.addLock(FactMan,
1006 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
1007 }
1008 }
1009
1010 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
1011 SourceLocation loc, ThreadSafetyHandler *Handler) const {
1012 if (FSet.findLock(FactMan, Cp)) {
1013 FSet.removeLock(FactMan, Cp);
1014 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
1015 !Cp, LK_Exclusive, loc));
1016 } else if (Handler) {
1017 SourceLocation PrevLoc;
1018 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1019 PrevLoc = Neg->loc();
1020 Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc);
1021 }
1022 }
1023};
1024
1025/// Class which implements the core thread safety analysis routines.
1026class ThreadSafetyAnalyzer {
1027 friend class BuildLockset;
1028 friend class threadSafety::BeforeSet;
1029
1030 llvm::BumpPtrAllocator Bpa;
1033
1034 ThreadSafetyHandler &Handler;
1035 const FunctionDecl *CurrentFunction;
1036 LocalVariableMap LocalVarMap;
1037 // Maps constructed objects to `this` placeholder prior to initialization.
1038 llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects;
1039 FactManager FactMan;
1040 std::vector<CFGBlockInfo> BlockInfo;
1041
1042 BeforeSet *GlobalBeforeSet;
1043
1044public:
1045 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1046 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1047
1048 bool inCurrentScope(const CapabilityExpr &CapE);
1049
1050 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1051 bool ReqAttr = false);
1052 void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1053 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind);
1054
1055 template <typename AttrType>
1056 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1057 const NamedDecl *D, til::SExpr *Self = nullptr);
1058
1059 template <class AttrType>
1060 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1061 const NamedDecl *D,
1062 const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1063 Expr *BrE, bool Neg);
1064
1065 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1066 bool &Negate);
1067
1068 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1069 const CFGBlock* PredBlock,
1070 const CFGBlock *CurrBlock);
1071
1072 bool join(const FactEntry &a, const FactEntry &b, bool CanModify);
1073
1074 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1075 SourceLocation JoinLoc, LockErrorKind EntryLEK,
1076 LockErrorKind ExitLEK);
1077
1078 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1079 SourceLocation JoinLoc, LockErrorKind LEK) {
1080 intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK);
1081 }
1082
1083 void runAnalysis(AnalysisDeclContext &AC);
1084
1085 void warnIfMutexNotHeld(const FactSet &FSet, const NamedDecl *D,
1086 const Expr *Exp, AccessKind AK, Expr *MutexExp,
1089 void warnIfMutexHeld(const FactSet &FSet, const NamedDecl *D, const Expr *Exp,
1090 Expr *MutexExp, til::LiteralPtr *Self,
1092
1093 void checkAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1095 void checkPtAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1097};
1098
1099} // namespace
1100
1101/// Process acquired_before and acquired_after attributes on Vd.
1102BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1103 ThreadSafetyAnalyzer& Analyzer) {
1104 // Create a new entry for Vd.
1105 BeforeInfo *Info = nullptr;
1106 {
1107 // Keep InfoPtr in its own scope in case BMap is modified later and the
1108 // reference becomes invalid.
1109 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1110 if (!InfoPtr)
1111 InfoPtr.reset(new BeforeInfo());
1112 Info = InfoPtr.get();
1113 }
1114
1115 for (const auto *At : Vd->attrs()) {
1116 switch (At->getKind()) {
1117 case attr::AcquiredBefore: {
1118 const auto *A = cast<AcquiredBeforeAttr>(At);
1119
1120 // Read exprs from the attribute, and add them to BeforeVect.
1121 for (const auto *Arg : A->args()) {
1122 CapabilityExpr Cp =
1123 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1124 if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1125 Info->Vect.push_back(Cpvd);
1126 const auto It = BMap.find(Cpvd);
1127 if (It == BMap.end())
1128 insertAttrExprs(Cpvd, Analyzer);
1129 }
1130 }
1131 break;
1132 }
1133 case attr::AcquiredAfter: {
1134 const auto *A = cast<AcquiredAfterAttr>(At);
1135
1136 // Read exprs from the attribute, and add them to BeforeVect.
1137 for (const auto *Arg : A->args()) {
1138 CapabilityExpr Cp =
1139 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1140 if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1141 // Get entry for mutex listed in attribute
1142 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1143 ArgInfo->Vect.push_back(Vd);
1144 }
1145 }
1146 break;
1147 }
1148 default:
1149 break;
1150 }
1151 }
1152
1153 return Info;
1154}
1155
1156BeforeSet::BeforeInfo *
1158 ThreadSafetyAnalyzer &Analyzer) {
1159 auto It = BMap.find(Vd);
1160 BeforeInfo *Info = nullptr;
1161 if (It == BMap.end())
1162 Info = insertAttrExprs(Vd, Analyzer);
1163 else
1164 Info = It->second.get();
1165 assert(Info && "BMap contained nullptr?");
1166 return Info;
1167}
1168
1169/// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1171 const FactSet& FSet,
1172 ThreadSafetyAnalyzer& Analyzer,
1173 SourceLocation Loc, StringRef CapKind) {
1175
1176 // Do a depth-first traversal of Vd.
1177 // Return true if there are cycles.
1178 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1179 if (!Vd)
1180 return false;
1181
1182 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1183
1184 if (Info->Visited == 1)
1185 return true;
1186
1187 if (Info->Visited == 2)
1188 return false;
1189
1190 if (Info->Vect.empty())
1191 return false;
1192
1193 InfoVect.push_back(Info);
1194 Info->Visited = 1;
1195 for (const auto *Vdb : Info->Vect) {
1196 // Exclude mutexes in our immediate before set.
1197 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1198 StringRef L1 = StartVd->getName();
1199 StringRef L2 = Vdb->getName();
1200 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1201 }
1202 // Transitively search other before sets, and warn on cycles.
1203 if (traverse(Vdb)) {
1204 if (CycMap.try_emplace(Vd, true).second) {
1205 StringRef L1 = Vd->getName();
1206 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1207 }
1208 }
1209 }
1210 Info->Visited = 2;
1211 return false;
1212 };
1213
1214 traverse(StartVd);
1215
1216 for (auto *Info : InfoVect)
1217 Info->Visited = 0;
1218}
1219
1220/// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1221static const ValueDecl *getValueDecl(const Expr *Exp) {
1222 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1223 return getValueDecl(CE->getSubExpr());
1224
1225 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1226 return DR->getDecl();
1227
1228 if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1229 return ME->getMemberDecl();
1230
1231 return nullptr;
1232}
1233
1234namespace {
1235
1236template <typename Ty>
1237class has_arg_iterator_range {
1238 using yes = char[1];
1239 using no = char[2];
1240
1241 template <typename Inner>
1242 static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1243
1244 template <typename>
1245 static no& test(...);
1246
1247public:
1248 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1249};
1250
1251} // namespace
1252
1253bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1254 const threadSafety::til::SExpr *SExp = CapE.sexpr();
1255 assert(SExp && "Null expressions should be ignored");
1256
1257 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1258 const ValueDecl *VD = LP->clangDecl();
1259 // Variables defined in a function are always inaccessible.
1260 if (!VD || !VD->isDefinedOutsideFunctionOrMethod())
1261 return false;
1262 // For now we consider static class members to be inaccessible.
1263 if (isa<CXXRecordDecl>(VD->getDeclContext()))
1264 return false;
1265 // Global variables are always in scope.
1266 return true;
1267 }
1268
1269 // Members are in scope from methods of the same class.
1270 if (const auto *P = dyn_cast<til::Project>(SExp)) {
1271 if (!isa_and_nonnull<CXXMethodDecl>(CurrentFunction))
1272 return false;
1273 const ValueDecl *VD = P->clangDecl();
1274 return VD->getDeclContext() == CurrentFunction->getDeclContext();
1275 }
1276
1277 return false;
1278}
1279
1280/// Add a new lock to the lockset, warning if the lock is already there.
1281/// \param ReqAttr -- true if this is part of an initial Requires attribute.
1282void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1283 std::unique_ptr<FactEntry> Entry,
1284 bool ReqAttr) {
1285 if (Entry->shouldIgnore())
1286 return;
1287
1288 if (!ReqAttr && !Entry->negative()) {
1289 // look for the negative capability, and remove it from the fact set.
1290 CapabilityExpr NegC = !*Entry;
1291 const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1292 if (Nen) {
1293 FSet.removeLock(FactMan, NegC);
1294 }
1295 else {
1296 if (inCurrentScope(*Entry) && !Entry->asserted())
1297 Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(),
1298 NegC.toString(), Entry->loc());
1299 }
1300 }
1301
1302 // Check before/after constraints
1303 if (Handler.issueBetaWarnings() &&
1304 !Entry->asserted() && !Entry->declared()) {
1305 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1306 Entry->loc(), Entry->getKind());
1307 }
1308
1309 // FIXME: Don't always warn when we have support for reentrant locks.
1310 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1311 if (!Entry->asserted())
1312 Cp->handleLock(FSet, FactMan, *Entry, Handler);
1313 } else {
1314 FSet.addLock(FactMan, std::move(Entry));
1315 }
1316}
1317
1318/// Remove a lock from the lockset, warning if the lock is not there.
1319/// \param UnlockLoc The source location of the unlock (only used in error msg)
1320void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1321 SourceLocation UnlockLoc,
1322 bool FullyRemove, LockKind ReceivedKind) {
1323 if (Cp.shouldIgnore())
1324 return;
1325
1326 const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1327 if (!LDat) {
1328 SourceLocation PrevLoc;
1329 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1330 PrevLoc = Neg->loc();
1331 Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc,
1332 PrevLoc);
1333 return;
1334 }
1335
1336 // Generic lock removal doesn't care about lock kind mismatches, but
1337 // otherwise diagnose when the lock kinds are mismatched.
1338 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1339 Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(),
1340 ReceivedKind, LDat->loc(), UnlockLoc);
1341 }
1342
1343 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler);
1344}
1345
1346/// Extract the list of mutexIDs from the attribute on an expression,
1347/// and push them onto Mtxs, discarding any duplicates.
1348template <typename AttrType>
1349void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1350 const Expr *Exp, const NamedDecl *D,
1351 til::SExpr *Self) {
1352 if (Attr->args_size() == 0) {
1353 // The mutex held is the "this" object.
1354 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self);
1355 if (Cp.isInvalid()) {
1356 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1357 return;
1358 }
1359 //else
1360 if (!Cp.shouldIgnore())
1361 Mtxs.push_back_nodup(Cp);
1362 return;
1363 }
1364
1365 for (const auto *Arg : Attr->args()) {
1366 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self);
1367 if (Cp.isInvalid()) {
1368 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1369 continue;
1370 }
1371 //else
1372 if (!Cp.shouldIgnore())
1373 Mtxs.push_back_nodup(Cp);
1374 }
1375}
1376
1377/// Extract the list of mutexIDs from a trylock attribute. If the
1378/// trylock applies to the given edge, then push them onto Mtxs, discarding
1379/// any duplicates.
1380template <class AttrType>
1381void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1382 const Expr *Exp, const NamedDecl *D,
1383 const CFGBlock *PredBlock,
1384 const CFGBlock *CurrBlock,
1385 Expr *BrE, bool Neg) {
1386 // Find out which branch has the lock
1387 bool branch = false;
1388 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1389 branch = BLE->getValue();
1390 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1391 branch = ILE->getValue().getBoolValue();
1392
1393 int branchnum = branch ? 0 : 1;
1394 if (Neg)
1395 branchnum = !branchnum;
1396
1397 // If we've taken the trylock branch, then add the lock
1398 int i = 0;
1399 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1400 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1401 if (*SI == CurrBlock && i == branchnum)
1402 getMutexIDs(Mtxs, Attr, Exp, D);
1403 }
1404}
1405
1406static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1407 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1408 TCond = false;
1409 return true;
1410 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1411 TCond = BLE->getValue();
1412 return true;
1413 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1414 TCond = ILE->getValue().getBoolValue();
1415 return true;
1416 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1417 return getStaticBooleanValue(CE->getSubExpr(), TCond);
1418 return false;
1419}
1420
1421// If Cond can be traced back to a function call, return the call expression.
1422// The negate variable should be called with false, and will be set to true
1423// if the function call is negated, e.g. if (!mu.tryLock(...))
1424const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1425 LocalVarContext C,
1426 bool &Negate) {
1427 if (!Cond)
1428 return nullptr;
1429
1430 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1431 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1432 return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1433 return CallExp;
1434 }
1435 else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1436 return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1437 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1438 return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1439 else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1440 return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1441 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1442 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1443 return getTrylockCallExpr(E, C, Negate);
1444 }
1445 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1446 if (UOP->getOpcode() == UO_LNot) {
1447 Negate = !Negate;
1448 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1449 }
1450 return nullptr;
1451 }
1452 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1453 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1454 if (BOP->getOpcode() == BO_NE)
1455 Negate = !Negate;
1456
1457 bool TCond = false;
1458 if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1459 if (!TCond) Negate = !Negate;
1460 return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1461 }
1462 TCond = false;
1463 if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1464 if (!TCond) Negate = !Negate;
1465 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1466 }
1467 return nullptr;
1468 }
1469 if (BOP->getOpcode() == BO_LAnd) {
1470 // LHS must have been evaluated in a different block.
1471 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1472 }
1473 if (BOP->getOpcode() == BO_LOr)
1474 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1475 return nullptr;
1476 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1477 bool TCond, FCond;
1478 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1479 getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1480 if (TCond && !FCond)
1481 return getTrylockCallExpr(COP->getCond(), C, Negate);
1482 if (!TCond && FCond) {
1483 Negate = !Negate;
1484 return getTrylockCallExpr(COP->getCond(), C, Negate);
1485 }
1486 }
1487 }
1488 return nullptr;
1489}
1490
1491/// Find the lockset that holds on the edge between PredBlock
1492/// and CurrBlock. The edge set is the exit set of PredBlock (passed
1493/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1494void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1495 const FactSet &ExitSet,
1496 const CFGBlock *PredBlock,
1497 const CFGBlock *CurrBlock) {
1498 Result = ExitSet;
1499
1500 const Stmt *Cond = PredBlock->getTerminatorCondition();
1501 // We don't acquire try-locks on ?: branches, only when its result is used.
1502 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1503 return;
1504
1505 bool Negate = false;
1506 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1507 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1508
1509 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1510 if (!Exp)
1511 return;
1512
1513 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1514 if(!FunDecl || !FunDecl->hasAttrs())
1515 return;
1516
1517 CapExprSet ExclusiveLocksToAdd;
1518 CapExprSet SharedLocksToAdd;
1519
1520 // If the condition is a call to a Trylock function, then grab the attributes
1521 for (const auto *Attr : FunDecl->attrs()) {
1522 switch (Attr->getKind()) {
1523 case attr::TryAcquireCapability: {
1524 auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1525 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1526 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1527 Negate);
1528 break;
1529 };
1530 case attr::ExclusiveTrylockFunction: {
1531 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1532 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1533 A->getSuccessValue(), Negate);
1534 break;
1535 }
1536 case attr::SharedTrylockFunction: {
1537 const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1538 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1539 A->getSuccessValue(), Negate);
1540 break;
1541 }
1542 default:
1543 break;
1544 }
1545 }
1546
1547 // Add and remove locks.
1548 SourceLocation Loc = Exp->getExprLoc();
1549 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1550 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1551 LK_Exclusive, Loc));
1552 for (const auto &SharedLockToAdd : SharedLocksToAdd)
1553 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1554 LK_Shared, Loc));
1555}
1556
1557namespace {
1558
1559/// We use this class to visit different types of expressions in
1560/// CFGBlocks, and build up the lockset.
1561/// An expression may cause us to add or remove locks from the lockset, or else
1562/// output error messages related to missing locks.
1563/// FIXME: In future, we may be able to not inherit from a visitor.
1564class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1565 friend class ThreadSafetyAnalyzer;
1566
1567 ThreadSafetyAnalyzer *Analyzer;
1568 FactSet FSet;
1569 // The fact set for the function on exit.
1570 const FactSet &FunctionExitFSet;
1571 LocalVariableMap::Context LVarCtx;
1572 unsigned CtxIndex;
1573
1574 // helper functions
1575
1576 void checkAccess(const Expr *Exp, AccessKind AK,
1578 Analyzer->checkAccess(FSet, Exp, AK, POK);
1579 }
1580 void checkPtAccess(const Expr *Exp, AccessKind AK,
1582 Analyzer->checkPtAccess(FSet, Exp, AK, POK);
1583 }
1584
1585 void handleCall(const Expr *Exp, const NamedDecl *D,
1586 til::LiteralPtr *Self = nullptr,
1588 void examineArguments(const FunctionDecl *FD,
1591 bool SkipFirstParam = false);
1592
1593public:
1594 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info,
1595 const FactSet &FunctionExitFSet)
1596 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1597 FunctionExitFSet(FunctionExitFSet), LVarCtx(Info.EntryContext),
1598 CtxIndex(Info.EntryIndex) {}
1599
1600 void VisitUnaryOperator(const UnaryOperator *UO);
1601 void VisitBinaryOperator(const BinaryOperator *BO);
1602 void VisitCastExpr(const CastExpr *CE);
1603 void VisitCallExpr(const CallExpr *Exp);
1604 void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1605 void VisitDeclStmt(const DeclStmt *S);
1606 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp);
1607 void VisitReturnStmt(const ReturnStmt *S);
1608};
1609
1610} // namespace
1611
1612/// Warn if the LSet does not contain a lock sufficient to protect access
1613/// of at least the passed in AccessKind.
1614void ThreadSafetyAnalyzer::warnIfMutexNotHeld(
1615 const FactSet &FSet, const NamedDecl *D, const Expr *Exp, AccessKind AK,
1619 CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1620 if (Cp.isInvalid()) {
1621 warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1622 return;
1623 } else if (Cp.shouldIgnore()) {
1624 return;
1625 }
1626
1627 if (Cp.negative()) {
1628 // Negative capabilities act like locks excluded
1629 const FactEntry *LDat = FSet.findLock(FactMan, !Cp);
1630 if (LDat) {
1631 Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1632 (!Cp).toString(), Loc);
1633 return;
1634 }
1635
1636 // If this does not refer to a negative capability in the same class,
1637 // then stop here.
1638 if (!inCurrentScope(Cp))
1639 return;
1640
1641 // Otherwise the negative requirement must be propagated to the caller.
1642 LDat = FSet.findLock(FactMan, Cp);
1643 if (!LDat) {
1644 Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1645 }
1646 return;
1647 }
1648
1649 const FactEntry *LDat = FSet.findLockUniv(FactMan, Cp);
1650 bool NoError = true;
1651 if (!LDat) {
1652 // No exact match found. Look for a partial match.
1653 LDat = FSet.findPartialMatch(FactMan, Cp);
1654 if (LDat) {
1655 // Warn that there's no precise match.
1656 std::string PartMatchStr = LDat->toString();
1657 StringRef PartMatchName(PartMatchStr);
1658 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc,
1659 &PartMatchName);
1660 } else {
1661 // Warn that there's no match at all.
1662 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1663 }
1664 NoError = false;
1665 }
1666 // Make sure the mutex we found is the right kind.
1667 if (NoError && LDat && !LDat->isAtLeast(LK)) {
1668 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1669 }
1670}
1671
1672/// Warn if the LSet contains the given lock.
1673void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet &FSet,
1674 const NamedDecl *D, const Expr *Exp,
1675 Expr *MutexExp,
1678 CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1679 if (Cp.isInvalid()) {
1680 warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1681 return;
1682 } else if (Cp.shouldIgnore()) {
1683 return;
1684 }
1685
1686 const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1687 if (LDat) {
1688 Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1689 Cp.toString(), Loc);
1690 }
1691}
1692
1693/// Checks guarded_by and pt_guarded_by attributes.
1694/// Whenever we identify an access (read or write) to a DeclRefExpr that is
1695/// marked with guarded_by, we must ensure the appropriate mutexes are held.
1696/// Similarly, we check if the access is to an expression that dereferences
1697/// a pointer marked with pt_guarded_by.
1698void ThreadSafetyAnalyzer::checkAccess(const FactSet &FSet, const Expr *Exp,
1699 AccessKind AK,
1701 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1702
1703 SourceLocation Loc = Exp->getExprLoc();
1704
1705 // Local variables of reference type cannot be re-assigned;
1706 // map them to their initializer.
1707 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1708 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1709 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1710 if (const auto *E = VD->getInit()) {
1711 // Guard against self-initialization. e.g., int &i = i;
1712 if (E == Exp)
1713 break;
1714 Exp = E;
1715 continue;
1716 }
1717 }
1718 break;
1719 }
1720
1721 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1722 // For dereferences
1723 if (UO->getOpcode() == UO_Deref)
1724 checkPtAccess(FSet, UO->getSubExpr(), AK, POK);
1725 return;
1726 }
1727
1728 if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) {
1729 switch (BO->getOpcode()) {
1730 case BO_PtrMemD: // .*
1731 return checkAccess(FSet, BO->getLHS(), AK, POK);
1732 case BO_PtrMemI: // ->*
1733 return checkPtAccess(FSet, BO->getLHS(), AK, POK);
1734 default:
1735 return;
1736 }
1737 }
1738
1739 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1740 checkPtAccess(FSet, AE->getLHS(), AK, POK);
1741 return;
1742 }
1743
1744 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1745 if (ME->isArrow())
1746 checkPtAccess(FSet, ME->getBase(), AK, POK);
1747 else
1748 checkAccess(FSet, ME->getBase(), AK, POK);
1749 }
1750
1751 const ValueDecl *D = getValueDecl(Exp);
1752 if (!D || !D->hasAttrs())
1753 return;
1754
1755 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(FactMan)) {
1756 Handler.handleNoMutexHeld(D, POK, AK, Loc);
1757 }
1758
1759 for (const auto *I : D->specific_attrs<GuardedByAttr>())
1760 warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), POK, nullptr, Loc);
1761}
1762
1763/// Checks pt_guarded_by and pt_guarded_var attributes.
1764/// POK is the same operationKind that was passed to checkAccess.
1765void ThreadSafetyAnalyzer::checkPtAccess(const FactSet &FSet, const Expr *Exp,
1766 AccessKind AK,
1768 while (true) {
1769 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1770 Exp = PE->getSubExpr();
1771 continue;
1772 }
1773 if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1774 if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1775 // If it's an actual array, and not a pointer, then it's elements
1776 // are protected by GUARDED_BY, not PT_GUARDED_BY;
1777 checkAccess(FSet, CE->getSubExpr(), AK, POK);
1778 return;
1779 }
1780 Exp = CE->getSubExpr();
1781 continue;
1782 }
1783 break;
1784 }
1785
1786 // Pass by reference warnings are under a different flag.
1788 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1789 if (POK == POK_ReturnByRef)
1790 PtPOK = POK_PtReturnByRef;
1791
1792 const ValueDecl *D = getValueDecl(Exp);
1793 if (!D || !D->hasAttrs())
1794 return;
1795
1796 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(FactMan))
1797 Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc());
1798
1799 for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1800 warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), PtPOK, nullptr,
1801 Exp->getExprLoc());
1802}
1803
1804/// Process a function call, method call, constructor call,
1805/// or destructor call. This involves looking at the attributes on the
1806/// corresponding function/method/constructor/destructor, issuing warnings,
1807/// and updating the locksets accordingly.
1808///
1809/// FIXME: For classes annotated with one of the guarded annotations, we need
1810/// to treat const method calls as reads and non-const method calls as writes,
1811/// and check that the appropriate locks are held. Non-const method calls with
1812/// the same signature as const method calls can be also treated as reads.
1813///
1814/// \param Exp The call expression.
1815/// \param D The callee declaration.
1816/// \param Self If \p Exp = nullptr, the implicit this argument or the argument
1817/// of an implicitly called cleanup function.
1818/// \param Loc If \p Exp = nullptr, the location.
1819void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1821 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1822 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1823 CapExprSet ScopedReqsAndExcludes;
1824
1825 // Figure out if we're constructing an object of scoped lockable class
1826 CapabilityExpr Scp;
1827 if (Exp) {
1828 assert(!Self);
1829 const auto *TagT = Exp->getType()->getAs<TagType>();
1830 if (D->hasAttrs() && TagT && Exp->isPRValue()) {
1831 std::pair<til::LiteralPtr *, StringRef> Placeholder =
1832 Analyzer->SxBuilder.createThisPlaceholder(Exp);
1833 [[maybe_unused]] auto inserted =
1834 Analyzer->ConstructedObjects.insert({Exp, Placeholder.first});
1835 assert(inserted.second && "Are we visiting the same expression again?");
1836 if (isa<CXXConstructExpr>(Exp))
1837 Self = Placeholder.first;
1838 if (TagT->getDecl()->hasAttr<ScopedLockableAttr>())
1839 Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false);
1840 }
1841
1842 assert(Loc.isInvalid());
1843 Loc = Exp->getExprLoc();
1844 }
1845
1846 for(const Attr *At : D->attrs()) {
1847 switch (At->getKind()) {
1848 // When we encounter a lock function, we need to add the lock to our
1849 // lockset.
1850 case attr::AcquireCapability: {
1851 const auto *A = cast<AcquireCapabilityAttr>(At);
1852 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1853 : ExclusiveLocksToAdd,
1854 A, Exp, D, Self);
1855 break;
1856 }
1857
1858 // An assert will add a lock to the lockset, but will not generate
1859 // a warning if it is already there, and will not generate a warning
1860 // if it is not removed.
1861 case attr::AssertExclusiveLock: {
1862 const auto *A = cast<AssertExclusiveLockAttr>(At);
1863
1864 CapExprSet AssertLocks;
1865 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1866 for (const auto &AssertLock : AssertLocks)
1867 Analyzer->addLock(
1868 FSet, std::make_unique<LockableFactEntry>(
1869 AssertLock, LK_Exclusive, Loc, FactEntry::Asserted));
1870 break;
1871 }
1872 case attr::AssertSharedLock: {
1873 const auto *A = cast<AssertSharedLockAttr>(At);
1874
1875 CapExprSet AssertLocks;
1876 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1877 for (const auto &AssertLock : AssertLocks)
1878 Analyzer->addLock(
1879 FSet, std::make_unique<LockableFactEntry>(
1880 AssertLock, LK_Shared, Loc, FactEntry::Asserted));
1881 break;
1882 }
1883
1884 case attr::AssertCapability: {
1885 const auto *A = cast<AssertCapabilityAttr>(At);
1886 CapExprSet AssertLocks;
1887 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1888 for (const auto &AssertLock : AssertLocks)
1889 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1890 AssertLock,
1891 A->isShared() ? LK_Shared : LK_Exclusive,
1892 Loc, FactEntry::Asserted));
1893 break;
1894 }
1895
1896 // When we encounter an unlock function, we need to remove unlocked
1897 // mutexes from the lockset, and flag a warning if they are not there.
1898 case attr::ReleaseCapability: {
1899 const auto *A = cast<ReleaseCapabilityAttr>(At);
1900 if (A->isGeneric())
1901 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self);
1902 else if (A->isShared())
1903 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self);
1904 else
1905 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self);
1906 break;
1907 }
1908
1909 case attr::RequiresCapability: {
1910 const auto *A = cast<RequiresCapabilityAttr>(At);
1911 for (auto *Arg : A->args()) {
1912 Analyzer->warnIfMutexNotHeld(FSet, D, Exp,
1913 A->isShared() ? AK_Read : AK_Written,
1914 Arg, POK_FunctionCall, Self, Loc);
1915 // use for adopting a lock
1916 if (!Scp.shouldIgnore())
1917 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1918 }
1919 break;
1920 }
1921
1922 case attr::LocksExcluded: {
1923 const auto *A = cast<LocksExcludedAttr>(At);
1924 for (auto *Arg : A->args()) {
1925 Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc);
1926 // use for deferring a lock
1927 if (!Scp.shouldIgnore())
1928 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1929 }
1930 break;
1931 }
1932
1933 // Ignore attributes unrelated to thread-safety
1934 default:
1935 break;
1936 }
1937 }
1938
1939 std::optional<CallExpr::const_arg_range> Args;
1940 if (Exp) {
1941 if (const auto *CE = dyn_cast<CallExpr>(Exp))
1942 Args = CE->arguments();
1943 else if (const auto *CE = dyn_cast<CXXConstructExpr>(Exp))
1944 Args = CE->arguments();
1945 else
1946 llvm_unreachable("Unknown call kind");
1947 }
1948 const auto *CalledFunction = dyn_cast<FunctionDecl>(D);
1949 if (CalledFunction && Args.has_value()) {
1950 for (auto [Param, Arg] : zip(CalledFunction->parameters(), *Args)) {
1951 CapExprSet DeclaredLocks;
1952 for (const Attr *At : Param->attrs()) {
1953 switch (At->getKind()) {
1954 case attr::AcquireCapability: {
1955 const auto *A = cast<AcquireCapabilityAttr>(At);
1956 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1957 : ExclusiveLocksToAdd,
1958 A, Exp, D, Self);
1959 Analyzer->getMutexIDs(DeclaredLocks, A, Exp, D, Self);
1960 break;
1961 }
1962
1963 case attr::ReleaseCapability: {
1964 const auto *A = cast<ReleaseCapabilityAttr>(At);
1965 if (A->isGeneric())
1966 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self);
1967 else if (A->isShared())
1968 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self);
1969 else
1970 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self);
1971 Analyzer->getMutexIDs(DeclaredLocks, A, Exp, D, Self);
1972 break;
1973 }
1974
1975 case attr::RequiresCapability: {
1976 const auto *A = cast<RequiresCapabilityAttr>(At);
1977 for (auto *Arg : A->args())
1978 Analyzer->warnIfMutexNotHeld(FSet, D, Exp,
1979 A->isShared() ? AK_Read : AK_Written,
1980 Arg, POK_FunctionCall, Self, Loc);
1981 Analyzer->getMutexIDs(DeclaredLocks, A, Exp, D, Self);
1982 break;
1983 }
1984
1985 case attr::LocksExcluded: {
1986 const auto *A = cast<LocksExcludedAttr>(At);
1987 for (auto *Arg : A->args())
1988 Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc);
1989 Analyzer->getMutexIDs(DeclaredLocks, A, Exp, D, Self);
1990 break;
1991 }
1992
1993 default:
1994 break;
1995 }
1996 }
1997 if (DeclaredLocks.empty())
1998 continue;
1999 CapabilityExpr Cp(Analyzer->SxBuilder.translate(Arg, nullptr),
2000 StringRef("mutex"), false);
2001 if (const auto *CBTE = dyn_cast<CXXBindTemporaryExpr>(Arg->IgnoreCasts());
2002 Cp.isInvalid() && CBTE) {
2003 if (auto Object = Analyzer->ConstructedObjects.find(CBTE->getSubExpr());
2004 Object != Analyzer->ConstructedObjects.end())
2005 Cp = CapabilityExpr(Object->second, StringRef("mutex"), false);
2006 }
2007 const FactEntry *Fact = FSet.findLock(Analyzer->FactMan, Cp);
2008 if (!Fact) {
2009 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK_FunctionCall,
2010 Cp.toString(), LK_Exclusive,
2011 Exp->getExprLoc());
2012 continue;
2013 }
2014 const auto *Scope = cast<ScopedLockableFactEntry>(Fact);
2015 for (const auto &[a, b] :
2016 zip_longest(DeclaredLocks, Scope->getUnderlyingMutexes())) {
2017 if (!a.has_value()) {
2018 Analyzer->Handler.handleExpectFewerUnderlyingMutexes(
2019 Exp->getExprLoc(), D->getLocation(), Scope->toString(),
2020 b.value().getKind(), b.value().toString());
2021 } else if (!b.has_value()) {
2022 Analyzer->Handler.handleExpectMoreUnderlyingMutexes(
2023 Exp->getExprLoc(), D->getLocation(), Scope->toString(),
2024 a.value().getKind(), a.value().toString());
2025 } else if (!a.value().equals(b.value())) {
2026 Analyzer->Handler.handleUnmatchedUnderlyingMutexes(
2027 Exp->getExprLoc(), D->getLocation(), Scope->toString(),
2028 a.value().getKind(), a.value().toString(), b.value().toString());
2029 break;
2030 }
2031 }
2032 }
2033 }
2034 // Remove locks first to allow lock upgrading/downgrading.
2035 // FIXME -- should only fully remove if the attribute refers to 'this'.
2036 bool Dtor = isa<CXXDestructorDecl>(D);
2037 for (const auto &M : ExclusiveLocksToRemove)
2038 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive);
2039 for (const auto &M : SharedLocksToRemove)
2040 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared);
2041 for (const auto &M : GenericLocksToRemove)
2042 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic);
2043
2044 // Add locks.
2045 FactEntry::SourceKind Source =
2046 !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired;
2047 for (const auto &M : ExclusiveLocksToAdd)
2048 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive,
2049 Loc, Source));
2050 for (const auto &M : SharedLocksToAdd)
2051 Analyzer->addLock(
2052 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source));
2053
2054 if (!Scp.shouldIgnore()) {
2055 // Add the managing object as a dummy mutex, mapped to the underlying mutex.
2056 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(
2057 Scp, Loc, FactEntry::Acquired);
2058 for (const auto &M : ExclusiveLocksToAdd)
2059 ScopedEntry->addLock(M);
2060 for (const auto &M : SharedLocksToAdd)
2061 ScopedEntry->addLock(M);
2062 for (const auto &M : ScopedReqsAndExcludes)
2063 ScopedEntry->addLock(M);
2064 for (const auto &M : ExclusiveLocksToRemove)
2065 ScopedEntry->addExclusiveUnlock(M);
2066 for (const auto &M : SharedLocksToRemove)
2067 ScopedEntry->addSharedUnlock(M);
2068 Analyzer->addLock(FSet, std::move(ScopedEntry));
2069 }
2070}
2071
2072/// For unary operations which read and write a variable, we need to
2073/// check whether we hold any required mutexes. Reads are checked in
2074/// VisitCastExpr.
2075void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
2076 switch (UO->getOpcode()) {
2077 case UO_PostDec:
2078 case UO_PostInc:
2079 case UO_PreDec:
2080 case UO_PreInc:
2081 checkAccess(UO->getSubExpr(), AK_Written);
2082 break;
2083 default:
2084 break;
2085 }
2086}
2087
2088/// For binary operations which assign to a variable (writes), we need to check
2089/// whether we hold any required mutexes.
2090/// FIXME: Deal with non-primitive types.
2091void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
2092 if (!BO->isAssignmentOp())
2093 return;
2094
2095 // adjust the context
2096 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2097
2098 checkAccess(BO->getLHS(), AK_Written);
2099}
2100
2101/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2102/// need to ensure we hold any required mutexes.
2103/// FIXME: Deal with non-primitive types.
2104void BuildLockset::VisitCastExpr(const CastExpr *CE) {
2105 if (CE->getCastKind() != CK_LValueToRValue)
2106 return;
2107 checkAccess(CE->getSubExpr(), AK_Read);
2108}
2109
2110void BuildLockset::examineArguments(const FunctionDecl *FD,
2113 bool SkipFirstParam) {
2114 // Currently we can't do anything if we don't know the function declaration.
2115 if (!FD)
2116 return;
2117
2118 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
2119 // only turns off checking within the body of a function, but we also
2120 // use it to turn off checking in arguments to the function. This
2121 // could result in some false negatives, but the alternative is to
2122 // create yet another attribute.
2123 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2124 return;
2125
2126 const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2127 auto Param = Params.begin();
2128 if (SkipFirstParam)
2129 ++Param;
2130
2131 // There can be default arguments, so we stop when one iterator is at end().
2132 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2133 ++Param, ++Arg) {
2134 QualType Qt = (*Param)->getType();
2135 if (Qt->isReferenceType())
2136 checkAccess(*Arg, AK_Read, POK_PassByRef);
2137 }
2138}
2139
2140void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2141 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2142 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2143 // ME can be null when calling a method pointer
2144 const CXXMethodDecl *MD = CE->getMethodDecl();
2145
2146 if (ME && MD) {
2147 if (ME->isArrow()) {
2148 // Should perhaps be AK_Written if !MD->isConst().
2149 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2150 } else {
2151 // Should perhaps be AK_Written if !MD->isConst().
2152 checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2153 }
2154 }
2155
2156 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2157 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2158 OverloadedOperatorKind OEop = OE->getOperator();
2159 switch (OEop) {
2160 case OO_Equal:
2161 case OO_PlusEqual:
2162 case OO_MinusEqual:
2163 case OO_StarEqual:
2164 case OO_SlashEqual:
2165 case OO_PercentEqual:
2166 case OO_CaretEqual:
2167 case OO_AmpEqual:
2168 case OO_PipeEqual:
2169 case OO_LessLessEqual:
2170 case OO_GreaterGreaterEqual:
2171 checkAccess(OE->getArg(1), AK_Read);
2172 [[fallthrough]];
2173 case OO_PlusPlus:
2174 case OO_MinusMinus:
2175 checkAccess(OE->getArg(0), AK_Written);
2176 break;
2177 case OO_Star:
2178 case OO_ArrowStar:
2179 case OO_Arrow:
2180 case OO_Subscript:
2181 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2182 // Grrr. operator* can be multiplication...
2183 checkPtAccess(OE->getArg(0), AK_Read);
2184 }
2185 [[fallthrough]];
2186 default: {
2187 // TODO: get rid of this, and rely on pass-by-ref instead.
2188 const Expr *Obj = OE->getArg(0);
2189 checkAccess(Obj, AK_Read);
2190 // Check the remaining arguments. For method operators, the first
2191 // argument is the implicit self argument, and doesn't appear in the
2192 // FunctionDecl, but for non-methods it does.
2193 const FunctionDecl *FD = OE->getDirectCallee();
2194 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2195 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2196 break;
2197 }
2198 }
2199 } else {
2200 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2201 }
2202
2203 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2204 if (!D)
2205 return;
2206 handleCall(Exp, D);
2207}
2208
2209void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2210 const CXXConstructorDecl *D = Exp->getConstructor();
2211 if (D && D->isCopyConstructor()) {
2212 const Expr* Source = Exp->getArg(0);
2213 checkAccess(Source, AK_Read);
2214 } else {
2215 examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2216 }
2217 if (D && D->hasAttrs())
2218 handleCall(Exp, D);
2219}
2220
2221static const Expr *UnpackConstruction(const Expr *E) {
2222 if (auto *CE = dyn_cast<CastExpr>(E))
2223 if (CE->getCastKind() == CK_NoOp)
2224 E = CE->getSubExpr()->IgnoreParens();
2225 if (auto *CE = dyn_cast<CastExpr>(E))
2226 if (CE->getCastKind() == CK_ConstructorConversion ||
2227 CE->getCastKind() == CK_UserDefinedConversion)
2228 E = CE->getSubExpr();
2229 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2230 E = BTE->getSubExpr();
2231 return E;
2232}
2233
2234void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2235 // adjust the context
2236 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2237
2238 for (auto *D : S->getDeclGroup()) {
2239 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2240 const Expr *E = VD->getInit();
2241 if (!E)
2242 continue;
2243 E = E->IgnoreParens();
2244
2245 // handle constructors that involve temporaries
2246 if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2247 E = EWC->getSubExpr()->IgnoreParens();
2249
2250 if (auto Object = Analyzer->ConstructedObjects.find(E);
2251 Object != Analyzer->ConstructedObjects.end()) {
2252 Object->second->setClangDecl(VD);
2253 Analyzer->ConstructedObjects.erase(Object);
2254 }
2255 }
2256 }
2257}
2258
2259void BuildLockset::VisitMaterializeTemporaryExpr(
2260 const MaterializeTemporaryExpr *Exp) {
2261 if (const ValueDecl *ExtD = Exp->getExtendingDecl()) {
2262 if (auto Object = Analyzer->ConstructedObjects.find(
2264 Object != Analyzer->ConstructedObjects.end()) {
2265 Object->second->setClangDecl(ExtD);
2266 Analyzer->ConstructedObjects.erase(Object);
2267 }
2268 }
2269}
2270
2271void BuildLockset::VisitReturnStmt(const ReturnStmt *S) {
2272 if (Analyzer->CurrentFunction == nullptr)
2273 return;
2274 const Expr *RetVal = S->getRetValue();
2275 if (!RetVal)
2276 return;
2277
2278 // If returning by reference, check that the function requires the appropriate
2279 // capabilities.
2280 const QualType ReturnType =
2281 Analyzer->CurrentFunction->getReturnType().getCanonicalType();
2282 if (ReturnType->isLValueReferenceType()) {
2283 Analyzer->checkAccess(
2284 FunctionExitFSet, RetVal,
2287 }
2288}
2289
2290/// Given two facts merging on a join point, possibly warn and decide whether to
2291/// keep or replace.
2292///
2293/// \param CanModify Whether we can replace \p A by \p B.
2294/// \return false if we should keep \p A, true if we should take \p B.
2295bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B,
2296 bool CanModify) {
2297 if (A.kind() != B.kind()) {
2298 // For managed capabilities, the destructor should unlock in the right mode
2299 // anyway. For asserted capabilities no unlocking is needed.
2300 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) {
2301 // The shared capability subsumes the exclusive capability, if possible.
2302 bool ShouldTakeB = B.kind() == LK_Shared;
2303 if (CanModify || !ShouldTakeB)
2304 return ShouldTakeB;
2305 }
2306 Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(),
2307 A.loc());
2308 // Take the exclusive capability to reduce further warnings.
2309 return CanModify && B.kind() == LK_Exclusive;
2310 } else {
2311 // The non-asserted capability is the one we want to track.
2312 return CanModify && A.asserted() && !B.asserted();
2313 }
2314}
2315
2316/// Compute the intersection of two locksets and issue warnings for any
2317/// locks in the symmetric difference.
2318///
2319/// This function is used at a merge point in the CFG when comparing the lockset
2320/// of each branch being merged. For example, given the following sequence:
2321/// A; if () then B; else C; D; we need to check that the lockset after B and C
2322/// are the same. In the event of a difference, we use the intersection of these
2323/// two locksets at the start of D.
2324///
2325/// \param EntrySet A lockset for entry into a (possibly new) block.
2326/// \param ExitSet The lockset on exiting a preceding block.
2327/// \param JoinLoc The location of the join point for error reporting
2328/// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2329/// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2330void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet,
2331 const FactSet &ExitSet,
2332 SourceLocation JoinLoc,
2333 LockErrorKind EntryLEK,
2334 LockErrorKind ExitLEK) {
2335 FactSet EntrySetOrig = EntrySet;
2336
2337 // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2338 for (const auto &Fact : ExitSet) {
2339 const FactEntry &ExitFact = FactMan[Fact];
2340
2341 FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact);
2342 if (EntryIt != EntrySet.end()) {
2343 if (join(FactMan[*EntryIt], ExitFact,
2344 EntryLEK != LEK_LockedSomeLoopIterations))
2345 *EntryIt = Fact;
2346 } else if (!ExitFact.managed() || EntryLEK == LEK_LockedAtEndOfFunction) {
2347 ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc,
2348 EntryLEK, Handler);
2349 }
2350 }
2351
2352 // Find locks in EntrySet that are not in ExitSet, and remove them.
2353 for (const auto &Fact : EntrySetOrig) {
2354 const FactEntry *EntryFact = &FactMan[Fact];
2355 const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact);
2356
2357 if (!ExitFact) {
2358 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations ||
2360 EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc,
2361 ExitLEK, Handler);
2362 if (ExitLEK == LEK_LockedSomePredecessors)
2363 EntrySet.removeLock(FactMan, *EntryFact);
2364 }
2365 }
2366}
2367
2368// Return true if block B never continues to its successors.
2369static bool neverReturns(const CFGBlock *B) {
2370 if (B->hasNoReturnElement())
2371 return true;
2372 if (B->empty())
2373 return false;
2374
2375 CFGElement Last = B->back();
2376 if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2377 if (isa<CXXThrowExpr>(S->getStmt()))
2378 return true;
2379 }
2380 return false;
2381}
2382
2383/// Check a function's CFG for thread-safety violations.
2384///
2385/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2386/// at the end of each block, and issue warnings for thread safety violations.
2387/// Each block in the CFG is traversed exactly once.
2388void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2389 // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2390 // For now, we just use the walker to set things up.
2392 if (!walker.init(AC))
2393 return;
2394
2395 // AC.dumpCFG(true);
2396 // threadSafety::printSCFG(walker);
2397
2398 CFG *CFGraph = walker.getGraph();
2399 const NamedDecl *D = walker.getDecl();
2400 CurrentFunction = dyn_cast<FunctionDecl>(D);
2401
2402 if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2403 return;
2404
2405 // FIXME: Do something a bit more intelligent inside constructor and
2406 // destructor code. Constructors and destructors must assume unique access
2407 // to 'this', so checks on member variable access is disabled, but we should
2408 // still enable checks on other objects.
2409 if (isa<CXXConstructorDecl>(D))
2410 return; // Don't check inside constructors.
2411 if (isa<CXXDestructorDecl>(D))
2412 return; // Don't check inside destructors.
2413
2414 Handler.enterFunction(CurrentFunction);
2415
2416 BlockInfo.resize(CFGraph->getNumBlockIDs(),
2417 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2418
2419 // We need to explore the CFG via a "topological" ordering.
2420 // That way, we will be guaranteed to have information about required
2421 // predecessor locksets when exploring a new block.
2422 const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2423 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2424
2425 CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
2426 CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()];
2427
2428 // Mark entry block as reachable
2429 Initial.Reachable = true;
2430
2431 // Compute SSA names for local variables
2432 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2433
2434 // Fill in source locations for all CFGBlocks.
2435 findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2436
2437 CapExprSet ExclusiveLocksAcquired;
2438 CapExprSet SharedLocksAcquired;
2439 CapExprSet LocksReleased;
2440
2441 // Add locks from exclusive_locks_required and shared_locks_required
2442 // to initial lockset. Also turn off checking for lock and unlock functions.
2443 // FIXME: is there a more intelligent way to check lock/unlock functions?
2444 if (!SortedGraph->empty()) {
2445 assert(*SortedGraph->begin() == &CFGraph->getEntry());
2446 FactSet &InitialLockset = Initial.EntrySet;
2447
2448 CapExprSet ExclusiveLocksToAdd;
2449 CapExprSet SharedLocksToAdd;
2450
2452 for (const auto *Attr : D->attrs()) {
2453 Loc = Attr->getLocation();
2454 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2455 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2456 nullptr, D);
2457 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2458 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2459 // We must ignore such methods.
2460 if (A->args_size() == 0)
2461 return;
2462 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2463 nullptr, D);
2464 getMutexIDs(LocksReleased, A, nullptr, D);
2465 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2466 if (A->args_size() == 0)
2467 return;
2468 getMutexIDs(A->isShared() ? SharedLocksAcquired
2469 : ExclusiveLocksAcquired,
2470 A, nullptr, D);
2471 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2472 // Don't try to check trylock functions for now.
2473 return;
2474 } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2475 // Don't try to check trylock functions for now.
2476 return;
2477 } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2478 // Don't try to check trylock functions for now.
2479 return;
2480 }
2481 }
2483 if (CurrentFunction)
2484 Params = CurrentFunction->getCanonicalDecl()->parameters();
2485 else if (auto CurrentMethod = dyn_cast<ObjCMethodDecl>(D))
2486 Params = CurrentMethod->getCanonicalDecl()->parameters();
2487 else
2488 llvm_unreachable("Unknown function kind");
2489 for (const ParmVarDecl *Param : Params) {
2490 CapExprSet UnderlyingLocks;
2491 for (const auto *Attr : Param->attrs()) {
2492 Loc = Attr->getLocation();
2493 if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2494 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2495 nullptr, Param);
2496 getMutexIDs(LocksReleased, A, nullptr, Param);
2497 getMutexIDs(UnderlyingLocks, A, nullptr, Param);
2498 } else if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2499 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2500 nullptr, Param);
2501 getMutexIDs(UnderlyingLocks, A, nullptr, Param);
2502 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2503 getMutexIDs(A->isShared() ? SharedLocksAcquired
2504 : ExclusiveLocksAcquired,
2505 A, nullptr, Param);
2506 getMutexIDs(UnderlyingLocks, A, nullptr, Param);
2507 } else if (const auto *A = dyn_cast<LocksExcludedAttr>(Attr)) {
2508 getMutexIDs(UnderlyingLocks, A, nullptr, Param);
2509 }
2510 }
2511 if (UnderlyingLocks.empty())
2512 continue;
2513 CapabilityExpr Cp(SxBuilder.createVariable(Param), StringRef(), false);
2514 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(
2515 Cp, Param->getLocation(), FactEntry::Declared);
2516 for (const CapabilityExpr &M : UnderlyingLocks)
2517 ScopedEntry->addLock(M);
2518 addLock(InitialLockset, std::move(ScopedEntry), true);
2519 }
2520
2521 // FIXME -- Loc can be wrong here.
2522 for (const auto &Mu : ExclusiveLocksToAdd) {
2523 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2524 FactEntry::Declared);
2525 addLock(InitialLockset, std::move(Entry), true);
2526 }
2527 for (const auto &Mu : SharedLocksToAdd) {
2528 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2529 FactEntry::Declared);
2530 addLock(InitialLockset, std::move(Entry), true);
2531 }
2532 }
2533
2534 // Compute the expected exit set.
2535 // By default, we expect all locks held on entry to be held on exit.
2536 FactSet ExpectedFunctionExitSet = Initial.EntrySet;
2537
2538 // Adjust the expected exit set by adding or removing locks, as declared
2539 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
2540 // issue the appropriate warning.
2541 // FIXME: the location here is not quite right.
2542 for (const auto &Lock : ExclusiveLocksAcquired)
2543 ExpectedFunctionExitSet.addLock(
2544 FactMan, std::make_unique<LockableFactEntry>(Lock, LK_Exclusive,
2545 D->getLocation()));
2546 for (const auto &Lock : SharedLocksAcquired)
2547 ExpectedFunctionExitSet.addLock(
2548 FactMan,
2549 std::make_unique<LockableFactEntry>(Lock, LK_Shared, D->getLocation()));
2550 for (const auto &Lock : LocksReleased)
2551 ExpectedFunctionExitSet.removeLock(FactMan, Lock);
2552
2553 for (const auto *CurrBlock : *SortedGraph) {
2554 unsigned CurrBlockID = CurrBlock->getBlockID();
2555 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2556
2557 // Use the default initial lockset in case there are no predecessors.
2558 VisitedBlocks.insert(CurrBlock);
2559
2560 // Iterate through the predecessor blocks and warn if the lockset for all
2561 // predecessors is not the same. We take the entry lockset of the current
2562 // block to be the intersection of all previous locksets.
2563 // FIXME: By keeping the intersection, we may output more errors in future
2564 // for a lock which is not in the intersection, but was in the union. We
2565 // may want to also keep the union in future. As an example, let's say
2566 // the intersection contains Mutex L, and the union contains L and M.
2567 // Later we unlock M. At this point, we would output an error because we
2568 // never locked M; although the real error is probably that we forgot to
2569 // lock M on all code paths. Conversely, let's say that later we lock M.
2570 // In this case, we should compare against the intersection instead of the
2571 // union because the real error is probably that we forgot to unlock M on
2572 // all code paths.
2573 bool LocksetInitialized = false;
2574 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2575 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
2576 // if *PI -> CurrBlock is a back edge
2577 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2578 continue;
2579
2580 unsigned PrevBlockID = (*PI)->getBlockID();
2581 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2582
2583 // Ignore edges from blocks that can't return.
2584 if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2585 continue;
2586
2587 // Okay, we can reach this block from the entry.
2588 CurrBlockInfo->Reachable = true;
2589
2590 FactSet PrevLockset;
2591 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2592
2593 if (!LocksetInitialized) {
2594 CurrBlockInfo->EntrySet = PrevLockset;
2595 LocksetInitialized = true;
2596 } else {
2597 // Surprisingly 'continue' doesn't always produce back edges, because
2598 // the CFG has empty "transition" blocks where they meet with the end
2599 // of the regular loop body. We still want to diagnose them as loop.
2600 intersectAndWarn(
2601 CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc,
2602 isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt())
2605 }
2606 }
2607
2608 // Skip rest of block if it's not reachable.
2609 if (!CurrBlockInfo->Reachable)
2610 continue;
2611
2612 BuildLockset LocksetBuilder(this, *CurrBlockInfo, ExpectedFunctionExitSet);
2613
2614 // Visit all the statements in the basic block.
2615 for (const auto &BI : *CurrBlock) {
2616 switch (BI.getKind()) {
2617 case CFGElement::Statement: {
2618 CFGStmt CS = BI.castAs<CFGStmt>();
2619 LocksetBuilder.Visit(CS.getStmt());
2620 break;
2621 }
2622 // Ignore BaseDtor and MemberDtor for now.
2625 const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2626 if (!DD->hasAttrs())
2627 break;
2628
2629 LocksetBuilder.handleCall(nullptr, DD,
2630 SxBuilder.createVariable(AD.getVarDecl()),
2631 AD.getTriggerStmt()->getEndLoc());
2632 break;
2633 }
2634
2636 const CFGCleanupFunction &CF = BI.castAs<CFGCleanupFunction>();
2637 LocksetBuilder.handleCall(/*Exp=*/nullptr, CF.getFunctionDecl(),
2638 SxBuilder.createVariable(CF.getVarDecl()),
2639 CF.getVarDecl()->getLocation());
2640 break;
2641 }
2642
2644 auto TD = BI.castAs<CFGTemporaryDtor>();
2645
2646 // Clean up constructed object even if there are no attributes to
2647 // keep the number of objects in limbo as small as possible.
2648 if (auto Object = ConstructedObjects.find(
2649 TD.getBindTemporaryExpr()->getSubExpr());
2650 Object != ConstructedObjects.end()) {
2651 const auto *DD = TD.getDestructorDecl(AC.getASTContext());
2652 if (DD->hasAttrs())
2653 // TODO: the location here isn't quite correct.
2654 LocksetBuilder.handleCall(nullptr, DD, Object->second,
2655 TD.getBindTemporaryExpr()->getEndLoc());
2656 ConstructedObjects.erase(Object);
2657 }
2658 break;
2659 }
2660 default:
2661 break;
2662 }
2663 }
2664 CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2665
2666 // For every back edge from CurrBlock (the end of the loop) to another block
2667 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2668 // the one held at the beginning of FirstLoopBlock. We can look up the
2669 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2670 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2671 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
2672 // if CurrBlock -> *SI is *not* a back edge
2673 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2674 continue;
2675
2676 CFGBlock *FirstLoopBlock = *SI;
2677 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2678 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2679 intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc,
2681 }
2682 }
2683
2684 // Skip the final check if the exit block is unreachable.
2685 if (!Final.Reachable)
2686 return;
2687
2688 // FIXME: Should we call this function for all blocks which exit the function?
2689 intersectAndWarn(ExpectedFunctionExitSet, Final.ExitSet, Final.ExitLoc,
2691
2692 Handler.leaveFunction(CurrentFunction);
2693}
2694
2695/// Check a function's CFG for thread-safety violations.
2696///
2697/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2698/// at the end of each block, and issue warnings for thread safety violations.
2699/// Each block in the CFG is traversed exactly once.
2701 ThreadSafetyHandler &Handler,
2702 BeforeSet **BSet) {
2703 if (!*BSet)
2704 *BSet = new BeforeSet;
2705 ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2706 Analyzer.runAnalysis(AC);
2707}
2708
2710
2711/// Helper function that returns a LockKind required for the given level
2712/// of access.
2714 switch (AK) {
2715 case AK_Read :
2716 return LK_Shared;
2717 case AK_Written :
2718 return LK_Exclusive;
2719 }
2720 llvm_unreachable("Unknown AccessKind");
2721}
StringRef P
This file defines AnalysisDeclContext, a class that manages the analysis context data for context sen...
Defines enum values for all the target-independent builtin functions.
const Decl * D
Expr * E
enum clang::sema::@1718::IndirectLocalPathEntry::EntryKind Kind
static void dump(llvm::raw_ostream &OS, StringRef FunctionName, ArrayRef< CounterExpression > Expressions, ArrayRef< CounterMappingRegion > Regions)
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:1172
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the clang::Expr interface and subclasses for C++ expressions.
llvm::DenseSet< const void * > Visited
Definition: HTMLLogger.cpp:145
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified.
Defines an enumeration for C++ overloaded operators.
static std::string toString(const clang::SanitizerSet &Sanitizers)
Produce a string containing comma-separated names of sanitizers in Sanitizers set.
SourceLocation Loc
Definition: SemaObjC.cpp:759
Defines the clang::SourceLocation class and associated facilities.
Defines various enumerations that describe declaration and type specifiers.
static void warnInvalidLock(ThreadSafetyHandler &Handler, const Expr *MutexExp, const NamedDecl *D, const Expr *DeclExp, StringRef Kind)
Issue a warning about an invalid lock expression.
static bool getStaticBooleanValue(Expr *E, bool &TCond)
static bool neverReturns(const CFGBlock *B)
static void findBlockLocations(CFG *CFGraph, const PostOrderCFGView *SortedGraph, std::vector< CFGBlockInfo > &BlockInfo)
Find the appropriate source locations to use when producing diagnostics for each block in the CFG.
static const ValueDecl * getValueDecl(const Expr *Exp)
Gets the value decl pointer from DeclRefExprs or MemberExprs.
static const Expr * UnpackConstruction(const Expr *E)
C Language Family Type Representation.
__device__ __2f16 b
#define bool
Definition: amdgpuintrin.h:20
AnalysisDeclContext contains the context data for the function, method or block under analysis.
Attr - This represents one attribute.
Definition: Attr.h:43
attr::Kind getKind() const
Definition: Attr.h:89
SourceLocation getLocation() const
Definition: Attr.h:96
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3909
Expr * getLHS() const
Definition: Expr.h:3959
Expr * getRHS() const
Definition: Expr.h:3961
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:4045
Opcode getOpcode() const
Definition: Expr.h:3954
Represents C++ object destructor implicitly generated for automatic object or temporary bound to cons...
Definition: CFG.h:417
const VarDecl * getVarDecl() const
Definition: CFG.h:422
const Stmt * getTriggerStmt() const
Definition: CFG.h:427
Represents a single basic block in a source-level CFG.
Definition: CFG.h:604
pred_iterator pred_end()
Definition: CFG.h:967
succ_iterator succ_end()
Definition: CFG.h:985
bool hasNoReturnElement() const
Definition: CFG.h:1103
CFGElement back() const
Definition: CFG.h:902
bool empty() const
Definition: CFG.h:947
succ_iterator succ_begin()
Definition: CFG.h:984
Stmt * getTerminatorStmt()
Definition: CFG.h:1081
AdjacentBlocks::const_iterator const_pred_iterator
Definition: CFG.h:953
pred_iterator pred_begin()
Definition: CFG.h:966
unsigned getBlockID() const
Definition: CFG.h:1105
Stmt * getTerminatorCondition(bool StripParens=true)
Definition: CFG.cpp:6270
AdjacentBlocks::const_iterator const_succ_iterator
Definition: CFG.h:960
Represents a top-level expression in a basic block.
Definition: CFG.h:55
@ CleanupFunction
Definition: CFG.h:79
@ AutomaticObjectDtor
Definition: CFG.h:72
@ TemporaryDtor
Definition: CFG.h:76
T castAs() const
Convert to the specified CFGElement type, asserting that this CFGElement is of the desired type.
Definition: CFG.h:99
const CXXDestructorDecl * getDestructorDecl(ASTContext &astContext) const
Definition: CFG.cpp:5295
const Stmt * getStmt() const
Definition: CFG.h:138
Represents C++ object destructor implicitly generated at the end of full expression for temporary obj...
Definition: CFG.h:510
Represents a source-level, intra-procedural CFG that represents the control-flow of a Stmt.
Definition: CFG.h:1214
CFGBlock & getExit()
Definition: CFG.h:1324
CFGBlock & getEntry()
Definition: CFG.h:1322
unsigned getNumBlockIDs() const
Returns the total number of BlockIDs allocated (which start at 0).
Definition: CFG.h:1402
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1546
arg_iterator arg_begin()
Definition: ExprCXX.h:1675
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1689
arg_iterator arg_end()
Definition: ExprCXX.h:1676
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1609
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2553
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2078
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2874
arg_iterator arg_begin()
Definition: Expr.h:3121
arg_iterator arg_end()
Definition: Expr.h:3124
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:3047
Decl * getCalleeDecl()
Definition: Expr.h:3041
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3547
CastKind getCastKind() const
Definition: Expr.h:3591
Expr * getSubExpr()
Definition: Expr.h:3597
ConstStmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:195
DeclStmt - Adaptor class for mixing declarations with statements and expressions.
Definition: Stmt.h:1519
bool hasAttrs() const
Definition: DeclBase.h:521
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition: DeclBase.h:562
SourceLocation getLocation() const
Definition: DeclBase.h:442
bool isDefinedOutsideFunctionOrMethod() const
isDefinedOutsideFunctionOrMethod - This predicate returns true if this scoped decl is defined outside...
Definition: DeclBase.h:938
DeclContext * getDeclContext()
Definition: DeclBase.h:451
attr_range attrs() const
Definition: DeclBase.h:538
bool hasAttr() const
Definition: DeclBase.h:580
This represents one expression.
Definition: Expr.h:110
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3095
Expr * IgnoreImplicit() LLVM_READONLY
Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3078
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3086
bool isPRValue() const
Definition: Expr.h:278
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:277
QualType getType() const
Definition: Expr.h:142
Represents a function declaration or definition.
Definition: Decl.h:1935
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2649
FunctionDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:3623
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4734
Expr * getSubExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue.
Definition: ExprCXX.h:4751
ValueDecl * getExtendingDecl()
Get the declaration which triggered the lifetime-extension of this temporary, if any.
Definition: ExprCXX.h:4784
This represents a decl that may have a name.
Definition: Decl.h:253
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:280
Represents a parameter to a function.
Definition: Decl.h:1725
Implements a set of CFGBlocks using a BitVector.
A (possibly-)qualified type.
Definition: Type.h:929
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:8004
ReturnStmt - This represents a return, optionally of an expression: return; return 4;.
Definition: Stmt.h:3046
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
Stmt - This represents one statement.
Definition: Stmt.h:84
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:357
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Definition: ASTDumper.cpp:288
The type-property cache.
Definition: Type.cpp:4501
bool isReferenceType() const
Definition: Type.h:8204
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isLValueReferenceType() const
Definition: Type.h:8208
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8731
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2232
Expr * getSubExpr() const
Definition: Expr.h:2277
Opcode getOpcode() const
Definition: Expr.h:2272
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:671
QualType getType() const
Definition: Decl.h:682
void checkBeforeAfter(const ValueDecl *Vd, const FactSet &FSet, ThreadSafetyAnalyzer &Analyzer, SourceLocation Loc, StringRef CapKind)
Return true if any mutexes in FSet are in the acquired_before set of Vd.
BeforeInfo * insertAttrExprs(const ValueDecl *Vd, ThreadSafetyAnalyzer &Analyzer)
Process acquired_before and acquired_after attributes on Vd.
BeforeInfo * getBeforeInfoForDecl(const ValueDecl *Vd, ThreadSafetyAnalyzer &Analyzer)
const PostOrderCFGView * getSortedGraph() const
const NamedDecl * getDecl() const
bool init(AnalysisDeclContext &AC)
bool equals(const CapabilityExpr &other) const
const til::SExpr * sexpr() const
const ValueDecl * valueDecl() const
Handler class for thread safety warnings.
Definition: ThreadSafety.h:99
virtual void handleInvalidLockExp(SourceLocation Loc)
Warn about lock expressions which fail to resolve to lockable objects.
Definition: ThreadSafety.h:108
virtual void enterFunction(const FunctionDecl *FD)
Called by the analysis when starting analysis of a function.
Definition: ThreadSafety.h:271
virtual void handleIncorrectUnlockKind(StringRef Kind, Name LockName, LockKind Expected, LockKind Received, SourceLocation LocLocked, SourceLocation LocUnlock)
Warn about an unlock function call that attempts to unlock a lock with the incorrect lock kind.
Definition: ThreadSafety.h:131
virtual void leaveFunction(const FunctionDecl *FD)
Called by the analysis when finishing analysis of a function.
Definition: ThreadSafety.h:274
virtual void handleExclusiveAndShared(StringRef Kind, Name LockName, SourceLocation Loc1, SourceLocation Loc2)
Warn when a mutex is held exclusively and shared at the same point.
Definition: ThreadSafety.h:172
virtual void handleMutexNotHeld(StringRef Kind, const NamedDecl *D, ProtectedOperationKind POK, Name LockName, LockKind LK, SourceLocation Loc, Name *PossibleMatch=nullptr)
Warn when a protected operation occurs while the specific mutex protecting the operation is not locke...
Definition: ThreadSafety.h:193
virtual void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName, SourceLocation Loc)
Warn when a function is called while an excluded mutex is locked.
Definition: ThreadSafety.h:223
virtual void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK, AccessKind AK, SourceLocation Loc)
Warn when a protected operation occurs while no locks are held.
Definition: ThreadSafety.h:181
virtual void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc, SourceLocation LocPreviousUnlock)
Warn about unlock function calls that do not have a prior matching lock expression.
Definition: ThreadSafety.h:117
virtual void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg, SourceLocation Loc)
Warn when acquiring a lock that the negative capability is not held.
Definition: ThreadSafety.h:205
virtual void handleMutexHeldEndOfScope(StringRef Kind, Name LockName, SourceLocation LocLocked, SourceLocation LocEndOfScope, LockErrorKind LEK)
Warn about situations where a mutex is sometimes held and sometimes not.
Definition: ThreadSafety.h:159
virtual void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked, SourceLocation LocDoubleLock)
Warn about lock function calls for locks which are already held.
Definition: ThreadSafety.h:142
A Literal pointer to an object allocated in memory.
Base class for AST nodes in the typed intermediate language.
internal::Matcher< T > traverse(TraversalKind TK, const internal::Matcher< T > &InnerMatcher)
Causes all nested matchers to be matched with the specified traversal kind.
Definition: ASTMatchers.h:817
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:70
@ CF
Indicates that the tracked object is a CF object.
bool Dec(InterpState &S, CodePtr OpPC)
1) Pops a pointer from the stack 2) Load the value from the pointer 3) Writes the value decreased by ...
Definition: Interp.h:849
bool Neg(InterpState &S, CodePtr OpPC)
Definition: Interp.h:726
bool matches(const til::SExpr *E1, const til::SExpr *E2)
LockKind getLockKindFromAccessKind(AccessKind AK)
Helper function that returns a LockKind required for the given level of access.
void threadSafetyCleanup(BeforeSet *Cache)
AccessKind
This enum distinguishes between different ways to access (read or write) a variable.
Definition: ThreadSafety.h:75
@ AK_Written
Writing a variable.
Definition: ThreadSafety.h:80
@ AK_Read
Reading a variable.
Definition: ThreadSafety.h:77
LockKind
This enum distinguishes between different kinds of lock actions.
Definition: ThreadSafety.h:62
@ LK_Shared
Shared/reader lock of a mutex.
Definition: ThreadSafety.h:64
@ LK_Exclusive
Exclusive/writer lock of a mutex.
Definition: ThreadSafety.h:67
@ LK_Generic
Can be either Shared or Exclusive.
Definition: ThreadSafety.h:70
void runThreadSafetyAnalysis(AnalysisDeclContext &AC, ThreadSafetyHandler &Handler, BeforeSet **Bset)
Check a function's CFG for thread-safety violations.
ProtectedOperationKind
This enum distinguishes between different kinds of operations that may need to be protected by locks.
Definition: ThreadSafety.h:36
@ POK_PtPassByRef
Passing a pt-guarded variable by reference.
Definition: ThreadSafety.h:50
@ POK_VarDereference
Dereferencing a variable (e.g. p in *p = 5;)
Definition: ThreadSafety.h:38
@ POK_PassByRef
Passing a guarded variable by reference.
Definition: ThreadSafety.h:47
@ POK_ReturnByRef
Returning a guarded variable by reference.
Definition: ThreadSafety.h:53
@ POK_VarAccess
Reading or writing a variable (e.g. x in x = 5;)
Definition: ThreadSafety.h:41
@ POK_FunctionCall
Making a function call (e.g. fool())
Definition: ThreadSafety.h:44
@ POK_PtReturnByRef
Returning a pt-guarded variable by reference.
Definition: ThreadSafety.h:56
The JSON file list parser is used to communicate input to InstallAPI.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
@ Self
'self' clause, allowed on Compute and Combined Constructs, plus 'update'.
@ Result
The result type of a method or function.
const FunctionProtoType * T
Iterator for iterating over Stmt * arrays that contain only T *.
Definition: Stmt.h:1338