clang 20.0.0git
SemaDeclObjC.cpp
Go to the documentation of this file.
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective C declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
17#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
23#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/Scope.h"
29#include "clang/Sema/SemaObjC.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/DenseSet.h"
32
33using namespace clang;
34
35/// Check whether the given method, which must be in the 'init'
36/// family, is a valid member of that family.
37///
38/// \param receiverTypeIfCall - if null, check this as if declaring it;
39/// if non-null, check this as if making a call to it with the given
40/// receiver type
41///
42/// \return true to indicate that there was an error and appropriate
43/// actions were taken
45 QualType receiverTypeIfCall) {
46 ASTContext &Context = getASTContext();
47 if (method->isInvalidDecl()) return true;
48
49 // This castAs is safe: methods that don't return an object
50 // pointer won't be inferred as inits and will reject an explicit
51 // objc_method_family(init).
52
53 // We ignore protocols here. Should we? What about Class?
54
55 const ObjCObjectType *result =
57
58 if (result->isObjCId()) {
59 return false;
60 } else if (result->isObjCClass()) {
61 // fall through: always an error
62 } else {
63 ObjCInterfaceDecl *resultClass = result->getInterface();
64 assert(resultClass && "unexpected object type!");
65
66 // It's okay for the result type to still be a forward declaration
67 // if we're checking an interface declaration.
68 if (!resultClass->hasDefinition()) {
69 if (receiverTypeIfCall.isNull() &&
70 !isa<ObjCImplementationDecl>(method->getDeclContext()))
71 return false;
72
73 // Otherwise, we try to compare class types.
74 } else {
75 // If this method was declared in a protocol, we can't check
76 // anything unless we have a receiver type that's an interface.
77 const ObjCInterfaceDecl *receiverClass = nullptr;
78 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
79 if (receiverTypeIfCall.isNull())
80 return false;
81
82 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
83 ->getInterfaceDecl();
84
85 // This can be null for calls to e.g. id<Foo>.
86 if (!receiverClass) return false;
87 } else {
88 receiverClass = method->getClassInterface();
89 assert(receiverClass && "method not associated with a class!");
90 }
91
92 // If either class is a subclass of the other, it's fine.
93 if (receiverClass->isSuperClassOf(resultClass) ||
94 resultClass->isSuperClassOf(receiverClass))
95 return false;
96 }
97 }
98
99 SourceLocation loc = method->getLocation();
100
101 // If we're in a system header, and this is not a call, just make
102 // the method unusable.
103 if (receiverTypeIfCall.isNull() &&
105 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
106 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
107 return true;
108 }
109
110 // Otherwise, it's an error.
111 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
112 method->setInvalidDecl();
113 return true;
114}
115
116/// Issue a warning if the parameter of the overridden method is non-escaping
117/// but the parameter of the overriding method is not.
118static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
119 Sema &S) {
120 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
121 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
122 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
123 return false;
124 }
125
126 return true;
127}
128
129/// Produce additional diagnostics if a category conforms to a protocol that
130/// defines a method taking a non-escaping parameter.
131static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
132 const ObjCCategoryDecl *CD,
133 const ObjCProtocolDecl *PD, Sema &S) {
134 if (!diagnoseNoescape(NewD, OldD, S))
135 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
136 << CD->IsClassExtension() << PD
137 << cast<ObjCMethodDecl>(NewD->getDeclContext());
138}
139
141 const ObjCMethodDecl *Overridden) {
142 ASTContext &Context = getASTContext();
143 if (Overridden->hasRelatedResultType() &&
144 !NewMethod->hasRelatedResultType()) {
145 // This can only happen when the method follows a naming convention that
146 // implies a related result type, and the original (overridden) method has
147 // a suitable return type, but the new (overriding) method does not have
148 // a suitable return type.
149 QualType ResultType = NewMethod->getReturnType();
150 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
151
152 // Figure out which class this method is part of, if any.
153 ObjCInterfaceDecl *CurrentClass
154 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
155 if (!CurrentClass) {
156 DeclContext *DC = NewMethod->getDeclContext();
157 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
158 CurrentClass = Cat->getClassInterface();
159 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
160 CurrentClass = Impl->getClassInterface();
161 else if (ObjCCategoryImplDecl *CatImpl
162 = dyn_cast<ObjCCategoryImplDecl>(DC))
163 CurrentClass = CatImpl->getClassInterface();
164 }
165
166 if (CurrentClass) {
167 Diag(NewMethod->getLocation(),
168 diag::warn_related_result_type_compatibility_class)
169 << Context.getObjCInterfaceType(CurrentClass)
170 << ResultType
171 << ResultTypeRange;
172 } else {
173 Diag(NewMethod->getLocation(),
174 diag::warn_related_result_type_compatibility_protocol)
175 << ResultType
176 << ResultTypeRange;
177 }
178
179 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
180 Diag(Overridden->getLocation(),
181 diag::note_related_result_type_family)
182 << /*overridden method*/ 0
183 << Family;
184 else
185 Diag(Overridden->getLocation(),
186 diag::note_related_result_type_overridden);
187 }
188
189 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
190 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
191 Diag(NewMethod->getLocation(),
192 getLangOpts().ObjCAutoRefCount
193 ? diag::err_nsreturns_retained_attribute_mismatch
194 : diag::warn_nsreturns_retained_attribute_mismatch)
195 << 1;
196 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
197 }
198 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
199 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
200 Diag(NewMethod->getLocation(),
201 getLangOpts().ObjCAutoRefCount
202 ? diag::err_nsreturns_retained_attribute_mismatch
203 : diag::warn_nsreturns_retained_attribute_mismatch)
204 << 0;
205 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
206 }
207
209 oe = Overridden->param_end();
210 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
211 ne = NewMethod->param_end();
212 ni != ne && oi != oe; ++ni, ++oi) {
213 const ParmVarDecl *oldDecl = (*oi);
214 ParmVarDecl *newDecl = (*ni);
215 if (newDecl->hasAttr<NSConsumedAttr>() !=
216 oldDecl->hasAttr<NSConsumedAttr>()) {
217 Diag(newDecl->getLocation(),
218 getLangOpts().ObjCAutoRefCount
219 ? diag::err_nsconsumed_attribute_mismatch
220 : diag::warn_nsconsumed_attribute_mismatch);
221 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
222 }
223
224 diagnoseNoescape(newDecl, oldDecl, SemaRef);
225 }
226}
227
228/// Check a method declaration for compatibility with the Objective-C
229/// ARC conventions.
231 ASTContext &Context = getASTContext();
232 ObjCMethodFamily family = method->getMethodFamily();
233 switch (family) {
234 case OMF_None:
235 case OMF_finalize:
236 case OMF_retain:
237 case OMF_release:
238 case OMF_autorelease:
239 case OMF_retainCount:
240 case OMF_self:
241 case OMF_initialize:
243 return false;
244
245 case OMF_dealloc:
246 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
247 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
248 if (ResultTypeRange.isInvalid())
249 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
250 << method->getReturnType()
251 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
252 else
253 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
254 << method->getReturnType()
255 << FixItHint::CreateReplacement(ResultTypeRange, "void");
256 return true;
257 }
258 return false;
259
260 case OMF_init:
261 // If the method doesn't obey the init rules, don't bother annotating it.
262 if (checkInitMethod(method, QualType()))
263 return true;
264
265 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
266
267 // Don't add a second copy of this attribute, but otherwise don't
268 // let it be suppressed.
269 if (method->hasAttr<NSReturnsRetainedAttr>())
270 return false;
271 break;
272
273 case OMF_alloc:
274 case OMF_copy:
275 case OMF_mutableCopy:
276 case OMF_new:
277 if (method->hasAttr<NSReturnsRetainedAttr>() ||
278 method->hasAttr<NSReturnsNotRetainedAttr>() ||
279 method->hasAttr<NSReturnsAutoreleasedAttr>())
280 return false;
281 break;
282 }
283
284 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
285 return false;
286}
287
289 SourceLocation ImplLoc) {
290 if (!ND)
291 return;
292 bool IsCategory = false;
293 StringRef RealizedPlatform;
294 AvailabilityResult Availability = ND->getAvailability(
295 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
296 &RealizedPlatform);
297 if (Availability != AR_Deprecated) {
298 if (isa<ObjCMethodDecl>(ND)) {
299 if (Availability != AR_Unavailable)
300 return;
301 if (RealizedPlatform.empty())
302 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
303 // Warn about implementing unavailable methods, unless the unavailable
304 // is for an app extension.
305 if (RealizedPlatform.ends_with("_app_extension"))
306 return;
307 S.Diag(ImplLoc, diag::warn_unavailable_def);
308 S.Diag(ND->getLocation(), diag::note_method_declared_at)
309 << ND->getDeclName();
310 return;
311 }
312 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
313 if (!CD->getClassInterface()->isDeprecated())
314 return;
315 ND = CD->getClassInterface();
316 IsCategory = true;
317 } else
318 return;
319 }
320 S.Diag(ImplLoc, diag::warn_deprecated_def)
321 << (isa<ObjCMethodDecl>(ND)
322 ? /*Method*/ 0
323 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
324 : /*Class*/ 1);
325 if (isa<ObjCMethodDecl>(ND))
326 S.Diag(ND->getLocation(), diag::note_method_declared_at)
327 << ND->getDeclName();
328 else
329 S.Diag(ND->getLocation(), diag::note_previous_decl)
330 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
331}
332
333/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
334/// pool.
336 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
337
338 // If we don't have a valid method decl, simply return.
339 if (!MDecl)
340 return;
341 if (MDecl->isInstanceMethod())
343 else
344 AddFactoryMethodToGlobalPool(MDecl, true);
345}
346
347/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
348/// has explicit ownership attribute; false otherwise.
349static bool
351 QualType T = Param->getType();
352
353 if (const PointerType *PT = T->getAs<PointerType>()) {
354 T = PT->getPointeeType();
355 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
356 T = RT->getPointeeType();
357 } else {
358 return true;
359 }
360
361 // If we have a lifetime qualifier, but it's local, we must have
362 // inferred it. So, it is implicit.
363 return !T.getLocalQualifiers().hasObjCLifetime();
364}
365
366/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
367/// and user declared, in the method definition's AST.
369 ASTContext &Context = getASTContext();
371 assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused");
372 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
373
375 SemaRef.ExprEvalContexts.back().Context);
376
377 // If we don't have a valid method decl, simply return.
378 if (!MDecl)
379 return;
380
381 QualType ResultType = MDecl->getReturnType();
382 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
383 !MDecl->isInvalidDecl() &&
384 SemaRef.RequireCompleteType(MDecl->getLocation(), ResultType,
385 diag::err_func_def_incomplete_result))
386 MDecl->setInvalidDecl();
387
388 // Allow all of Sema to see that we are entering a method definition.
389 SemaRef.PushDeclContext(FnBodyScope, MDecl);
391
392 // Create Decl objects for each parameter, entrring them in the scope for
393 // binding to their use.
394
395 // Insert the invisible arguments, self and _cmd!
396 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
397
398 SemaRef.PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
399 SemaRef.PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
400
401 // The ObjC parser requires parameter names so there's no need to check.
403 /*CheckParameterNames=*/false);
404
405 // Introduce all of the other parameters into this scope.
406 for (auto *Param : MDecl->parameters()) {
407 if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount &&
409 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
410 Param->getType();
411
412 if (Param->getIdentifier())
413 SemaRef.PushOnScopeChains(Param, FnBodyScope);
414 }
415
416 // In ARC, disallow definition of retain/release/autorelease/retainCount
417 if (getLangOpts().ObjCAutoRefCount) {
418 switch (MDecl->getMethodFamily()) {
419 case OMF_retain:
420 case OMF_retainCount:
421 case OMF_release:
422 case OMF_autorelease:
423 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
424 << 0 << MDecl->getSelector();
425 break;
426
427 case OMF_None:
428 case OMF_dealloc:
429 case OMF_finalize:
430 case OMF_alloc:
431 case OMF_init:
432 case OMF_mutableCopy:
433 case OMF_copy:
434 case OMF_new:
435 case OMF_self:
436 case OMF_initialize:
438 break;
439 }
440 }
441
442 // Warn on deprecated methods under -Wdeprecated-implementations,
443 // and prepare for warning on missing super calls.
444 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
445 ObjCMethodDecl *IMD =
446 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
447
448 if (IMD) {
449 ObjCImplDecl *ImplDeclOfMethodDef =
450 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
451 ObjCContainerDecl *ContDeclOfMethodDecl =
452 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
453 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
454 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
455 ImplDeclOfMethodDecl = OID->getImplementation();
456 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
457 if (CD->IsClassExtension()) {
458 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
459 ImplDeclOfMethodDecl = OID->getImplementation();
460 } else
461 ImplDeclOfMethodDecl = CD->getImplementation();
462 }
463 // No need to issue deprecated warning if deprecated mehod in class/category
464 // is being implemented in its own implementation (no overriding is involved).
465 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
467 }
468
469 if (MDecl->getMethodFamily() == OMF_init) {
473 IC->getSuperClass() != nullptr;
474 } else if (IC->hasDesignatedInitializers()) {
477 }
478 }
479
480 // If this is "dealloc" or "finalize", set some bit here.
481 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
482 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
483 // Only do this if the current class actually has a superclass.
484 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
485 ObjCMethodFamily Family = MDecl->getMethodFamily();
486 if (Family == OMF_dealloc) {
487 if (!(getLangOpts().ObjCAutoRefCount ||
488 getLangOpts().getGC() == LangOptions::GCOnly))
490
491 } else if (Family == OMF_finalize) {
492 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
494
495 } else {
496 const ObjCMethodDecl *SuperMethod =
497 SuperClass->lookupMethod(MDecl->getSelector(),
498 MDecl->isInstanceMethod());
500 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
501 }
502 }
503 }
504
505 // Some function attributes (like OptimizeNoneAttr) need actions before
506 // parsing body started.
508}
509
510namespace {
511
512// Callback to only accept typo corrections that are Objective-C classes.
513// If an ObjCInterfaceDecl* is given to the constructor, then the validation
514// function will reject corrections to that class.
515class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
516 public:
517 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
518 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
519 : CurrentIDecl(IDecl) {}
520
521 bool ValidateCandidate(const TypoCorrection &candidate) override {
523 return ID && !declaresSameEntity(ID, CurrentIDecl);
524 }
525
526 std::unique_ptr<CorrectionCandidateCallback> clone() override {
527 return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
528 }
529
530 private:
531 ObjCInterfaceDecl *CurrentIDecl;
532};
533
534} // end anonymous namespace
535
536static void diagnoseUseOfProtocols(Sema &TheSema,
538 ObjCProtocolDecl *const *ProtoRefs,
539 unsigned NumProtoRefs,
540 const SourceLocation *ProtoLocs) {
541 assert(ProtoRefs);
542 // Diagnose availability in the context of the ObjC container.
543 Sema::ContextRAII SavedContext(TheSema, CD);
544 for (unsigned i = 0; i < NumProtoRefs; ++i) {
545 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
546 /*UnknownObjCClass=*/nullptr,
547 /*ObjCPropertyAccess=*/false,
548 /*AvoidPartialAvailabilityChecks=*/true);
549 }
550}
551
553 Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl,
554 IdentifierInfo *ClassName, SourceLocation ClassLoc,
555 IdentifierInfo *SuperName, SourceLocation SuperLoc,
556 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) {
557 ASTContext &Context = getASTContext();
558 // Check if a different kind of symbol declared in this scope.
560 SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
561
562 if (!PrevDecl) {
563 // Try to correct for a typo in the superclass name without correcting
564 // to the class we're defining.
565 ObjCInterfaceValidatorCCC CCC(IDecl);
566 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
567 DeclarationNameInfo(SuperName, SuperLoc), Sema::LookupOrdinaryName,
568 SemaRef.TUScope, nullptr, CCC, Sema::CTK_ErrorRecovery)) {
569 SemaRef.diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
570 << SuperName << ClassName);
571 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
572 }
573 }
574
575 if (declaresSameEntity(PrevDecl, IDecl)) {
576 Diag(SuperLoc, diag::err_recursive_superclass)
577 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
578 IDecl->setEndOfDefinitionLoc(ClassLoc);
579 } else {
580 ObjCInterfaceDecl *SuperClassDecl =
581 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
582 QualType SuperClassType;
583
584 // Diagnose classes that inherit from deprecated classes.
585 if (SuperClassDecl) {
586 (void)SemaRef.DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
587 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
588 }
589
590 if (PrevDecl && !SuperClassDecl) {
591 // The previous declaration was not a class decl. Check if we have a
592 // typedef. If we do, get the underlying class type.
593 if (const TypedefNameDecl *TDecl =
594 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
595 QualType T = TDecl->getUnderlyingType();
596 if (T->isObjCObjectType()) {
597 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
598 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
599 SuperClassType = Context.getTypeDeclType(TDecl);
600
601 // This handles the following case:
602 // @interface NewI @end
603 // typedef NewI DeprI __attribute__((deprecated("blah")))
604 // @interface SI : DeprI /* warn here */ @end
606 const_cast<TypedefNameDecl *>(TDecl), SuperLoc);
607 }
608 }
609 }
610
611 // This handles the following case:
612 //
613 // typedef int SuperClass;
614 // @interface MyClass : SuperClass {} @end
615 //
616 if (!SuperClassDecl) {
617 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
618 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
619 }
620 }
621
622 if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
623 if (!SuperClassDecl)
624 Diag(SuperLoc, diag::err_undef_superclass)
625 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
627 SuperLoc, SuperClassType, diag::err_forward_superclass,
628 SuperClassDecl->getDeclName(), ClassName,
629 SourceRange(AtInterfaceLoc, ClassLoc))) {
630 SuperClassDecl = nullptr;
631 SuperClassType = QualType();
632 }
633 }
634
635 if (SuperClassType.isNull()) {
636 assert(!SuperClassDecl && "Failed to set SuperClassType?");
637 return;
638 }
639
640 // Handle type arguments on the superclass.
641 TypeSourceInfo *SuperClassTInfo = nullptr;
642 if (!SuperTypeArgs.empty()) {
644 S, SuperLoc, SemaRef.CreateParsedType(SuperClassType, nullptr),
645 SuperTypeArgsRange.getBegin(), SuperTypeArgs,
646 SuperTypeArgsRange.getEnd(), SourceLocation(), {}, {},
648 if (!fullSuperClassType.isUsable())
649 return;
650
651 SuperClassType =
652 SemaRef.GetTypeFromParser(fullSuperClassType.get(), &SuperClassTInfo);
653 }
654
655 if (!SuperClassTInfo) {
656 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
657 SuperLoc);
658 }
659
660 IDecl->setSuperClass(SuperClassTInfo);
661 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
662 }
663}
664
666 Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc,
667 unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc,
668 SourceLocation colonLoc, ParsedType parsedTypeBound) {
669 ASTContext &Context = getASTContext();
670 // If there was an explicitly-provided type bound, check it.
671 TypeSourceInfo *typeBoundInfo = nullptr;
672 if (parsedTypeBound) {
673 // The type bound can be any Objective-C pointer type.
674 QualType typeBound =
675 SemaRef.GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
676 if (typeBound->isObjCObjectPointerType()) {
677 // okay
678 } else if (typeBound->isObjCObjectType()) {
679 // The user forgot the * on an Objective-C pointer type, e.g.,
680 // "T : NSView".
681 SourceLocation starLoc =
683 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
684 diag::err_objc_type_param_bound_missing_pointer)
685 << typeBound << paramName
686 << FixItHint::CreateInsertion(starLoc, " *");
687
688 // Create a new type location builder so we can update the type
689 // location information we have.
690 TypeLocBuilder builder;
691 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
692
693 // Create the Objective-C pointer type.
694 typeBound = Context.getObjCObjectPointerType(typeBound);
696 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
697 newT.setStarLoc(starLoc);
698
699 // Form the new type source information.
700 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
701 } else {
702 // Not a valid type bound.
703 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
704 diag::err_objc_type_param_bound_nonobject)
705 << typeBound << paramName;
706
707 // Forget the bound; we'll default to id later.
708 typeBoundInfo = nullptr;
709 }
710
711 // Type bounds cannot have qualifiers (even indirectly) or explicit
712 // nullability.
713 if (typeBoundInfo) {
714 QualType typeBound = typeBoundInfo->getType();
715 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
716 if (qual || typeBound.hasQualifiers()) {
717 bool diagnosed = false;
718 SourceRange rangeToRemove;
719 if (qual) {
720 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
721 rangeToRemove = attr.getLocalSourceRange();
722 if (attr.getTypePtr()->getImmediateNullability()) {
723 Diag(attr.getBeginLoc(),
724 diag::err_objc_type_param_bound_explicit_nullability)
725 << paramName << typeBound
726 << FixItHint::CreateRemoval(rangeToRemove);
727 diagnosed = true;
728 }
729 }
730 }
731
732 if (!diagnosed) {
733 Diag(qual ? qual.getBeginLoc()
734 : typeBoundInfo->getTypeLoc().getBeginLoc(),
735 diag::err_objc_type_param_bound_qualified)
736 << paramName << typeBound
737 << typeBound.getQualifiers().getAsString()
738 << FixItHint::CreateRemoval(rangeToRemove);
739 }
740
741 // If the type bound has qualifiers other than CVR, we need to strip
742 // them or we'll probably assert later when trying to apply new
743 // qualifiers.
744 Qualifiers quals = typeBound.getQualifiers();
745 quals.removeCVRQualifiers();
746 if (!quals.empty()) {
747 typeBoundInfo =
748 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
749 }
750 }
751 }
752 }
753
754 // If there was no explicit type bound (or we removed it due to an error),
755 // use 'id' instead.
756 if (!typeBoundInfo) {
757 colonLoc = SourceLocation();
758 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
759 }
760
761 // Create the type parameter.
762 return ObjCTypeParamDecl::Create(Context, SemaRef.CurContext, variance,
763 varianceLoc, index, paramLoc, paramName,
764 colonLoc, typeBoundInfo);
765}
766
769 ArrayRef<Decl *> typeParamsIn,
770 SourceLocation rAngleLoc) {
771 ASTContext &Context = getASTContext();
772 // We know that the array only contains Objective-C type parameters.
774 typeParams(
775 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
776 typeParamsIn.size());
777
778 // Diagnose redeclarations of type parameters.
779 // We do this now because Objective-C type parameters aren't pushed into
780 // scope until later (after the instance variable block), but we want the
781 // diagnostics to occur right after we parse the type parameter list.
782 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
783 for (auto *typeParam : typeParams) {
784 auto known = knownParams.find(typeParam->getIdentifier());
785 if (known != knownParams.end()) {
786 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
787 << typeParam->getIdentifier()
788 << SourceRange(known->second->getLocation());
789
790 typeParam->setInvalidDecl();
791 } else {
792 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
793
794 // Push the type parameter into scope.
795 SemaRef.PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
796 }
797 }
798
799 // Create the parameter list.
800 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
801}
802
804 ObjCTypeParamList *typeParamList) {
805 for (auto *typeParam : *typeParamList) {
806 if (!typeParam->isInvalidDecl()) {
807 S->RemoveDecl(typeParam);
808 SemaRef.IdResolver.RemoveDecl(typeParam);
809 }
810 }
811}
812
813namespace {
814 /// The context in which an Objective-C type parameter list occurs, for use
815 /// in diagnostics.
816 enum class TypeParamListContext {
817 ForwardDeclaration,
819 Category,
820 Extension
821 };
822} // end anonymous namespace
823
824/// Check consistency between two Objective-C type parameter lists, e.g.,
825/// between a category/extension and an \@interface or between an \@class and an
826/// \@interface.
828 ObjCTypeParamList *prevTypeParams,
829 ObjCTypeParamList *newTypeParams,
830 TypeParamListContext newContext) {
831 // If the sizes don't match, complain about that.
832 if (prevTypeParams->size() != newTypeParams->size()) {
833 SourceLocation diagLoc;
834 if (newTypeParams->size() > prevTypeParams->size()) {
835 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
836 } else {
837 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
838 }
839
840 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
841 << static_cast<unsigned>(newContext)
842 << (newTypeParams->size() > prevTypeParams->size())
843 << prevTypeParams->size()
844 << newTypeParams->size();
845
846 return true;
847 }
848
849 // Match up the type parameters.
850 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
851 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
852 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
853
854 // Check for consistency of the variance.
855 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
856 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
857 newContext != TypeParamListContext::Definition) {
858 // When the new type parameter is invariant and is not part
859 // of the definition, just propagate the variance.
860 newTypeParam->setVariance(prevTypeParam->getVariance());
861 } else if (prevTypeParam->getVariance()
863 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
864 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
865 ->getDefinition() == prevTypeParam->getDeclContext())) {
866 // When the old parameter is invariant and was not part of the
867 // definition, just ignore the difference because it doesn't
868 // matter.
869 } else {
870 {
871 // Diagnose the conflict and update the second declaration.
872 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
873 if (diagLoc.isInvalid())
874 diagLoc = newTypeParam->getBeginLoc();
875
876 auto diag = S.Diag(diagLoc,
877 diag::err_objc_type_param_variance_conflict)
878 << static_cast<unsigned>(newTypeParam->getVariance())
879 << newTypeParam->getDeclName()
880 << static_cast<unsigned>(prevTypeParam->getVariance())
881 << prevTypeParam->getDeclName();
882 switch (prevTypeParam->getVariance()) {
884 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
885 break;
886
889 StringRef newVarianceStr
891 ? "__covariant"
892 : "__contravariant";
893 if (newTypeParam->getVariance()
895 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
896 (newVarianceStr + " ").str());
897 } else {
898 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
899 newVarianceStr);
900 }
901 }
902 }
903 }
904
905 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
906 << prevTypeParam->getDeclName();
907
908 // Override the variance.
909 newTypeParam->setVariance(prevTypeParam->getVariance());
910 }
911 }
912
913 // If the bound types match, there's nothing to do.
914 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
915 newTypeParam->getUnderlyingType()))
916 continue;
917
918 // If the new type parameter's bound was explicit, complain about it being
919 // different from the original.
920 if (newTypeParam->hasExplicitBound()) {
921 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
924 << newTypeParam->getUnderlyingType()
925 << newTypeParam->getDeclName()
926 << prevTypeParam->hasExplicitBound()
927 << prevTypeParam->getUnderlyingType()
928 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
929 << prevTypeParam->getDeclName()
931 newBoundRange,
932 prevTypeParam->getUnderlyingType().getAsString(
934
935 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
936 << prevTypeParam->getDeclName();
937
938 // Override the new type parameter's bound type with the previous type,
939 // so that it's consistent.
940 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
941 continue;
942 }
943
944 // The new type parameter got the implicit bound of 'id'. That's okay for
945 // categories and extensions (overwrite it later), but not for forward
946 // declarations and @interfaces, because those must be standalone.
947 if (newContext == TypeParamListContext::ForwardDeclaration ||
948 newContext == TypeParamListContext::Definition) {
949 // Diagnose this problem for forward declarations and definitions.
950 SourceLocation insertionLoc
951 = S.getLocForEndOfToken(newTypeParam->getLocation());
952 std::string newCode
953 = " : " + prevTypeParam->getUnderlyingType().getAsString(
955 S.Diag(newTypeParam->getLocation(),
956 diag::err_objc_type_param_bound_missing)
957 << prevTypeParam->getUnderlyingType()
958 << newTypeParam->getDeclName()
959 << (newContext == TypeParamListContext::ForwardDeclaration)
960 << FixItHint::CreateInsertion(insertionLoc, newCode);
961
962 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
963 << prevTypeParam->getDeclName();
964 }
965
966 // Update the new type parameter's bound to match the previous one.
967 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
968 }
969
970 return false;
971}
972
974 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
975 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
976 IdentifierInfo *SuperName, SourceLocation SuperLoc,
977 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
978 Decl *const *ProtoRefs, unsigned NumProtoRefs,
979 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
980 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
981 assert(ClassName && "Missing class identifier");
982
983 ASTContext &Context = getASTContext();
984 // Check for another declaration kind with the same name.
986 SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
988
989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
990 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
991 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
992 }
993
994 // Create a declaration to describe this @interface.
995 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
996
997 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
998 // A previous decl with a different name is because of
999 // @compatibility_alias, for example:
1000 // \code
1001 // @class NewImage;
1002 // @compatibility_alias OldImage NewImage;
1003 // \endcode
1004 // A lookup for 'OldImage' will return the 'NewImage' decl.
1005 //
1006 // In such a case use the real declaration name, instead of the alias one,
1007 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1008 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1009 // has been aliased.
1010 ClassName = PrevIDecl->getIdentifier();
1011 }
1012
1013 // If there was a forward declaration with type parameters, check
1014 // for consistency.
1015 if (PrevIDecl) {
1016 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1017 if (typeParamList) {
1018 // Both have type parameter lists; check for consistency.
1019 if (checkTypeParamListConsistency(SemaRef, prevTypeParamList,
1020 typeParamList,
1021 TypeParamListContext::Definition)) {
1022 typeParamList = nullptr;
1023 }
1024 } else {
1025 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1026 << ClassName;
1027 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1028 << ClassName;
1029
1030 // Clone the type parameter list.
1031 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1032 for (auto *typeParam : *prevTypeParamList) {
1033 clonedTypeParams.push_back(ObjCTypeParamDecl::Create(
1034 Context, SemaRef.CurContext, typeParam->getVariance(),
1035 SourceLocation(), typeParam->getIndex(), SourceLocation(),
1036 typeParam->getIdentifier(), SourceLocation(),
1038 typeParam->getUnderlyingType())));
1039 }
1040
1041 typeParamList = ObjCTypeParamList::create(Context,
1043 clonedTypeParams,
1044 SourceLocation());
1045 }
1046 }
1047 }
1048
1049 ObjCInterfaceDecl *IDecl =
1050 ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1051 ClassName, typeParamList, PrevIDecl, ClassLoc);
1052 if (PrevIDecl) {
1053 // Class already seen. Was it a definition?
1054 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1055 if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1056 SkipBody->CheckSameAsPrevious = true;
1057 SkipBody->New = IDecl;
1058 SkipBody->Previous = Def;
1059 } else {
1060 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1061 << PrevIDecl->getDeclName();
1062 Diag(Def->getLocation(), diag::note_previous_definition);
1063 IDecl->setInvalidDecl();
1064 }
1065 }
1066 }
1067
1070 SemaRef.ProcessAPINotes(IDecl);
1071
1072 // Merge attributes from previous declarations.
1073 if (PrevIDecl)
1074 SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
1075
1077
1078 // Start the definition of this class. If we're in a redefinition case, there
1079 // may already be a definition, so we'll end up adding to it.
1080 if (SkipBody && SkipBody->CheckSameAsPrevious)
1082 else if (!IDecl->hasDefinition())
1083 IDecl->startDefinition();
1084
1085 if (SuperName) {
1086 // Diagnose availability in the context of the @interface.
1087 Sema::ContextRAII SavedContext(SemaRef, IDecl);
1088
1089 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1090 ClassName, ClassLoc,
1091 SuperName, SuperLoc, SuperTypeArgs,
1092 SuperTypeArgsRange);
1093 } else { // we have a root class.
1094 IDecl->setEndOfDefinitionLoc(ClassLoc);
1095 }
1096
1097 // Check then save referenced protocols.
1098 if (NumProtoRefs) {
1099 diagnoseUseOfProtocols(SemaRef, IDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1100 NumProtoRefs, ProtoLocs);
1101 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1102 ProtoLocs, Context);
1103 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1104 }
1105
1106 CheckObjCDeclScope(IDecl);
1108 return IDecl;
1109}
1110
1111/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1112/// typedef'ed use for a qualified super class and adds them to the list
1113/// of the protocols.
1115 SmallVectorImpl<Decl *> &ProtocolRefs,
1116 SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName,
1117 SourceLocation SuperLoc) {
1118 if (!SuperName)
1119 return;
1121 SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
1122 if (!IDecl)
1123 return;
1124
1125 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1126 QualType T = TDecl->getUnderlyingType();
1127 if (T->isObjCObjectType())
1128 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1129 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1130 // FIXME: Consider whether this should be an invalid loc since the loc
1131 // is not actually pointing to a protocol name reference but to the
1132 // typedef reference. Note that the base class name loc is also pointing
1133 // at the typedef.
1134 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1135 }
1136 }
1137}
1138
1139/// ActOnCompatibilityAlias - this action is called after complete parsing of
1140/// a \@compatibility_alias declaration. It sets up the alias relationships.
1142 IdentifierInfo *AliasName,
1143 SourceLocation AliasLocation,
1144 IdentifierInfo *ClassName,
1145 SourceLocation ClassLocation) {
1146 ASTContext &Context = getASTContext();
1147 // Look for previous declaration of alias name
1149 SemaRef.TUScope, AliasName, AliasLocation, Sema::LookupOrdinaryName,
1151 if (ADecl) {
1152 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1153 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1154 return nullptr;
1155 }
1156 // Check for class declaration
1158 SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1160 if (const TypedefNameDecl *TDecl =
1161 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1162 QualType T = TDecl->getUnderlyingType();
1163 if (T->isObjCObjectType()) {
1164 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1165 ClassName = IDecl->getIdentifier();
1166 CDeclU = SemaRef.LookupSingleName(
1167 SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1169 }
1170 }
1171 }
1172 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1173 if (!CDecl) {
1174 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1175 if (CDeclU)
1176 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1177 return nullptr;
1178 }
1179
1180 // Everything checked out, instantiate a new alias declaration AST.
1182 Context, SemaRef.CurContext, AtLoc, AliasName, CDecl);
1183
1186
1187 return AliasDecl;
1188}
1189
1191 IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc,
1192 const ObjCList<ObjCProtocolDecl> &PList) {
1193
1194 bool res = false;
1196 E = PList.end(); I != E; ++I) {
1197 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), Ploc)) {
1198 if (PDecl->getIdentifier() == PName) {
1199 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1200 Diag(PrevLoc, diag::note_previous_definition);
1201 res = true;
1202 }
1203
1204 if (!PDecl->hasDefinition())
1205 continue;
1206
1208 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1209 res = true;
1210 }
1211 }
1212 return res;
1213}
1214
1216 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1217 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1218 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1219 const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1220 ASTContext &Context = getASTContext();
1221 bool err = false;
1222 // FIXME: Deal with AttrList.
1223 assert(ProtocolName && "Missing protocol identifier");
1224 ObjCProtocolDecl *PrevDecl = LookupProtocol(
1225 ProtocolName, ProtocolLoc, SemaRef.forRedeclarationInCurContext());
1226 ObjCProtocolDecl *PDecl = nullptr;
1227 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1228 // Create a new protocol that is completely distinct from previous
1229 // declarations, and do not make this protocol available for name lookup.
1230 // That way, we'll end up completely ignoring the duplicate.
1231 // FIXME: Can we turn this into an error?
1232 PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1233 ProtocolLoc, AtProtoInterfaceLoc,
1234 /*PrevDecl=*/Def);
1235
1236 if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1237 SkipBody->CheckSameAsPrevious = true;
1238 SkipBody->New = PDecl;
1239 SkipBody->Previous = Def;
1240 } else {
1241 // If we already have a definition, complain.
1242 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1243 Diag(Def->getLocation(), diag::note_previous_definition);
1244 }
1245
1246 // If we are using modules, add the decl to the context in order to
1247 // serialize something meaningful.
1248 if (getLangOpts().Modules)
1251 } else {
1252 if (PrevDecl) {
1253 // Check for circular dependencies among protocol declarations. This can
1254 // only happen if this protocol was forward-declared.
1256 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1258 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1259 }
1260
1261 // Create the new declaration.
1262 PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1263 ProtocolLoc, AtProtoInterfaceLoc,
1264 /*PrevDecl=*/PrevDecl);
1265
1267 PDecl->startDefinition();
1268 }
1269
1272 SemaRef.ProcessAPINotes(PDecl);
1273
1274 // Merge attributes from previous declarations.
1275 if (PrevDecl)
1276 SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1277
1278 if (!err && NumProtoRefs ) {
1279 /// Check then save referenced protocols.
1280 diagnoseUseOfProtocols(SemaRef, PDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1281 NumProtoRefs, ProtoLocs);
1282 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1283 ProtoLocs, Context);
1284 }
1285
1286 CheckObjCDeclScope(PDecl);
1288 return PDecl;
1289}
1290
1292 ObjCProtocolDecl *&UndefinedProtocol) {
1293 if (!PDecl->hasDefinition() ||
1295 UndefinedProtocol = PDecl;
1296 return true;
1297 }
1298
1299 for (auto *PI : PDecl->protocols())
1300 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1301 UndefinedProtocol = PI;
1302 return true;
1303 }
1304 return false;
1305}
1306
1307/// FindProtocolDeclaration - This routine looks up protocols and
1308/// issues an error if they are not declared. It returns list of
1309/// protocol declarations in its 'Protocols' argument.
1310void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations,
1311 bool ForObjCContainer,
1312 ArrayRef<IdentifierLocPair> ProtocolId,
1313 SmallVectorImpl<Decl *> &Protocols) {
1314 for (const IdentifierLocPair &Pair : ProtocolId) {
1315 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1316 if (!PDecl) {
1318 TypoCorrection Corrected =
1319 SemaRef.CorrectTypo(DeclarationNameInfo(Pair.first, Pair.second),
1321 nullptr, CCC, Sema::CTK_ErrorRecovery);
1322 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1323 SemaRef.diagnoseTypo(Corrected,
1324 PDiag(diag::err_undeclared_protocol_suggest)
1325 << Pair.first);
1326 }
1327
1328 if (!PDecl) {
1329 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1330 continue;
1331 }
1332 // If this is a forward protocol declaration, get its definition.
1333 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1334 PDecl = PDecl->getDefinition();
1335
1336 // For an objc container, delay protocol reference checking until after we
1337 // can set the objc decl as the availability context, otherwise check now.
1338 if (!ForObjCContainer) {
1339 (void)SemaRef.DiagnoseUseOfDecl(PDecl, Pair.second);
1340 }
1341
1342 // If this is a forward declaration and we are supposed to warn in this
1343 // case, do it.
1344 // FIXME: Recover nicely in the hidden case.
1345 ObjCProtocolDecl *UndefinedProtocol;
1346
1347 if (WarnOnDeclarations &&
1348 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1349 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1350 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1351 << UndefinedProtocol;
1352 }
1353 Protocols.push_back(PDecl);
1354 }
1355}
1356
1357namespace {
1358// Callback to only accept typo corrections that are either
1359// Objective-C protocols or valid Objective-C type arguments.
1360class ObjCTypeArgOrProtocolValidatorCCC final
1362 ASTContext &Context;
1363 Sema::LookupNameKind LookupKind;
1364 public:
1365 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1366 Sema::LookupNameKind lookupKind)
1367 : Context(context), LookupKind(lookupKind) { }
1368
1369 bool ValidateCandidate(const TypoCorrection &candidate) override {
1370 // If we're allowed to find protocols and we have a protocol, accept it.
1371 if (LookupKind != Sema::LookupOrdinaryName) {
1372 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1373 return true;
1374 }
1375
1376 // If we're allowed to find type names and we have one, accept it.
1377 if (LookupKind != Sema::LookupObjCProtocolName) {
1378 // If we have a type declaration, we might accept this result.
1379 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1380 // If we found a tag declaration outside of C++, skip it. This
1381 // can happy because we look for any name when there is no
1382 // bias to protocol or type names.
1383 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1384 return false;
1385
1386 // Make sure the type is something we would accept as a type
1387 // argument.
1388 auto type = Context.getTypeDeclType(typeDecl);
1389 if (type->isObjCObjectPointerType() ||
1390 type->isBlockPointerType() ||
1391 type->isDependentType() ||
1392 type->isObjCObjectType())
1393 return true;
1394
1395 return false;
1396 }
1397
1398 // If we have an Objective-C class type, accept it; there will
1399 // be another fix to add the '*'.
1400 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1401 return true;
1402
1403 return false;
1404 }
1405
1406 return false;
1407 }
1408
1409 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1410 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1411 }
1412};
1413} // end anonymous namespace
1414
1416 SourceLocation ProtocolLoc,
1417 IdentifierInfo *TypeArgId,
1418 SourceLocation TypeArgLoc,
1419 bool SelectProtocolFirst) {
1420 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1421 << SelectProtocolFirst << TypeArgId << ProtocolId
1422 << SourceRange(ProtocolLoc);
1423}
1424
1426 Scope *S, ParsedType baseType, SourceLocation lAngleLoc,
1427 ArrayRef<IdentifierInfo *> identifiers,
1428 ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc,
1429 SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs,
1430 SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc,
1431 SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc,
1432 bool warnOnIncompleteProtocols) {
1433 ASTContext &Context = getASTContext();
1434 // Local function that updates the declaration specifiers with
1435 // protocol information.
1436 unsigned numProtocolsResolved = 0;
1437 auto resolvedAsProtocols = [&] {
1438 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1439
1440 // Determine whether the base type is a parameterized class, in
1441 // which case we want to warn about typos such as
1442 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1443 ObjCInterfaceDecl *baseClass = nullptr;
1444 QualType base = SemaRef.GetTypeFromParser(baseType, nullptr);
1445 bool allAreTypeNames = false;
1446 SourceLocation firstClassNameLoc;
1447 if (!base.isNull()) {
1448 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1449 baseClass = objcObjectType->getInterface();
1450 if (baseClass) {
1451 if (auto typeParams = baseClass->getTypeParamList()) {
1452 if (typeParams->size() == numProtocolsResolved) {
1453 // Note that we should be looking for type names, too.
1454 allAreTypeNames = true;
1455 }
1456 }
1457 }
1458 }
1459 }
1460
1461 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1462 ObjCProtocolDecl *&proto
1463 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1464 // For an objc container, delay protocol reference checking until after we
1465 // can set the objc decl as the availability context, otherwise check now.
1466 if (!warnOnIncompleteProtocols) {
1467 (void)SemaRef.DiagnoseUseOfDecl(proto, identifierLocs[i]);
1468 }
1469
1470 // If this is a forward protocol declaration, get its definition.
1471 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1472 proto = proto->getDefinition();
1473
1474 // If this is a forward declaration and we are supposed to warn in this
1475 // case, do it.
1476 // FIXME: Recover nicely in the hidden case.
1477 ObjCProtocolDecl *forwardDecl = nullptr;
1478 if (warnOnIncompleteProtocols &&
1479 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1480 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1481 << proto->getDeclName();
1482 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1483 << forwardDecl;
1484 }
1485
1486 // If everything this far has been a type name (and we care
1487 // about such things), check whether this name refers to a type
1488 // as well.
1489 if (allAreTypeNames) {
1490 if (auto *decl =
1491 SemaRef.LookupSingleName(S, identifiers[i], identifierLocs[i],
1493 if (isa<ObjCInterfaceDecl>(decl)) {
1494 if (firstClassNameLoc.isInvalid())
1495 firstClassNameLoc = identifierLocs[i];
1496 } else if (!isa<TypeDecl>(decl)) {
1497 // Not a type.
1498 allAreTypeNames = false;
1499 }
1500 } else {
1501 allAreTypeNames = false;
1502 }
1503 }
1504 }
1505
1506 // All of the protocols listed also have type names, and at least
1507 // one is an Objective-C class name. Check whether all of the
1508 // protocol conformances are declared by the base class itself, in
1509 // which case we warn.
1510 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1512 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1513 bool allProtocolsDeclared = true;
1514 for (auto *proto : protocols) {
1515 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1516 allProtocolsDeclared = false;
1517 break;
1518 }
1519 }
1520
1521 if (allProtocolsDeclared) {
1522 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1523 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1525 SemaRef.getLocForEndOfToken(firstClassNameLoc), " *");
1526 }
1527 }
1528
1529 protocolLAngleLoc = lAngleLoc;
1530 protocolRAngleLoc = rAngleLoc;
1531 assert(protocols.size() == identifierLocs.size());
1532 };
1533
1534 // Attempt to resolve all of the identifiers as protocols.
1535 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1536 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1537 protocols.push_back(proto);
1538 if (proto)
1539 ++numProtocolsResolved;
1540 }
1541
1542 // If all of the names were protocols, these were protocol qualifiers.
1543 if (numProtocolsResolved == identifiers.size())
1544 return resolvedAsProtocols();
1545
1546 // Attempt to resolve all of the identifiers as type names or
1547 // Objective-C class names. The latter is technically ill-formed,
1548 // but is probably something like \c NSArray<NSView *> missing the
1549 // \c*.
1550 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1552 unsigned numTypeDeclsResolved = 0;
1553 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1555 S, identifiers[i], identifierLocs[i], Sema::LookupOrdinaryName);
1556 if (!decl) {
1557 typeDecls.push_back(TypeOrClassDecl());
1558 continue;
1559 }
1560
1561 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1562 typeDecls.push_back(typeDecl);
1563 ++numTypeDeclsResolved;
1564 continue;
1565 }
1566
1567 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1568 typeDecls.push_back(objcClass);
1569 ++numTypeDeclsResolved;
1570 continue;
1571 }
1572
1573 typeDecls.push_back(TypeOrClassDecl());
1574 }
1575
1576 AttributeFactory attrFactory;
1577
1578 // Local function that forms a reference to the given type or
1579 // Objective-C class declaration.
1580 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1581 -> TypeResult {
1582 // Form declaration specifiers. They simply refer to the type.
1583 DeclSpec DS(attrFactory);
1584 const char* prevSpec; // unused
1585 unsigned diagID; // unused
1586 QualType type;
1587 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1588 type = Context.getTypeDeclType(actualTypeDecl);
1589 else
1590 type = Context.getObjCInterfaceType(cast<ObjCInterfaceDecl *>(typeDecl));
1591 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1592 ParsedType parsedType = SemaRef.CreateParsedType(type, parsedTSInfo);
1593 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1594 parsedType, Context.getPrintingPolicy());
1595 // Use the identifier location for the type source range.
1596 DS.SetRangeStart(loc);
1597 DS.SetRangeEnd(loc);
1598
1599 // Form the declarator.
1601
1602 // If we have a typedef of an Objective-C class type that is missing a '*',
1603 // add the '*'.
1604 if (type->getAs<ObjCInterfaceType>()) {
1606 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1611 SourceLocation()),
1612 starLoc);
1613
1614 // Diagnose the missing '*'.
1615 Diag(loc, diag::err_objc_type_arg_missing_star)
1616 << type
1617 << FixItHint::CreateInsertion(starLoc, " *");
1618 }
1619
1620 // Convert this to a type.
1621 return SemaRef.ActOnTypeName(D);
1622 };
1623
1624 // Local function that updates the declaration specifiers with
1625 // type argument information.
1626 auto resolvedAsTypeDecls = [&] {
1627 // We did not resolve these as protocols.
1628 protocols.clear();
1629
1630 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1631 // Map type declarations to type arguments.
1632 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1633 // Map type reference to a type.
1634 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1635 if (!type.isUsable()) {
1636 typeArgs.clear();
1637 return;
1638 }
1639
1640 typeArgs.push_back(type.get());
1641 }
1642
1643 typeArgsLAngleLoc = lAngleLoc;
1644 typeArgsRAngleLoc = rAngleLoc;
1645 };
1646
1647 // If all of the identifiers can be resolved as type names or
1648 // Objective-C class names, we have type arguments.
1649 if (numTypeDeclsResolved == identifiers.size())
1650 return resolvedAsTypeDecls();
1651
1652 // Error recovery: some names weren't found, or we have a mix of
1653 // type and protocol names. Go resolve all of the unresolved names
1654 // and complain if we can't find a consistent answer.
1656 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1657 // If we already have a protocol or type. Check whether it is the
1658 // right thing.
1659 if (protocols[i] || typeDecls[i]) {
1660 // If we haven't figured out whether we want types or protocols
1661 // yet, try to figure it out from this name.
1662 if (lookupKind == Sema::LookupAnyName) {
1663 // If this name refers to both a protocol and a type (e.g., \c
1664 // NSObject), don't conclude anything yet.
1665 if (protocols[i] && typeDecls[i])
1666 continue;
1667
1668 // Otherwise, let this name decide whether we'll be correcting
1669 // toward types or protocols.
1670 lookupKind = protocols[i] ? Sema::LookupObjCProtocolName
1672 continue;
1673 }
1674
1675 // If we want protocols and we have a protocol, there's nothing
1676 // more to do.
1677 if (lookupKind == Sema::LookupObjCProtocolName && protocols[i])
1678 continue;
1679
1680 // If we want types and we have a type declaration, there's
1681 // nothing more to do.
1682 if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i])
1683 continue;
1684
1685 // We have a conflict: some names refer to protocols and others
1686 // refer to types.
1687 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1688 identifiers[i], identifierLocs[i],
1689 protocols[i] != nullptr);
1690
1691 protocols.clear();
1692 typeArgs.clear();
1693 return;
1694 }
1695
1696 // Perform typo correction on the name.
1697 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1699 DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1700 nullptr, CCC, Sema::CTK_ErrorRecovery);
1701 if (corrected) {
1702 // Did we find a protocol?
1703 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1704 SemaRef.diagnoseTypo(corrected,
1705 PDiag(diag::err_undeclared_protocol_suggest)
1706 << identifiers[i]);
1707 lookupKind = Sema::LookupObjCProtocolName;
1708 protocols[i] = proto;
1709 ++numProtocolsResolved;
1710 continue;
1711 }
1712
1713 // Did we find a type?
1714 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1715 SemaRef.diagnoseTypo(corrected,
1716 PDiag(diag::err_unknown_typename_suggest)
1717 << identifiers[i]);
1718 lookupKind = Sema::LookupOrdinaryName;
1719 typeDecls[i] = typeDecl;
1720 ++numTypeDeclsResolved;
1721 continue;
1722 }
1723
1724 // Did we find an Objective-C class?
1725 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1726 SemaRef.diagnoseTypo(corrected,
1727 PDiag(diag::err_unknown_type_or_class_name_suggest)
1728 << identifiers[i] << true);
1729 lookupKind = Sema::LookupOrdinaryName;
1730 typeDecls[i] = objcClass;
1731 ++numTypeDeclsResolved;
1732 continue;
1733 }
1734 }
1735
1736 // We couldn't find anything.
1737 Diag(identifierLocs[i],
1738 (lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing
1739 : lookupKind == Sema::LookupObjCProtocolName
1740 ? diag::err_undeclared_protocol
1741 : diag::err_unknown_typename))
1742 << identifiers[i];
1743 protocols.clear();
1744 typeArgs.clear();
1745 return;
1746 }
1747
1748 // If all of the names were (corrected to) protocols, these were
1749 // protocol qualifiers.
1750 if (numProtocolsResolved == identifiers.size())
1751 return resolvedAsProtocols();
1752
1753 // Otherwise, all of the names were (corrected to) types.
1754 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1755 return resolvedAsTypeDecls();
1756}
1757
1758/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1759/// a class method in its extension.
1760///
1762 ObjCInterfaceDecl *ID) {
1763 if (!ID)
1764 return; // Possibly due to previous error
1765
1766 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1767 for (auto *MD : ID->methods())
1768 MethodMap[MD->getSelector()] = MD;
1769
1770 if (MethodMap.empty())
1771 return;
1772 for (const auto *Method : CAT->methods()) {
1773 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1774 if (PrevMethod &&
1775 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1776 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1777 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1778 << Method->getDeclName();
1779 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1780 }
1781 }
1782}
1783
1784/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1786 SourceLocation AtProtocolLoc, ArrayRef<IdentifierLocPair> IdentList,
1787 const ParsedAttributesView &attrList) {
1788 ASTContext &Context = getASTContext();
1789 SmallVector<Decl *, 8> DeclsInGroup;
1790 for (const IdentifierLocPair &IdentPair : IdentList) {
1791 IdentifierInfo *Ident = IdentPair.first;
1792 ObjCProtocolDecl *PrevDecl = LookupProtocol(
1793 Ident, IdentPair.second, SemaRef.forRedeclarationInCurContext());
1794 ObjCProtocolDecl *PDecl =
1796 IdentPair.second, AtProtocolLoc, PrevDecl);
1797
1799 CheckObjCDeclScope(PDecl);
1800
1803
1804 if (PrevDecl)
1805 SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1806
1807 DeclsInGroup.push_back(PDecl);
1808 }
1809
1810 return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
1811}
1812
1814 SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName,
1815 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1816 const IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1817 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1818 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1819 const ParsedAttributesView &AttrList) {
1820 ASTContext &Context = getASTContext();
1821 ObjCCategoryDecl *CDecl;
1822 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1823
1824 /// Check that class of this category is already completely declared.
1825
1826 if (!IDecl ||
1827 SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1828 diag::err_category_forward_interface,
1829 CategoryName == nullptr)) {
1830 // Create an invalid ObjCCategoryDecl to serve as context for
1831 // the enclosing method declarations. We mark the decl invalid
1832 // to make it clear that this isn't a valid AST.
1834 AtInterfaceLoc, ClassLoc, CategoryLoc,
1835 CategoryName, IDecl, typeParamList);
1836 CDecl->setInvalidDecl();
1837 SemaRef.CurContext->addDecl(CDecl);
1838
1839 if (!IDecl)
1840 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1842 return CDecl;
1843 }
1844
1845 if (!CategoryName && IDecl->getImplementation()) {
1846 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1848 diag::note_implementation_declared);
1849 }
1850
1851 if (CategoryName) {
1852 /// Check for duplicate interface declaration for this category
1854 = IDecl->FindCategoryDeclaration(CategoryName)) {
1855 // Class extensions can be declared multiple times, categories cannot.
1856 Diag(CategoryLoc, diag::warn_dup_category_def)
1857 << ClassName << CategoryName;
1858 Diag(Previous->getLocation(), diag::note_previous_definition);
1859 }
1860 }
1861
1862 // If we have a type parameter list, check it.
1863 if (typeParamList) {
1864 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1866 SemaRef, prevTypeParamList, typeParamList,
1867 CategoryName ? TypeParamListContext::Category
1868 : TypeParamListContext::Extension))
1869 typeParamList = nullptr;
1870 } else {
1871 Diag(typeParamList->getLAngleLoc(),
1872 diag::err_objc_parameterized_category_nonclass)
1873 << (CategoryName != nullptr)
1874 << ClassName
1875 << typeParamList->getSourceRange();
1876
1877 typeParamList = nullptr;
1878 }
1879 }
1880
1881 CDecl = ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1882 ClassLoc, CategoryLoc, CategoryName, IDecl,
1883 typeParamList);
1884 // FIXME: PushOnScopeChains?
1885 SemaRef.CurContext->addDecl(CDecl);
1886
1887 // Process the attributes before looking at protocols to ensure that the
1888 // availability attribute is attached to the category to provide availability
1889 // checking for protocol uses.
1892
1893 if (NumProtoRefs) {
1894 diagnoseUseOfProtocols(SemaRef, CDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1895 NumProtoRefs, ProtoLocs);
1896 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1897 ProtoLocs, Context);
1898 // Protocols in the class extension belong to the class.
1899 if (CDecl->IsClassExtension())
1900 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1901 NumProtoRefs, Context);
1902 }
1903
1904 CheckObjCDeclScope(CDecl);
1906 return CDecl;
1907}
1908
1909/// ActOnStartCategoryImplementation - Perform semantic checks on the
1910/// category implementation declaration and build an ObjCCategoryImplDecl
1911/// object.
1913 SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName,
1914 SourceLocation ClassLoc, const IdentifierInfo *CatName,
1915 SourceLocation CatLoc, const ParsedAttributesView &Attrs) {
1916 ASTContext &Context = getASTContext();
1917 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1918 ObjCCategoryDecl *CatIDecl = nullptr;
1919 if (IDecl && IDecl->hasDefinition()) {
1920 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1921 if (!CatIDecl) {
1922 // Category @implementation with no corresponding @interface.
1923 // Create and install one.
1924 CatIDecl =
1925 ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtCatImplLoc,
1926 ClassLoc, CatLoc, CatName, IDecl,
1927 /*typeParamList=*/nullptr);
1928 CatIDecl->setImplicit();
1929 }
1930 }
1931
1932 ObjCCategoryImplDecl *CDecl =
1933 ObjCCategoryImplDecl::Create(Context, SemaRef.CurContext, CatName, IDecl,
1934 ClassLoc, AtCatImplLoc, CatLoc);
1935 /// Check that class of this category is already completely declared.
1936 if (!IDecl) {
1937 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1938 CDecl->setInvalidDecl();
1939 } else if (SemaRef.RequireCompleteType(ClassLoc,
1940 Context.getObjCInterfaceType(IDecl),
1941 diag::err_undef_interface)) {
1942 CDecl->setInvalidDecl();
1943 }
1944
1947
1948 // FIXME: PushOnScopeChains?
1949 SemaRef.CurContext->addDecl(CDecl);
1950
1951 // If the interface has the objc_runtime_visible attribute, we
1952 // cannot implement a category for it.
1953 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1954 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1955 << IDecl->getDeclName();
1956 }
1957
1958 /// Check that CatName, category name, is not used in another implementation.
1959 if (CatIDecl) {
1960 if (CatIDecl->getImplementation()) {
1961 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1962 << CatName;
1963 Diag(CatIDecl->getImplementation()->getLocation(),
1964 diag::note_previous_definition);
1965 CDecl->setInvalidDecl();
1966 } else {
1967 CatIDecl->setImplementation(CDecl);
1968 // Warn on implementating category of deprecated class under
1969 // -Wdeprecated-implementations flag.
1971 CDecl->getLocation());
1972 }
1973 }
1974
1975 CheckObjCDeclScope(CDecl);
1977 return CDecl;
1978}
1979
1981 SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName,
1982 SourceLocation ClassLoc, const IdentifierInfo *SuperClassname,
1983 SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1984 ASTContext &Context = getASTContext();
1985 ObjCInterfaceDecl *IDecl = nullptr;
1986 // Check for another declaration kind with the same name.
1988 SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
1990 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1991 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1992 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1993 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1994 // FIXME: This will produce an error if the definition of the interface has
1995 // been imported from a module but is not visible.
1996 SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1997 diag::warn_undef_interface);
1998 } else {
1999 // We did not find anything with the name ClassName; try to correct for
2000 // typos in the class name.
2001 ObjCInterfaceValidatorCCC CCC{};
2003 DeclarationNameInfo(ClassName, ClassLoc), Sema::LookupOrdinaryName,
2004 SemaRef.TUScope, nullptr, CCC, Sema::CTK_NonError);
2005 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2006 // Suggest the (potentially) correct interface name. Don't provide a
2007 // code-modification hint or use the typo name for recovery, because
2008 // this is just a warning. The program may actually be correct.
2010 Corrected, PDiag(diag::warn_undef_interface_suggest) << ClassName,
2011 /*ErrorRecovery*/ false);
2012 } else {
2013 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2014 }
2015 }
2016
2017 // Check that super class name is valid class name
2018 ObjCInterfaceDecl *SDecl = nullptr;
2019 if (SuperClassname) {
2020 // Check if a different kind of symbol declared in this scope.
2021 PrevDecl =
2022 SemaRef.LookupSingleName(SemaRef.TUScope, SuperClassname, SuperClassLoc,
2024 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2025 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2026 << SuperClassname;
2027 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2028 } else {
2029 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2030 if (SDecl && !SDecl->hasDefinition())
2031 SDecl = nullptr;
2032 if (!SDecl)
2033 Diag(SuperClassLoc, diag::err_undef_superclass)
2034 << SuperClassname << ClassName;
2035 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2036 // This implementation and its interface do not have the same
2037 // super class.
2038 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2039 << SDecl->getDeclName();
2040 Diag(SDecl->getLocation(), diag::note_previous_definition);
2041 }
2042 }
2043 }
2044
2045 if (!IDecl) {
2046 // Legacy case of @implementation with no corresponding @interface.
2047 // Build, chain & install the interface decl into the identifier.
2048
2049 // FIXME: Do we support attributes on the @implementation? If so we should
2050 // copy them over.
2051 IDecl =
2052 ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtClassImplLoc,
2053 ClassName, /*typeParamList=*/nullptr,
2054 /*PrevDecl=*/nullptr, ClassLoc, true);
2056 IDecl->startDefinition();
2057 if (SDecl) {
2059 Context.getObjCInterfaceType(SDecl),
2060 SuperClassLoc));
2061 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2062 } else {
2063 IDecl->setEndOfDefinitionLoc(ClassLoc);
2064 }
2065
2067 } else {
2068 // Mark the interface as being completed, even if it was just as
2069 // @class ....;
2070 // declaration; the user cannot reopen it.
2071 if (!IDecl->hasDefinition())
2072 IDecl->startDefinition();
2073 }
2074
2075 ObjCImplementationDecl *IMPDecl =
2076 ObjCImplementationDecl::Create(Context, SemaRef.CurContext, IDecl, SDecl,
2077 ClassLoc, AtClassImplLoc, SuperClassLoc);
2078
2081
2082 if (CheckObjCDeclScope(IMPDecl)) {
2084 return IMPDecl;
2085 }
2086
2087 // Check that there is no duplicate implementation of this class.
2088 if (IDecl->getImplementation()) {
2089 // FIXME: Don't leak everything!
2090 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2092 diag::note_previous_definition);
2093 IMPDecl->setInvalidDecl();
2094 } else { // add it to the list.
2095 IDecl->setImplementation(IMPDecl);
2097 // Warn on implementating deprecated class under
2098 // -Wdeprecated-implementations flag.
2100 }
2101
2102 // If the superclass has the objc_runtime_visible attribute, we
2103 // cannot implement a subclass of it.
2104 if (IDecl->getSuperClass() &&
2105 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2106 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2107 << IDecl->getDeclName()
2108 << IDecl->getSuperClass()->getDeclName();
2109 }
2110
2112 return IMPDecl;
2113}
2114
2117 ArrayRef<Decl *> Decls) {
2118 SmallVector<Decl *, 64> DeclsInGroup;
2119 DeclsInGroup.reserve(Decls.size() + 1);
2120
2121 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2122 Decl *Dcl = Decls[i];
2123 if (!Dcl)
2124 continue;
2125 if (Dcl->getDeclContext()->isFileContext())
2127 DeclsInGroup.push_back(Dcl);
2128 }
2129
2130 DeclsInGroup.push_back(ObjCImpDecl);
2131
2132 return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
2133}
2134
2136 ObjCIvarDecl **ivars, unsigned numIvars,
2137 SourceLocation RBrace) {
2138 assert(ImpDecl && "missing implementation decl");
2139 ASTContext &Context = getASTContext();
2140 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2141 if (!IDecl)
2142 return;
2143 /// Check case of non-existing \@interface decl.
2144 /// (legacy objective-c \@implementation decl without an \@interface decl).
2145 /// Add implementations's ivar to the synthesize class's ivar list.
2146 if (IDecl->isImplicitInterfaceDecl()) {
2147 IDecl->setEndOfDefinitionLoc(RBrace);
2148 // Add ivar's to class's DeclContext.
2149 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2150 ivars[i]->setLexicalDeclContext(ImpDecl);
2151 // In a 'fragile' runtime the ivar was added to the implicit
2152 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2153 // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2154 // therefore also needs to be propagated to the ObjCInterfaceDecl.
2156 IDecl->makeDeclVisibleInContext(ivars[i]);
2157 ImpDecl->addDecl(ivars[i]);
2158 }
2159
2160 return;
2161 }
2162 // If implementation has empty ivar list, just return.
2163 if (numIvars == 0)
2164 return;
2165
2166 assert(ivars && "missing @implementation ivars");
2168 if (ImpDecl->getSuperClass())
2169 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2170 for (unsigned i = 0; i < numIvars; i++) {
2171 ObjCIvarDecl* ImplIvar = ivars[i];
2172 if (const ObjCIvarDecl *ClsIvar =
2173 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2174 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2175 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2176 continue;
2177 }
2178 // Check class extensions (unnamed categories) for duplicate ivars.
2179 for (const auto *CDecl : IDecl->visible_extensions()) {
2180 if (const ObjCIvarDecl *ClsExtIvar =
2181 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2182 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2183 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2184 continue;
2185 }
2186 }
2187 // Instance ivar to Implementation's DeclContext.
2188 ImplIvar->setLexicalDeclContext(ImpDecl);
2189 IDecl->makeDeclVisibleInContext(ImplIvar);
2190 ImpDecl->addDecl(ImplIvar);
2191 }
2192 return;
2193 }
2194 // Check interface's Ivar list against those in the implementation.
2195 // names and types must match.
2196 //
2197 unsigned j = 0;
2199 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2200 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2201 ObjCIvarDecl* ImplIvar = ivars[j++];
2202 ObjCIvarDecl* ClsIvar = *IVI;
2203 assert (ImplIvar && "missing implementation ivar");
2204 assert (ClsIvar && "missing class ivar");
2205
2206 // First, make sure the types match.
2207 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2208 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2209 << ImplIvar->getIdentifier()
2210 << ImplIvar->getType() << ClsIvar->getType();
2211 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2212 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2213 ImplIvar->getBitWidthValue() != ClsIvar->getBitWidthValue()) {
2214 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2215 diag::err_conflicting_ivar_bitwidth)
2216 << ImplIvar->getIdentifier();
2217 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2218 diag::note_previous_definition);
2219 }
2220 // Make sure the names are identical.
2221 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2222 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2223 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2224 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2225 }
2226 --numIvars;
2227 }
2228
2229 if (numIvars > 0)
2230 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2231 else if (IVI != IVE)
2232 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2233}
2234
2236 // No point warning no definition of method which is 'unavailable'.
2237 return M->getAvailability() != AR_Unavailable;
2238}
2239
2241 ObjCMethodDecl *method, bool &IncompleteImpl,
2242 unsigned DiagID,
2243 NamedDecl *NeededFor = nullptr) {
2244 if (!shouldWarnUndefinedMethod(method))
2245 return;
2246
2247 // FIXME: For now ignore 'IncompleteImpl'.
2248 // Previously we grouped all unimplemented methods under a single
2249 // warning, but some users strongly voiced that they would prefer
2250 // separate warnings. We will give that approach a try, as that
2251 // matches what we do with protocols.
2252 {
2254 S.Diag(Impl->getLocation(), DiagID);
2255 B << method;
2256 if (NeededFor)
2257 B << NeededFor;
2258
2259 // Add an empty definition at the end of the @implementation.
2260 std::string FixItStr;
2261 llvm::raw_string_ostream Out(FixItStr);
2262 method->print(Out, Impl->getASTContext().getPrintingPolicy());
2263 Out << " {\n}\n\n";
2264
2266 B << FixItHint::CreateInsertion(Loc, FixItStr);
2267 }
2268
2269 // Issue a note to the original declaration.
2270 SourceLocation MethodLoc = method->getBeginLoc();
2271 if (MethodLoc.isValid())
2272 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2273}
2274
2275/// Determines if type B can be substituted for type A. Returns true if we can
2276/// guarantee that anything that the user will do to an object of type A can
2277/// also be done to an object of type B. This is trivially true if the two
2278/// types are the same, or if B is a subclass of A. It becomes more complex
2279/// in cases where protocols are involved.
2280///
2281/// Object types in Objective-C describe the minimum requirements for an
2282/// object, rather than providing a complete description of a type. For
2283/// example, if A is a subclass of B, then B* may refer to an instance of A.
2284/// The principle of substitutability means that we may use an instance of A
2285/// anywhere that we may use an instance of B - it will implement all of the
2286/// ivars of B and all of the methods of B.
2287///
2288/// This substitutability is important when type checking methods, because
2289/// the implementation may have stricter type definitions than the interface.
2290/// The interface specifies minimum requirements, but the implementation may
2291/// have more accurate ones. For example, a method may privately accept
2292/// instances of B, but only publish that it accepts instances of A. Any
2293/// object passed to it will be type checked against B, and so will implicitly
2294/// by a valid A*. Similarly, a method may return a subclass of the class that
2295/// it is declared as returning.
2296///
2297/// This is most important when considering subclassing. A method in a
2298/// subclass must accept any object as an argument that its superclass's
2299/// implementation accepts. It may, however, accept a more general type
2300/// without breaking substitutability (i.e. you can still use the subclass
2301/// anywhere that you can use the superclass, but not vice versa). The
2302/// converse requirement applies to return types: the return type for a
2303/// subclass method must be a valid object of the kind that the superclass
2304/// advertises, but it may be specified more accurately. This avoids the need
2305/// for explicit down-casting by callers.
2306///
2307/// Note: This is a stricter requirement than for assignment.
2309 const ObjCObjectPointerType *A,
2310 const ObjCObjectPointerType *B,
2311 bool rejectId) {
2312 // Reject a protocol-unqualified id.
2313 if (rejectId && B->isObjCIdType()) return false;
2314
2315 // If B is a qualified id, then A must also be a qualified id and it must
2316 // implement all of the protocols in B. It may not be a qualified class.
2317 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2318 // stricter definition so it is not substitutable for id<A>.
2319 if (B->isObjCQualifiedIdType()) {
2320 return A->isObjCQualifiedIdType() &&
2321 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2322 }
2323
2324 /*
2325 // id is a special type that bypasses type checking completely. We want a
2326 // warning when it is used in one place but not another.
2327 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2328
2329
2330 // If B is a qualified id, then A must also be a qualified id (which it isn't
2331 // if we've got this far)
2332 if (B->isObjCQualifiedIdType()) return false;
2333 */
2334
2335 // Now we know that A and B are (potentially-qualified) class types. The
2336 // normal rules for assignment apply.
2337 return Context.canAssignObjCInterfaces(A, B);
2338}
2339
2341 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2342}
2343
2344/// Determine whether two set of Objective-C declaration qualifiers conflict.
2347 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2348 (y & ~Decl::OBJC_TQ_CSNullability);
2349}
2350
2352 ObjCMethodDecl *MethodImpl,
2353 ObjCMethodDecl *MethodDecl,
2354 bool IsProtocolMethodDecl,
2355 bool IsOverridingMode,
2356 bool Warn) {
2357 if (IsProtocolMethodDecl &&
2359 MethodImpl->getObjCDeclQualifier())) {
2360 if (Warn) {
2361 S.Diag(MethodImpl->getLocation(),
2362 (IsOverridingMode
2363 ? diag::warn_conflicting_overriding_ret_type_modifiers
2364 : diag::warn_conflicting_ret_type_modifiers))
2365 << MethodImpl->getDeclName()
2366 << MethodImpl->getReturnTypeSourceRange();
2367 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2368 << MethodDecl->getReturnTypeSourceRange();
2369 }
2370 else
2371 return false;
2372 }
2373 if (Warn && IsOverridingMode &&
2374 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2376 MethodDecl->getReturnType(),
2377 false)) {
2378 auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2379 auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2380 S.Diag(MethodImpl->getLocation(),
2381 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2382 << DiagNullabilityKind(nullabilityMethodImpl,
2383 ((MethodImpl->getObjCDeclQualifier() &
2385 << DiagNullabilityKind(nullabilityMethodDecl,
2386 ((MethodDecl->getObjCDeclQualifier() &
2388 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2389 }
2390
2391 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2392 MethodDecl->getReturnType()))
2393 return true;
2394 if (!Warn)
2395 return false;
2396
2397 unsigned DiagID =
2398 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2399 : diag::warn_conflicting_ret_types;
2400
2401 // Mismatches between ObjC pointers go into a different warning
2402 // category, and sometimes they're even completely explicitly allowed.
2403 if (const ObjCObjectPointerType *ImplPtrTy =
2404 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2405 if (const ObjCObjectPointerType *IfacePtrTy =
2406 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2407 // Allow non-matching return types as long as they don't violate
2408 // the principle of substitutability. Specifically, we permit
2409 // return types that are subclasses of the declared return type,
2410 // or that are more-qualified versions of the declared type.
2411 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2412 return false;
2413
2414 DiagID =
2415 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2416 : diag::warn_non_covariant_ret_types;
2417 }
2418 }
2419
2420 S.Diag(MethodImpl->getLocation(), DiagID)
2421 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2422 << MethodImpl->getReturnType()
2423 << MethodImpl->getReturnTypeSourceRange();
2424 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2425 ? diag::note_previous_declaration
2426 : diag::note_previous_definition)
2427 << MethodDecl->getReturnTypeSourceRange();
2428 return false;
2429}
2430
2432 ObjCMethodDecl *MethodImpl,
2433 ObjCMethodDecl *MethodDecl,
2434 ParmVarDecl *ImplVar,
2435 ParmVarDecl *IfaceVar,
2436 bool IsProtocolMethodDecl,
2437 bool IsOverridingMode,
2438 bool Warn) {
2439 if (IsProtocolMethodDecl &&
2441 IfaceVar->getObjCDeclQualifier())) {
2442 if (Warn) {
2443 if (IsOverridingMode)
2444 S.Diag(ImplVar->getLocation(),
2445 diag::warn_conflicting_overriding_param_modifiers)
2446 << getTypeRange(ImplVar->getTypeSourceInfo())
2447 << MethodImpl->getDeclName();
2448 else S.Diag(ImplVar->getLocation(),
2449 diag::warn_conflicting_param_modifiers)
2450 << getTypeRange(ImplVar->getTypeSourceInfo())
2451 << MethodImpl->getDeclName();
2452 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2453 << getTypeRange(IfaceVar->getTypeSourceInfo());
2454 }
2455 else
2456 return false;
2457 }
2458
2459 QualType ImplTy = ImplVar->getType();
2460 QualType IfaceTy = IfaceVar->getType();
2461 if (Warn && IsOverridingMode &&
2462 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2463 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2464 S.Diag(ImplVar->getLocation(),
2465 diag::warn_conflicting_nullability_attr_overriding_param_types)
2466 << DiagNullabilityKind(*ImplTy->getNullability(),
2467 ((ImplVar->getObjCDeclQualifier() &
2469 << DiagNullabilityKind(*IfaceTy->getNullability(),
2470 ((IfaceVar->getObjCDeclQualifier() &
2472 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2473 }
2474 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2475 return true;
2476
2477 if (!Warn)
2478 return false;
2479 unsigned DiagID =
2480 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2481 : diag::warn_conflicting_param_types;
2482
2483 // Mismatches between ObjC pointers go into a different warning
2484 // category, and sometimes they're even completely explicitly allowed..
2485 if (const ObjCObjectPointerType *ImplPtrTy =
2486 ImplTy->getAs<ObjCObjectPointerType>()) {
2487 if (const ObjCObjectPointerType *IfacePtrTy =
2488 IfaceTy->getAs<ObjCObjectPointerType>()) {
2489 // Allow non-matching argument types as long as they don't
2490 // violate the principle of substitutability. Specifically, the
2491 // implementation must accept any objects that the superclass
2492 // accepts, however it may also accept others.
2493 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2494 return false;
2495
2496 DiagID =
2497 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2498 : diag::warn_non_contravariant_param_types;
2499 }
2500 }
2501
2502 S.Diag(ImplVar->getLocation(), DiagID)
2503 << getTypeRange(ImplVar->getTypeSourceInfo())
2504 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2505 S.Diag(IfaceVar->getLocation(),
2506 (IsOverridingMode ? diag::note_previous_declaration
2507 : diag::note_previous_definition))
2508 << getTypeRange(IfaceVar->getTypeSourceInfo());
2509 return false;
2510}
2511
2512/// In ARC, check whether the conventional meanings of the two methods
2513/// match. If they don't, it's a hard error.
2516 ObjCMethodFamily implFamily = impl->getMethodFamily();
2517 ObjCMethodFamily declFamily = decl->getMethodFamily();
2518 if (implFamily == declFamily) return false;
2519
2520 // Since conventions are sorted by selector, the only possibility is
2521 // that the types differ enough to cause one selector or the other
2522 // to fall out of the family.
2523 assert(implFamily == OMF_None || declFamily == OMF_None);
2524
2525 // No further diagnostics required on invalid declarations.
2526 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2527
2528 const ObjCMethodDecl *unmatched = impl;
2529 ObjCMethodFamily family = declFamily;
2530 unsigned errorID = diag::err_arc_lost_method_convention;
2531 unsigned noteID = diag::note_arc_lost_method_convention;
2532 if (declFamily == OMF_None) {
2533 unmatched = decl;
2534 family = implFamily;
2535 errorID = diag::err_arc_gained_method_convention;
2536 noteID = diag::note_arc_gained_method_convention;
2537 }
2538
2539 // Indexes into a %select clause in the diagnostic.
2540 enum FamilySelector {
2541 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2542 };
2543 FamilySelector familySelector = FamilySelector();
2544
2545 switch (family) {
2546 case OMF_None: llvm_unreachable("logic error, no method convention");
2547 case OMF_retain:
2548 case OMF_release:
2549 case OMF_autorelease:
2550 case OMF_dealloc:
2551 case OMF_finalize:
2552 case OMF_retainCount:
2553 case OMF_self:
2554 case OMF_initialize:
2556 // Mismatches for these methods don't change ownership
2557 // conventions, so we don't care.
2558 return false;
2559
2560 case OMF_init: familySelector = F_init; break;
2561 case OMF_alloc: familySelector = F_alloc; break;
2562 case OMF_copy: familySelector = F_copy; break;
2563 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2564 case OMF_new: familySelector = F_new; break;
2565 }
2566
2567 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2568 ReasonSelector reasonSelector;
2569
2570 // The only reason these methods don't fall within their families is
2571 // due to unusual result types.
2572 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2573 reasonSelector = R_UnrelatedReturn;
2574 } else {
2575 reasonSelector = R_NonObjectReturn;
2576 }
2577
2578 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2579 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2580
2581 return true;
2582}
2583
2585 ObjCMethodDecl *MethodDecl,
2586 bool IsProtocolMethodDecl) {
2587 if (getLangOpts().ObjCAutoRefCount &&
2588 checkMethodFamilyMismatch(SemaRef, ImpMethodDecl, MethodDecl))
2589 return;
2590
2591 CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2592 IsProtocolMethodDecl, false, true);
2593
2594 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2595 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2596 EF = MethodDecl->param_end();
2597 IM != EM && IF != EF; ++IM, ++IF) {
2598 CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM, *IF,
2599 IsProtocolMethodDecl, false, true);
2600 }
2601
2602 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2603 Diag(ImpMethodDecl->getLocation(),
2604 diag::warn_conflicting_variadic);
2605 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2606 }
2607}
2608
2610 ObjCMethodDecl *Overridden,
2611 bool IsProtocolMethodDecl) {
2612
2613 CheckMethodOverrideReturn(SemaRef, Method, Overridden, IsProtocolMethodDecl,
2614 true, true);
2615
2616 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2617 IF = Overridden->param_begin(), EM = Method->param_end(),
2618 EF = Overridden->param_end();
2619 IM != EM && IF != EF; ++IM, ++IF) {
2620 CheckMethodOverrideParam(SemaRef, Method, Overridden, *IM, *IF,
2621 IsProtocolMethodDecl, true, true);
2622 }
2623
2624 if (Method->isVariadic() != Overridden->isVariadic()) {
2625 Diag(Method->getLocation(),
2626 diag::warn_conflicting_overriding_variadic);
2627 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2628 }
2629}
2630
2631/// WarnExactTypedMethods - This routine issues a warning if method
2632/// implementation declaration matches exactly that of its declaration.
2634 ObjCMethodDecl *MethodDecl,
2635 bool IsProtocolMethodDecl) {
2636 ASTContext &Context = getASTContext();
2637 // don't issue warning when protocol method is optional because primary
2638 // class is not required to implement it and it is safe for protocol
2639 // to implement it.
2640 if (MethodDecl->getImplementationControl() ==
2642 return;
2643 // don't issue warning when primary class's method is
2644 // deprecated/unavailable.
2645 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2646 MethodDecl->hasAttr<DeprecatedAttr>())
2647 return;
2648
2649 bool match = CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2650 IsProtocolMethodDecl, false, false);
2651 if (match)
2652 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2653 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2654 EF = MethodDecl->param_end();
2655 IM != EM && IF != EF; ++IM, ++IF) {
2656 match = CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM,
2657 *IF, IsProtocolMethodDecl, false, false);
2658 if (!match)
2659 break;
2660 }
2661 if (match)
2662 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2663 if (match)
2664 match = !(MethodDecl->isClassMethod() &&
2665 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2666
2667 if (match) {
2668 Diag(ImpMethodDecl->getLocation(),
2669 diag::warn_category_method_impl_match);
2670 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2671 << MethodDecl->getDeclName();
2672 }
2673}
2674
2675/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2676/// improve the efficiency of selector lookups and type checking by associating
2677/// with each protocol / interface / category the flattened instance tables. If
2678/// we used an immutable set to keep the table then it wouldn't add significant
2679/// memory cost and it would be handy for lookups.
2680
2681typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2682typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2683
2685 ProtocolNameSet &PNS) {
2686 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2687 PNS.insert(PDecl->getIdentifier());
2688 for (const auto *PI : PDecl->protocols())
2690}
2691
2692/// Recursively populates a set with all conformed protocols in a class
2693/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2694/// attribute.
2696 ProtocolNameSet &PNS) {
2697 if (!Super)
2698 return;
2699
2700 for (const auto *I : Super->all_referenced_protocols())
2702
2704}
2705
2706/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2707/// Declared in protocol, and those referenced by it.
2709 Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2710 const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap,
2711 ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2712 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2713 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2714 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2715 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2716
2717 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2718 ObjCInterfaceDecl *NSIDecl = nullptr;
2719
2720 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2721 // then we should check if any class in the super class hierarchy also
2722 // conforms to this protocol, either directly or via protocol inheritance.
2723 // If so, we can skip checking this protocol completely because we
2724 // know that a parent class already satisfies this protocol.
2725 //
2726 // Note: we could generalize this logic for all protocols, and merely
2727 // add the limit on looking at the super class chain for just
2728 // specially marked protocols. This may be a good optimization. This
2729 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2730 // protocols for now for controlled evaluation.
2731 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2732 if (!ProtocolsExplictImpl) {
2733 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2734 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2735 }
2736 if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
2737 return;
2738
2739 // If no super class conforms to the protocol, we should not search
2740 // for methods in the super class to implicitly satisfy the protocol.
2741 Super = nullptr;
2742 }
2743
2745 // check to see if class implements forwardInvocation method and objects
2746 // of this class are derived from 'NSProxy' so that to forward requests
2747 // from one object to another.
2748 // Under such conditions, which means that every method possible is
2749 // implemented in the class, we should not issue "Method definition not
2750 // found" warnings.
2751 // FIXME: Use a general GetUnarySelector method for this.
2752 const IdentifierInfo *II = &S.Context.Idents.get("forwardInvocation");
2753 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2754 if (InsMap.count(fISelector))
2755 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2756 // need be implemented in the implementation.
2757 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2758 }
2759
2760 // If this is a forward protocol declaration, get its definition.
2761 if (!PDecl->isThisDeclarationADefinition() &&
2762 PDecl->getDefinition())
2763 PDecl = PDecl->getDefinition();
2764
2765 // If a method lookup fails locally we still need to look and see if
2766 // the method was implemented by a base class or an inherited
2767 // protocol. This lookup is slow, but occurs rarely in correct code
2768 // and otherwise would terminate in a warning.
2769
2770 // check unimplemented instance methods.
2771 if (!NSIDecl)
2772 for (auto *method : PDecl->instance_methods()) {
2773 if (method->getImplementationControl() !=
2775 !method->isPropertyAccessor() &&
2776 !InsMap.count(method->getSelector()) &&
2777 (!Super || !Super->lookupMethod(
2778 method->getSelector(), true /* instance */,
2779 false /* shallowCategory */, true /* followsSuper */,
2780 nullptr /* category */))) {
2781 // If a method is not implemented in the category implementation but
2782 // has been declared in its primary class, superclass,
2783 // or in one of their protocols, no need to issue the warning.
2784 // This is because method will be implemented in the primary class
2785 // or one of its super class implementation.
2786
2787 // Ugly, but necessary. Method declared in protocol might have
2788 // have been synthesized due to a property declared in the class which
2789 // uses the protocol.
2790 if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod(
2791 method->getSelector(), true /* instance */,
2792 true /* shallowCategoryLookup */, false /* followSuper */))
2793 if (C || MethodInClass->isPropertyAccessor())
2794 continue;
2795 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2796 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2797 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2798 }
2799 }
2800 }
2801 // check unimplemented class methods
2802 for (auto *method : PDecl->class_methods()) {
2803 if (method->getImplementationControl() !=
2805 !ClsMap.count(method->getSelector()) &&
2806 (!Super || !Super->lookupMethod(
2807 method->getSelector(), false /* class method */,
2808 false /* shallowCategoryLookup */,
2809 true /* followSuper */, nullptr /* category */))) {
2810 // See above comment for instance method lookups.
2811 if (C && IDecl->lookupMethod(method->getSelector(),
2812 false /* class */,
2813 true /* shallowCategoryLookup */,
2814 false /* followSuper */))
2815 continue;
2816
2817 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2818 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2819 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2820 }
2821 }
2822 }
2823 // Check on this protocols's referenced protocols, recursively.
2824 for (auto *PI : PDecl->protocols())
2825 CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2826 ProtocolsExplictImpl);
2827}
2828
2829/// MatchAllMethodDeclarations - Check methods declared in interface
2830/// or protocol against those declared in their implementations.
2831///
2833 const SelectorSet &InsMap, const SelectorSet &ClsMap,
2834 SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl,
2835 ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass,
2836 bool WarnCategoryMethodImpl) {
2837 // Check and see if instance methods in class interface have been
2838 // implemented in the implementation class. If so, their types match.
2839 for (auto *I : CDecl->instance_methods()) {
2840 if (!InsMapSeen.insert(I->getSelector()).second)
2841 continue;
2842 if (!I->isPropertyAccessor() &&
2843 !InsMap.count(I->getSelector())) {
2844 if (ImmediateClass)
2845 WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2846 diag::warn_undef_method_impl);
2847 continue;
2848 } else {
2849 ObjCMethodDecl *ImpMethodDecl =
2850 IMPDecl->getInstanceMethod(I->getSelector());
2851 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2852 "Expected to find the method through lookup as well");
2853 // ImpMethodDecl may be null as in a @dynamic property.
2854 if (ImpMethodDecl) {
2855 // Skip property accessor function stubs.
2856 if (ImpMethodDecl->isSynthesizedAccessorStub())
2857 continue;
2858 if (!WarnCategoryMethodImpl)
2859 WarnConflictingTypedMethods(ImpMethodDecl, I,
2860 isa<ObjCProtocolDecl>(CDecl));
2861 else if (!I->isPropertyAccessor())
2862 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2863 }
2864 }
2865 }
2866
2867 // Check and see if class methods in class interface have been
2868 // implemented in the implementation class. If so, their types match.
2869 for (auto *I : CDecl->class_methods()) {
2870 if (!ClsMapSeen.insert(I->getSelector()).second)
2871 continue;
2872 if (!I->isPropertyAccessor() &&
2873 !ClsMap.count(I->getSelector())) {
2874 if (ImmediateClass)
2875 WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2876 diag::warn_undef_method_impl);
2877 } else {
2878 ObjCMethodDecl *ImpMethodDecl =
2879 IMPDecl->getClassMethod(I->getSelector());
2880 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2881 "Expected to find the method through lookup as well");
2882 // ImpMethodDecl may be null as in a @dynamic property.
2883 if (ImpMethodDecl) {
2884 // Skip property accessor function stubs.
2885 if (ImpMethodDecl->isSynthesizedAccessorStub())
2886 continue;
2887 if (!WarnCategoryMethodImpl)
2888 WarnConflictingTypedMethods(ImpMethodDecl, I,
2889 isa<ObjCProtocolDecl>(CDecl));
2890 else if (!I->isPropertyAccessor())
2891 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2892 }
2893 }
2894 }
2895
2896 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2897 // Also, check for methods declared in protocols inherited by
2898 // this protocol.
2899 for (auto *PI : PD->protocols())
2900 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2901 IMPDecl, PI, IncompleteImpl, false,
2902 WarnCategoryMethodImpl);
2903 }
2904
2905 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2906 // when checking that methods in implementation match their declaration,
2907 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2908 // extension; as well as those in categories.
2909 if (!WarnCategoryMethodImpl) {
2910 for (auto *Cat : I->visible_categories())
2911 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2912 IMPDecl, Cat, IncompleteImpl,
2913 ImmediateClass && Cat->IsClassExtension(),
2914 WarnCategoryMethodImpl);
2915 } else {
2916 // Also methods in class extensions need be looked at next.
2917 for (auto *Ext : I->visible_extensions())
2918 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2919 IMPDecl, Ext, IncompleteImpl, false,
2920 WarnCategoryMethodImpl);
2921 }
2922
2923 // Check for any implementation of a methods declared in protocol.
2924 for (auto *PI : I->all_referenced_protocols())
2925 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2926 IMPDecl, PI, IncompleteImpl, false,
2927 WarnCategoryMethodImpl);
2928
2929 // FIXME. For now, we are not checking for exact match of methods
2930 // in category implementation and its primary class's super class.
2931 if (!WarnCategoryMethodImpl && I->getSuperClass())
2932 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2933 IMPDecl,
2934 I->getSuperClass(), IncompleteImpl, false);
2935 }
2936}
2937
2938/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2939/// category matches with those implemented in its primary class and
2940/// warns each time an exact match is found.
2942 ObjCCategoryImplDecl *CatIMPDecl) {
2943 // Get category's primary class.
2944 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2945 if (!CatDecl)
2946 return;
2947 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2948 if (!IDecl)
2949 return;
2950 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2951 SelectorSet InsMap, ClsMap;
2952
2953 for (const auto *I : CatIMPDecl->instance_methods()) {
2954 Selector Sel = I->getSelector();
2955 // When checking for methods implemented in the category, skip over
2956 // those declared in category class's super class. This is because
2957 // the super class must implement the method.
2958 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2959 continue;
2960 InsMap.insert(Sel);
2961 }
2962
2963 for (const auto *I : CatIMPDecl->class_methods()) {
2964 Selector Sel = I->getSelector();
2965 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2966 continue;
2967 ClsMap.insert(Sel);
2968 }
2969 if (InsMap.empty() && ClsMap.empty())
2970 return;
2971
2972 SelectorSet InsMapSeen, ClsMapSeen;
2973 bool IncompleteImpl = false;
2974 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2975 CatIMPDecl, IDecl,
2976 IncompleteImpl, false,
2977 true /*WarnCategoryMethodImpl*/);
2978}
2979
2981 ObjCContainerDecl *CDecl,
2982 bool IncompleteImpl) {
2983 SelectorSet InsMap;
2984 // Check and see if instance methods in class interface have been
2985 // implemented in the implementation class.
2986 for (const auto *I : IMPDecl->instance_methods())
2987 InsMap.insert(I->getSelector());
2988
2989 // Add the selectors for getters/setters of @dynamic properties.
2990 for (const auto *PImpl : IMPDecl->property_impls()) {
2991 // We only care about @dynamic implementations.
2992 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2993 continue;
2994
2995 const auto *P = PImpl->getPropertyDecl();
2996 if (!P) continue;
2997
2998 InsMap.insert(P->getGetterName());
2999 if (!P->getSetterName().isNull())
3000 InsMap.insert(P->getSetterName());
3001 }
3002
3003 // Check and see if properties declared in the interface have either 1)
3004 // an implementation or 2) there is a @synthesize/@dynamic implementation
3005 // of the property in the @implementation.
3006 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
3007 bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties &&
3009 !IDecl->isObjCRequiresPropertyDefs();
3010 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3011 }
3012
3013 // Diagnose null-resettable synthesized setters.
3015
3016 SelectorSet ClsMap;
3017 for (const auto *I : IMPDecl->class_methods())
3018 ClsMap.insert(I->getSelector());
3019
3020 // Check for type conflict of methods declared in a class/protocol and
3021 // its implementation; if any.
3022 SelectorSet InsMapSeen, ClsMapSeen;
3023 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3024 IMPDecl, CDecl,
3025 IncompleteImpl, true);
3026
3027 // check all methods implemented in category against those declared
3028 // in its primary class.
3029 if (ObjCCategoryImplDecl *CatDecl =
3030 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3032
3033 // Check the protocol list for unimplemented methods in the @implementation
3034 // class.
3035 // Check and see if class methods in class interface have been
3036 // implemented in the implementation class.
3037
3038 LazyProtocolNameSet ExplicitImplProtocols;
3039
3040 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3041 for (auto *PI : I->all_referenced_protocols())
3042 CheckProtocolMethodDefs(SemaRef, IMPDecl, PI, IncompleteImpl, InsMap,
3043 ClsMap, I, ExplicitImplProtocols);
3044 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3045 // For extended class, unimplemented methods in its protocols will
3046 // be reported in the primary class.
3047 if (!C->IsClassExtension()) {
3048 for (auto *P : C->protocols())
3049 CheckProtocolMethodDefs(SemaRef, IMPDecl, P, IncompleteImpl, InsMap,
3050 ClsMap, CDecl, ExplicitImplProtocols);
3051 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3052 /*SynthesizeProperties=*/false);
3053 }
3054 } else
3055 llvm_unreachable("invalid ObjCContainerDecl type.");
3056}
3057
3059 SourceLocation AtClassLoc, IdentifierInfo **IdentList,
3060 SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists,
3061 unsigned NumElts) {
3062 ASTContext &Context = getASTContext();
3063 SmallVector<Decl *, 8> DeclsInGroup;
3064 for (unsigned i = 0; i != NumElts; ++i) {
3065 // Check for another declaration kind with the same name.
3067 SemaRef.TUScope, IdentList[i], IdentLocs[i], Sema::LookupOrdinaryName,
3069 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3070 // GCC apparently allows the following idiom:
3071 //
3072 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3073 // @class XCElementToggler;
3074 //
3075 // Here we have chosen to ignore the forward class declaration
3076 // with a warning. Since this is the implied behavior.
3077 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3078 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3079 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3080 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3081 } else {
3082 // a forward class declaration matching a typedef name of a class refers
3083 // to the underlying class. Just ignore the forward class with a warning
3084 // as this will force the intended behavior which is to lookup the
3085 // typedef name.
3086 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3087 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3088 << IdentList[i];
3089 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3090 continue;
3091 }
3092 }
3093 }
3094
3095 // Create a declaration to describe this forward declaration.
3096 ObjCInterfaceDecl *PrevIDecl
3097 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3098
3099 IdentifierInfo *ClassName = IdentList[i];
3100 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3101 // A previous decl with a different name is because of
3102 // @compatibility_alias, for example:
3103 // \code
3104 // @class NewImage;
3105 // @compatibility_alias OldImage NewImage;
3106 // \endcode
3107 // A lookup for 'OldImage' will return the 'NewImage' decl.
3108 //
3109 // In such a case use the real declaration name, instead of the alias one,
3110 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3111 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3112 // has been aliased.
3113 ClassName = PrevIDecl->getIdentifier();
3114 }
3115
3116 // If this forward declaration has type parameters, compare them with the
3117 // type parameters of the previous declaration.
3118 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3119 if (PrevIDecl && TypeParams) {
3120 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3121 // Check for consistency with the previous declaration.
3123 SemaRef, PrevTypeParams, TypeParams,
3124 TypeParamListContext::ForwardDeclaration)) {
3125 TypeParams = nullptr;
3126 }
3127 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3128 // The @interface does not have type parameters. Complain.
3129 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3130 << ClassName
3131 << TypeParams->getSourceRange();
3132 Diag(Def->getLocation(), diag::note_defined_here)
3133 << ClassName;
3134
3135 TypeParams = nullptr;
3136 }
3137 }
3138
3140 Context, SemaRef.CurContext, AtClassLoc, ClassName, TypeParams,
3141 PrevIDecl, IdentLocs[i]);
3142 IDecl->setAtEndRange(IdentLocs[i]);
3143
3144 if (PrevIDecl)
3145 SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
3146
3148 CheckObjCDeclScope(IDecl);
3149 DeclsInGroup.push_back(IDecl);
3150 }
3151
3152 return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
3153}
3154
3155static bool tryMatchRecordTypes(ASTContext &Context,
3157 const Type *left, const Type *right);
3158
3159static bool matchTypes(ASTContext &Context,
3160 SemaObjC::MethodMatchStrategy strategy, QualType leftQT,
3161 QualType rightQT) {
3162 const Type *left =
3164 const Type *right =
3165 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3166
3167 if (left == right) return true;
3168
3169 // If we're doing a strict match, the types have to match exactly.
3170 if (strategy == SemaObjC::MMS_strict)
3171 return false;
3172
3173 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3174
3175 // Otherwise, use this absurdly complicated algorithm to try to
3176 // validate the basic, low-level compatibility of the two types.
3177
3178 // As a minimum, require the sizes and alignments to match.
3179 TypeInfo LeftTI = Context.getTypeInfo(left);
3180 TypeInfo RightTI = Context.getTypeInfo(right);
3181 if (LeftTI.Width != RightTI.Width)
3182 return false;
3183
3184 if (LeftTI.Align != RightTI.Align)
3185 return false;
3186
3187 // Consider all the kinds of non-dependent canonical types:
3188 // - functions and arrays aren't possible as return and parameter types
3189
3190 // - vector types of equal size can be arbitrarily mixed
3191 if (isa<VectorType>(left)) return isa<VectorType>(right);
3192 if (isa<VectorType>(right)) return false;
3193
3194 // - references should only match references of identical type
3195 // - structs, unions, and Objective-C objects must match more-or-less
3196 // exactly
3197 // - everything else should be a scalar
3198 if (!left->isScalarType() || !right->isScalarType())
3199 return tryMatchRecordTypes(Context, strategy, left, right);
3200
3201 // Make scalars agree in kind, except count bools as chars, and group
3202 // all non-member pointers together.
3203 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3204 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3205 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3206 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3207 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3209 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3211
3212 // Note that data member pointers and function member pointers don't
3213 // intermix because of the size differences.
3214
3215 return (leftSK == rightSK);
3216}
3217
3218static bool tryMatchRecordTypes(ASTContext &Context,
3220 const Type *lt, const Type *rt) {
3221 assert(lt && rt && lt != rt);
3222
3223 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3224 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3225 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3226
3227 // Require union-hood to match.
3228 if (left->isUnion() != right->isUnion()) return false;
3229
3230 // Require an exact match if either is non-POD.
3231 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3232 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3233 return false;
3234
3235 // Require size and alignment to match.
3236 TypeInfo LeftTI = Context.getTypeInfo(lt);
3237 TypeInfo RightTI = Context.getTypeInfo(rt);
3238 if (LeftTI.Width != RightTI.Width)
3239 return false;
3240
3241 if (LeftTI.Align != RightTI.Align)
3242 return false;
3243
3244 // Require fields to match.
3245 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3246 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3247 for (; li != le && ri != re; ++li, ++ri) {
3248 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3249 return false;
3250 }
3251 return (li == le && ri == re);
3252}
3253
3254/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3255/// returns true, or false, accordingly.
3256/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3258 const ObjCMethodDecl *right,
3259 MethodMatchStrategy strategy) {
3260 ASTContext &Context = getASTContext();
3261 if (!matchTypes(Context, strategy, left->getReturnType(),
3262 right->getReturnType()))
3263 return false;
3264
3265 // If either is hidden, it is not considered to match.
3266 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3267 return false;
3268
3269 if (left->isDirectMethod() != right->isDirectMethod())
3270 return false;
3271
3272 if (getLangOpts().ObjCAutoRefCount &&
3273 (left->hasAttr<NSReturnsRetainedAttr>()
3274 != right->hasAttr<NSReturnsRetainedAttr>() ||
3275 left->hasAttr<NSConsumesSelfAttr>()
3276 != right->hasAttr<NSConsumesSelfAttr>()))
3277 return false;
3278
3280 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3281 re = right->param_end();
3282
3283 for (; li != le && ri != re; ++li, ++ri) {
3284 assert(ri != right->param_end() && "Param mismatch");
3285 const ParmVarDecl *lparm = *li, *rparm = *ri;
3286
3287 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3288 return false;
3289
3290 if (getLangOpts().ObjCAutoRefCount &&
3291 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3292 return false;
3293 }
3294 return true;
3295}
3296
3298 ObjCMethodDecl *MethodInList) {
3299 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3300 auto *MethodInListProtocol =
3301 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3302 // If this method belongs to a protocol but the method in list does not, or
3303 // vice versa, we say the context is not the same.
3304 if ((MethodProtocol && !MethodInListProtocol) ||
3305 (!MethodProtocol && MethodInListProtocol))
3306 return false;
3307
3308 if (MethodProtocol && MethodInListProtocol)
3309 return true;
3310
3311 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3312 ObjCInterfaceDecl *MethodInListInterface =
3313 MethodInList->getClassInterface();
3314 return MethodInterface == MethodInListInterface;
3315}
3316
3318 ObjCMethodDecl *Method) {
3319 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3320 // inside categories.
3321 if (ObjCCategoryDecl *CD =
3322 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3323 if (!CD->IsClassExtension() && List->getBits() < 2)
3324 List->setBits(List->getBits() + 1);
3325
3326 // If the list is empty, make it a singleton list.
3327 if (List->getMethod() == nullptr) {
3328 List->setMethod(Method);
3329 List->setNext(nullptr);
3330 return;
3331 }
3332
3333 // We've seen a method with this name, see if we have already seen this type
3334 // signature.
3335 ObjCMethodList *Previous = List;
3336 ObjCMethodList *ListWithSameDeclaration = nullptr;
3337 for (; List; Previous = List, List = List->getNext()) {
3338 // If we are building a module, keep all of the methods.
3339 if (getLangOpts().isCompilingModule())
3340 continue;
3341
3342 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3343 List->getMethod());
3344 // Looking for method with a type bound requires the correct context exists.
3345 // We need to insert a method into the list if the context is different.
3346 // If the method's declaration matches the list
3347 // a> the method belongs to a different context: we need to insert it, in
3348 // order to emit the availability message, we need to prioritize over
3349 // availability among the methods with the same declaration.
3350 // b> the method belongs to the same context: there is no need to insert a
3351 // new entry.
3352 // If the method's declaration does not match the list, we insert it to the
3353 // end.
3354 if (!SameDeclaration ||
3355 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3356 // Even if two method types do not match, we would like to say
3357 // there is more than one declaration so unavailability/deprecated
3358 // warning is not too noisy.
3359 if (!Method->isDefined())
3360 List->setHasMoreThanOneDecl(true);
3361
3362 // For methods with the same declaration, the one that is deprecated
3363 // should be put in the front for better diagnostics.
3364 if (Method->isDeprecated() && SameDeclaration &&
3365 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3366 ListWithSameDeclaration = List;
3367
3368 if (Method->isUnavailable() && SameDeclaration &&
3369 !ListWithSameDeclaration &&
3370 List->getMethod()->getAvailability() < AR_Deprecated)
3371 ListWithSameDeclaration = List;
3372 continue;
3373 }
3374
3375 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3376
3377 // Propagate the 'defined' bit.
3378 if (Method->isDefined())
3379 PrevObjCMethod->setDefined(true);
3380 else {
3381 // Objective-C doesn't allow an @interface for a class after its
3382 // @implementation. So if Method is not defined and there already is
3383 // an entry for this type signature, Method has to be for a different
3384 // class than PrevObjCMethod.
3385 List->setHasMoreThanOneDecl(true);
3386 }
3387
3388 // If a method is deprecated, push it in the global pool.
3389 // This is used for better diagnostics.
3390 if (Method->isDeprecated()) {
3391 if (!PrevObjCMethod->isDeprecated())
3392 List->setMethod(Method);
3393 }
3394 // If the new method is unavailable, push it into global pool
3395 // unless previous one is deprecated.
3396 if (Method->isUnavailable()) {
3397 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3398 List->setMethod(Method);
3399 }
3400
3401 return;
3402 }
3403
3404 // We have a new signature for an existing method - add it.
3405 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3407
3408 // We insert it right before ListWithSameDeclaration.
3409 if (ListWithSameDeclaration) {
3410 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3411 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3412 ListWithSameDeclaration->setMethod(Method);
3413 ListWithSameDeclaration->setNext(List);
3414 return;
3415 }
3416
3417 Previous->setNext(new (Mem) ObjCMethodList(Method));
3418}
3419
3420/// Read the contents of the method pool for a given selector from
3421/// external storage.
3423 assert(SemaRef.ExternalSource && "We need an external AST source");
3424 SemaRef.ExternalSource->ReadMethodPool(Sel);
3425}
3426
3429 return;
3430 SemaRef.ExternalSource->updateOutOfDateSelector(Sel);
3431}
3432
3433void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3434 bool instance) {
3435 // Ignore methods of invalid containers.
3436 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3437 return;
3438
3440 ReadMethodPool(Method->getSelector());
3441
3442 auto &Lists = MethodPool[Method->getSelector()];
3443
3444 Method->setDefined(impl);
3445
3446 ObjCMethodList &Entry = instance ? Lists.first : Lists.second;
3447 addMethodToGlobalList(&Entry, Method);
3448}
3449
3450/// Determines if this is an "acceptable" loose mismatch in the global
3451/// method pool. This exists mostly as a hack to get around certain
3452/// global mismatches which we can't afford to make warnings / errors.
3453/// Really, what we want is a way to take a method out of the global
3454/// method pool.
3456 ObjCMethodDecl *other) {
3457 if (!chosen->isInstanceMethod())
3458 return false;
3459
3460 if (chosen->isDirectMethod() != other->isDirectMethod())
3461 return false;
3462
3463 Selector sel = chosen->getSelector();
3464 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3465 return false;
3466
3467 // Don't complain about mismatches for -length if the method we
3468 // chose has an integral result type.
3469 return (chosen->getReturnType()->isIntegerType());
3470}
3471
3472/// Return true if the given method is wthin the type bound.
3474 const ObjCObjectType *TypeBound) {
3475 if (!TypeBound)
3476 return true;
3477
3478 if (TypeBound->isObjCId())
3479 // FIXME: should we handle the case of bounding to id<A, B> differently?
3480 return true;
3481
3482 auto *BoundInterface = TypeBound->getInterface();
3483 assert(BoundInterface && "unexpected object type!");
3484
3485 // Check if the Method belongs to a protocol. We should allow any method
3486 // defined in any protocol, because any subclass could adopt the protocol.
3487 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3488 if (MethodProtocol) {
3489 return true;
3490 }
3491
3492 // If the Method belongs to a class, check if it belongs to the class
3493 // hierarchy of the class bound.
3494 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3495 // We allow methods declared within classes that are part of the hierarchy
3496 // of the class bound (superclass of, subclass of, or the same as the class
3497 // bound).
3498 return MethodInterface == BoundInterface ||
3499 MethodInterface->isSuperClassOf(BoundInterface) ||
3500 BoundInterface->isSuperClassOf(MethodInterface);
3501 }
3502 llvm_unreachable("unknown method context");
3503}
3504
3505/// We first select the type of the method: Instance or Factory, then collect
3506/// all methods with that type.
3509 bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) {
3511 ReadMethodPool(Sel);
3512
3513 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3514 if (Pos == MethodPool.end())
3515 return false;
3516
3517 // Gather the non-hidden methods.
3518 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3519 Pos->second.second;
3520 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3521 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3522 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3523 Methods.push_back(M->getMethod());
3524 }
3525
3526 // Return if we find any method with the desired kind.
3527 if (!Methods.empty())
3528 return Methods.size() > 1;
3529
3530 if (!CheckTheOther)
3531 return false;
3532
3533 // Gather the other kind.
3534 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3535 Pos->second.first;
3536 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3537 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3538 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3539 Methods.push_back(M->getMethod());
3540 }
3541
3542 return Methods.size() > 1;
3543}
3544
3546 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3547 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3548 // Diagnose finding more than one method in global pool.
3549 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3550 FilteredMethods.push_back(BestMethod);
3551
3552 for (auto *M : Methods)
3553 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3554 FilteredMethods.push_back(M);
3555
3556 if (FilteredMethods.size() > 1)
3557 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3558 receiverIdOrClass);
3559
3560 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3561 // Test for no method in the pool which should not trigger any warning by
3562 // caller.
3563 if (Pos == MethodPool.end())
3564 return true;
3565 ObjCMethodList &MethList =
3566 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3567 return MethList.hasMoreThanOneDecl();
3568}
3569
3570ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3571 bool receiverIdOrClass,
3572 bool instance) {
3574 ReadMethodPool(Sel);
3575
3576 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3577 if (Pos == MethodPool.end())
3578 return nullptr;
3579
3580 // Gather the non-hidden methods.
3581 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3583 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3584 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3585 return M->getMethod();
3586 }
3587 return nullptr;
3588}
3589
3592 bool receiverIdOrClass) {
3593 // We found multiple methods, so we may have to complain.
3594 bool issueDiagnostic = false, issueError = false;
3595
3596 // We support a warning which complains about *any* difference in
3597 // method signature.
3598 bool strictSelectorMatch =
3599 receiverIdOrClass &&
3600 !getDiagnostics().isIgnored(diag::warn_strict_multiple_method_decl,
3601 R.getBegin());
3602 if (strictSelectorMatch) {
3603 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3604 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3605 issueDiagnostic = true;
3606 break;
3607 }
3608 }
3609 }
3610
3611 // If we didn't see any strict differences, we won't see any loose
3612 // differences. In ARC, however, we also need to check for loose
3613 // mismatches, because most of them are errors.
3614 if (!strictSelectorMatch ||
3615 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3616 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3617 // This checks if the methods differ in type mismatch.
3618 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3619 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3620 issueDiagnostic = true;
3621 if (getLangOpts().ObjCAutoRefCount)
3622 issueError = true;
3623 break;
3624 }
3625 }
3626
3627 if (issueDiagnostic) {
3628 if (issueError)
3629 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3630 else if (strictSelectorMatch)
3631 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3632 else
3633 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3634
3635 Diag(Methods[0]->getBeginLoc(),
3636 issueError ? diag::note_possibility : diag::note_using)
3637 << Methods[0]->getSourceRange();
3638 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3639 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3640 << Methods[I]->getSourceRange();
3641 }
3642 }
3643}
3644
3646 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3647 if (Pos == MethodPool.end())
3648 return nullptr;
3649
3650 auto &Methods = Pos->second;
3651 for (const ObjCMethodList *Method = &Methods.first; Method;
3652 Method = Method->getNext())
3653 if (Method->getMethod() &&
3654 (Method->getMethod()->isDefined() ||
3655 Method->getMethod()->isPropertyAccessor()))
3656 return Method->getMethod();
3657
3658 for (const ObjCMethodList *Method = &Methods.second; Method;
3659 Method = Method->getNext())
3660 if (Method->getMethod() &&
3661 (Method->getMethod()->isDefined() ||
3662 Method->getMethod()->isPropertyAccessor()))
3663 return Method->getMethod();
3664 return nullptr;
3665}
3666
3667static void
3670 StringRef Typo, const ObjCMethodDecl * Method) {
3671 const unsigned MaxEditDistance = 1;
3672 unsigned BestEditDistance = MaxEditDistance + 1;
3673 std::string MethodName = Method->getSelector().getAsString();
3674
3675 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3676 if (MinPossibleEditDistance > 0 &&
3677 Typo.size() / MinPossibleEditDistance < 1)
3678 return;
3679 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3680 if (EditDistance > MaxEditDistance)
3681 return;
3682 if (EditDistance == BestEditDistance)
3683 BestMethod.push_back(Method);
3684 else if (EditDistance < BestEditDistance) {
3685 BestMethod.clear();
3686 BestMethod.push_back(Method);
3687 }
3688}
3689
3691 QualType ObjectType) {
3692 if (ObjectType.isNull())
3693 return true;
3694 if (S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3695 true /*Instance method*/))
3696 return true;
3697 return S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3698 false /*Class method*/) != nullptr;
3699}
3700
3701const ObjCMethodDecl *
3703 unsigned NumArgs = Sel.getNumArgs();
3705 bool ObjectIsId = true, ObjectIsClass = true;
3706 if (ObjectType.isNull())
3707 ObjectIsId = ObjectIsClass = false;
3708 else if (!ObjectType->isObjCObjectPointerType())
3709 return nullptr;
3710 else if (const ObjCObjectPointerType *ObjCPtr =
3711 ObjectType->getAsObjCInterfacePointerType()) {
3712 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3713 ObjectIsId = ObjectIsClass = false;
3714 }
3715 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3716 ObjectIsClass = false;
3717 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3718 ObjectIsId = false;
3719 else
3720 return nullptr;
3721
3722 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3723 e = MethodPool.end(); b != e; b++) {
3724 // instance methods
3725 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3726 if (M->getMethod() &&
3727 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3728 (M->getMethod()->getSelector() != Sel)) {
3729 if (ObjectIsId)
3730 Methods.push_back(M->getMethod());
3731 else if (!ObjectIsClass &&
3733 SemaRef, M->getMethod()->getSelector(), ObjectType))
3734 Methods.push_back(M->getMethod());
3735 }
3736 // class methods
3737 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3738 if (M->getMethod() &&
3739 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3740 (M->getMethod()->getSelector() != Sel)) {
3741 if (ObjectIsClass)
3742 Methods.push_back(M->getMethod());
3743 else if (!ObjectIsId &&
3745 SemaRef, M->getMethod()->getSelector(), ObjectType))
3746 Methods.push_back(M->getMethod());
3747 }
3748 }
3749
3751 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3752 HelperSelectorsForTypoCorrection(SelectedMethods,
3753 Sel.getAsString(), Methods[i]);
3754 }
3755 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3756}
3757
3758/// DiagnoseDuplicateIvars -
3759/// Check for duplicate ivars in the entire class at the start of
3760/// \@implementation. This becomes necessary because class extension can
3761/// add ivars to a class in random order which will not be known until
3762/// class's \@implementation is seen.
3764 ObjCInterfaceDecl *SID) {
3765 for (auto *Ivar : ID->ivars()) {
3766 if (Ivar->isInvalidDecl())
3767 continue;
3768 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3769 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3770 if (prevIvar) {
3771 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3772 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3773 Ivar->setInvalidDecl();
3774 }
3775 }
3776 }
3777}
3778
3779/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3781 if (S.getLangOpts().ObjCWeak) return;
3782
3783 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3784 ivar; ivar = ivar->getNextIvar()) {
3785 if (ivar->isInvalidDecl()) continue;
3786 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3787 if (S.getLangOpts().ObjCWeakRuntime) {
3788 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3789 } else {
3790 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3791 }
3792 }
3793 }
3794}
3795
3796/// Diagnose attempts to use flexible array member with retainable object type.
3798 ObjCInterfaceDecl *ID) {
3799 if (!S.getLangOpts().ObjCAutoRefCount)
3800 return;
3801
3802 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3803 ivar = ivar->getNextIvar()) {
3804 if (ivar->isInvalidDecl())
3805 continue;
3806 QualType IvarTy = ivar->getType();
3807 if (IvarTy->isIncompleteArrayType() &&
3809 IvarTy->isObjCLifetimeType()) {
3810 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3811 ivar->setInvalidDecl();
3812 }
3813 }
3814}
3815
3817 switch (SemaRef.CurContext->getDeclKind()) {
3818 case Decl::ObjCInterface:
3820 case Decl::ObjCProtocol:
3822 case Decl::ObjCCategory:
3823 if (cast<ObjCCategoryDecl>(SemaRef.CurContext)->IsClassExtension())
3826 case Decl::ObjCImplementation:
3828 case Decl::ObjCCategoryImpl:
3830
3831 default:
3832 return SemaObjC::OCK_None;
3833 }
3834}
3835
3837 if (T->isIncompleteArrayType())
3838 return true;
3839 const auto *RecordTy = T->getAs<RecordType>();
3840 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3841}
3842
3844 ObjCInterfaceDecl *IntfDecl = nullptr;
3845 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3847 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3848 Ivars = IntfDecl->ivars();
3849 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3850 IntfDecl = ImplDecl->getClassInterface();
3851 Ivars = ImplDecl->ivars();
3852 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3853 if (CategoryDecl->IsClassExtension()) {
3854 IntfDecl = CategoryDecl->getClassInterface();
3855 Ivars = CategoryDecl->ivars();
3856 }
3857 }
3858
3859 // Check if variable sized ivar is in interface and visible to subclasses.
3860 if (!isa<ObjCInterfaceDecl>(OCD)) {
3861 for (auto *ivar : Ivars) {
3862 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3863 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3864 << ivar->getDeclName() << ivar->getType();
3865 }
3866 }
3867 }
3868
3869 // Subsequent checks require interface decl.
3870 if (!IntfDecl)
3871 return;
3872
3873 // Check if variable sized ivar is followed by another ivar.
3874 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3875 ivar = ivar->getNextIvar()) {
3876 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3877 continue;
3878 QualType IvarTy = ivar->getType();
3879 bool IsInvalidIvar = false;
3880 if (IvarTy->isIncompleteArrayType()) {
3881 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3882 << ivar->getDeclName() << IvarTy
3883 << llvm::to_underlying(TagTypeKind::Class); // Use "class" for Obj-C.
3884 IsInvalidIvar = true;
3885 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3886 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3887 S.Diag(ivar->getLocation(),
3888 diag::err_objc_variable_sized_type_not_at_end)
3889 << ivar->getDeclName() << IvarTy;
3890 IsInvalidIvar = true;
3891 }
3892 }
3893 if (IsInvalidIvar) {
3894 S.Diag(ivar->getNextIvar()->getLocation(),
3895 diag::note_next_ivar_declaration)
3896 << ivar->getNextIvar()->getSynthesize();
3897 ivar->setInvalidDecl();
3898 }
3899 }
3900
3901 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3902 // Perform the check only if OCD is the first container to declare ivars to
3903 // avoid multiple warnings for the same ivar.
3904 ObjCIvarDecl *FirstIvar =
3905 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3906 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3907 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3908 while (SuperClass && SuperClass->ivar_empty())
3909 SuperClass = SuperClass->getSuperClass();
3910 if (SuperClass) {
3911 auto IvarIter = SuperClass->ivar_begin();
3912 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3913 const ObjCIvarDecl *LastIvar = *IvarIter;
3914 if (IsVariableSizedType(LastIvar->getType())) {
3915 S.Diag(FirstIvar->getLocation(),
3916 diag::warn_superclass_variable_sized_type_not_at_end)
3917 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3918 << LastIvar->getType() << SuperClass->getDeclName();
3919 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3920 << LastIvar->getDeclName();
3921 }
3922 }
3923 }
3924}
3925
3927 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3928
3930 Sema &S, ObjCCategoryDecl *CDecl,
3931 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3932 for (auto *PI : Protocols)
3934}
3935
3937 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3938 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3939 PDecl = PDecl->getDefinition();
3940
3942 const auto *IDecl = CDecl->getClassInterface();
3943 for (auto *MD : PDecl->methods()) {
3944 if (!MD->isPropertyAccessor()) {
3945 if (const auto *CMD =
3946 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3947 if (CMD->isDirectMethod())
3948 DirectMembers.push_back(CMD);
3949 }
3950 }
3951 }
3952 for (auto *PD : PDecl->properties()) {
3953 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3954 PD->getIdentifier(),
3955 PD->isClassProperty()
3958 if (CPD->isDirectProperty())
3959 DirectMembers.push_back(CPD);
3960 }
3961 }
3962 if (!DirectMembers.empty()) {
3963 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3964 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3965 for (const auto *MD : DirectMembers)
3966 S.Diag(MD->getLocation(), diag::note_direct_member_here);
3967 return;
3968 }
3969
3970 // Check on this protocols's referenced protocols, recursively.
3972 PDecl->protocols());
3973}
3974
3975// Note: For class/category implementations, allMethods is always null.
3977 ArrayRef<Decl *> allMethods,
3978 ArrayRef<DeclGroupPtrTy> allTUVars) {
3979 ASTContext &Context = getASTContext();
3981 return nullptr;
3982
3983 assert(AtEnd.isValid() && "Invalid location for '@end'");
3984
3985 auto *OCD = cast<ObjCContainerDecl>(SemaRef.CurContext);
3986 Decl *ClassDecl = OCD;
3987
3988 bool isInterfaceDeclKind =
3989 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3990 || isa<ObjCProtocolDecl>(ClassDecl);
3991 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3992
3993 // Make synthesized accessor stub functions visible.
3994 // ActOnPropertyImplDecl() creates them as not visible in case
3995 // they are overridden by an explicit method that is encountered
3996 // later.
3997 if (auto *OID = dyn_cast<ObjCImplementationDecl>(SemaRef.CurContext)) {
3998 for (auto *PropImpl : OID->property_impls()) {
3999 if (auto *Getter = PropImpl->getGetterMethodDecl())
4000 if (Getter->isSynthesizedAccessorStub())
4001 OID->addDecl(Getter);
4002 if (auto *Setter = PropImpl->getSetterMethodDecl())
4003 if (Setter->isSynthesizedAccessorStub())
4004 OID->addDecl(Setter);
4005 }
4006 }
4007
4008 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4009 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4010 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4011
4012 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4013 ObjCMethodDecl *Method =
4014 cast_or_null<ObjCMethodDecl>(allMethods[i]);
4015
4016 if (!Method) continue; // Already issued a diagnostic.
4017 if (Method->isInstanceMethod()) {
4018 /// Check for instance method of the same name with incompatible types
4019 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4020 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4021 : false;
4022 if ((isInterfaceDeclKind && PrevMethod && !match)
4023 || (checkIdenticalMethods && match)) {
4024 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4025 << Method->getDeclName();
4026 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4027 Method->setInvalidDecl();
4028 } else {
4029 if (PrevMethod) {
4030 Method->setAsRedeclaration(PrevMethod);
4031 if (!Context.getSourceManager().isInSystemHeader(
4032 Method->getLocation()))
4033 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4034 << Method->getDeclName();
4035 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4036 }
4037 InsMap[Method->getSelector()] = Method;
4038 /// The following allows us to typecheck messages to "id".
4040 }
4041 } else {
4042 /// Check for class method of the same name with incompatible types
4043 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4044 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4045 : false;
4046 if ((isInterfaceDeclKind && PrevMethod && !match)
4047 || (checkIdenticalMethods && match)) {
4048 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4049 << Method->getDeclName();
4050 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4051 Method->setInvalidDecl();
4052 } else {
4053 if (PrevMethod) {
4054 Method->setAsRedeclaration(PrevMethod);
4055 if (!Context.getSourceManager().isInSystemHeader(
4056 Method->getLocation()))
4057 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4058 << Method->getDeclName();
4059 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4060 }
4061 ClsMap[Method->getSelector()] = Method;
4063 }
4064 }
4065 }
4066 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
4067 // Nothing to do here.
4068 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
4069 // Categories are used to extend the class by declaring new methods.
4070 // By the same token, they are also used to add new properties. No
4071 // need to compare the added property to those in the class.
4072
4073 if (C->IsClassExtension()) {
4074 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4076 }
4077
4079 C->protocols());
4080 }
4081 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4082 if (CDecl->getIdentifier())
4083 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4084 // user-defined setter/getter. It also synthesizes setter/getter methods
4085 // and adds them to the DeclContext and global method pools.
4086 for (auto *I : CDecl->properties())
4088 CDecl->setAtEndRange(AtEnd);
4089 }
4090 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4091 IC->setAtEndRange(AtEnd);
4092 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4093 // Any property declared in a class extension might have user
4094 // declared setter or getter in current class extension or one
4095 // of the other class extensions. Mark them as synthesized as
4096 // property will be synthesized when property with same name is
4097 // seen in the @implementation.
4098 for (const auto *Ext : IDecl->visible_extensions()) {
4099 for (const auto *Property : Ext->instance_properties()) {
4100 // Skip over properties declared @dynamic
4101 if (const ObjCPropertyImplDecl *PIDecl
4102 = IC->FindPropertyImplDecl(Property->getIdentifier(),
4103 Property->getQueryKind()))
4104 if (PIDecl->getPropertyImplementation()
4106 continue;
4107
4108 for (const auto *Ext : IDecl->visible_extensions()) {
4109 if (ObjCMethodDecl *GetterMethod =
4110 Ext->getInstanceMethod(Property->getGetterName()))
4111 GetterMethod->setPropertyAccessor(true);
4112 if (!Property->isReadOnly())
4113 if (ObjCMethodDecl *SetterMethod
4114 = Ext->getInstanceMethod(Property->getSetterName()))
4115 SetterMethod->setPropertyAccessor(true);
4116 }
4117 }
4118 }
4119 ImplMethodsVsClassMethods(S, IC, IDecl);
4123 if (IDecl->hasDesignatedInitializers())
4127
4128 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4129 if (IDecl->getSuperClass() == nullptr) {
4130 // This class has no superclass, so check that it has been marked with
4131 // __attribute((objc_root_class)).
4132 if (!HasRootClassAttr) {
4133 SourceLocation DeclLoc(IDecl->getLocation());
4134 SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(DeclLoc));
4135 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4136 << IDecl->getIdentifier();
4137 // See if NSObject is in the current scope, and if it is, suggest
4138 // adding " : NSObject " to the class declaration.
4141 DeclLoc, Sema::LookupOrdinaryName);
4142 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4143 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4144 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4145 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4146 } else {
4147 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4148 }
4149 }
4150 } else if (HasRootClassAttr) {
4151 // Complain that only root classes may have this attribute.
4152 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4153 }
4154
4155 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4156 // An interface can subclass another interface with a
4157 // objc_subclassing_restricted attribute when it has that attribute as
4158 // well (because of interfaces imported from Swift). Therefore we have
4159 // to check if we can subclass in the implementation as well.
4160 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4161 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4162 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4163 Diag(Super->getLocation(), diag::note_class_declared);
4164 }
4165 }
4166
4167 if (IDecl->hasAttr<ObjCClassStubAttr>())
4168 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4169
4171 while (IDecl->getSuperClass()) {
4172 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4173 IDecl = IDecl->getSuperClass();
4174 }
4175 }
4176 }
4178 } else if (ObjCCategoryImplDecl* CatImplClass =
4179 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4180 CatImplClass->setAtEndRange(AtEnd);
4181
4182 // Find category interface decl and then check that all methods declared
4183 // in this interface are implemented in the category @implementation.
4184 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4185 if (ObjCCategoryDecl *Cat
4186 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4187 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4188 }
4189 }
4190 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4191 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4192 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4193 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4194 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4195 Diag(Super->getLocation(), diag::note_class_declared);
4196 }
4197 }
4198
4199 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4200 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4201 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4202 }
4204 if (isInterfaceDeclKind) {
4205 // Reject invalid vardecls.
4206 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4207 DeclGroupRef DG = allTUVars[i].get();
4208 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4209 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4210 if (!VDecl->hasExternalStorage())
4211 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4212 }
4213 }
4214 }
4216
4217 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4218 DeclGroupRef DG = allTUVars[i].get();
4219 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4220 (*I)->setTopLevelDeclInObjCContainer();
4222 }
4223
4224 SemaRef.ActOnDocumentableDecl(ClassDecl);
4225 return ClassDecl;
4226}
4227
4228/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4229/// objective-c's type qualifier from the parser version of the same info.
4232 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4233}
4234
4235/// Check whether the declared result type of the given Objective-C
4236/// method declaration is compatible with the method's class.
4237///
4240 ObjCInterfaceDecl *CurrentClass) {
4241 QualType ResultType = Method->getReturnType();
4242
4243 // If an Objective-C method inherits its related result type, then its
4244 // declared result type must be compatible with its own class type. The
4245 // declared result type is compatible if:
4246 if (const ObjCObjectPointerType *ResultObjectType
4247 = ResultType->getAs<ObjCObjectPointerType>()) {
4248 // - it is id or qualified id, or
4249 if (ResultObjectType->isObjCIdType() ||
4250 ResultObjectType->isObjCQualifiedIdType())
4252
4253 if (CurrentClass) {
4254 if (ObjCInterfaceDecl *ResultClass
4255 = ResultObjectType->getInterfaceDecl()) {
4256 // - it is the same as the method's class type, or
4257 if (declaresSameEntity(CurrentClass, ResultClass))
4259
4260 // - it is a superclass of the method's class type
4261 if (ResultClass->isSuperClassOf(CurrentClass))
4263 }
4264 } else {
4265 // Any Objective-C pointer type might be acceptable for a protocol
4266 // method; we just don't know.
4267 return SemaObjC::RTC_Unknown;
4268 }
4269 }
4270
4272}
4273
4274namespace {
4275/// A helper class for searching for methods which a particular method
4276/// overrides.
4277class OverrideSearch {
4278public:
4279 const ObjCMethodDecl *Method;
4281 bool Recursive;
4282
4283public:
4284 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4285 Selector selector = method->getSelector();
4286
4287 // Bypass this search if we've never seen an instance/class method
4288 // with this selector before.
4289 SemaObjC::GlobalMethodPool::iterator it =
4290 S.ObjC().MethodPool.find(selector);
4291 if (it == S.ObjC().MethodPool.end()) {
4292 if (!S.getExternalSource()) return;
4293 S.ObjC().ReadMethodPool(selector);
4294
4295 it = S.ObjC().MethodPool.find(selector);
4296 if (it == S.ObjC().MethodPool.end())
4297 return;
4298 }
4299 const ObjCMethodList &list =
4300 method->isInstanceMethod() ? it->second.first : it->second.second;
4301 if (!list.getMethod()) return;
4302
4303 const ObjCContainerDecl *container
4304 = cast<ObjCContainerDecl>(method->getDeclContext());
4305
4306 // Prevent the search from reaching this container again. This is
4307 // important with categories, which override methods from the
4308 // interface and each other.
4309 if (const ObjCCategoryDecl *Category =
4310 dyn_cast<ObjCCategoryDecl>(container)) {
4311 searchFromContainer(container);
4312 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4313 searchFromContainer(Interface);
4314 } else {
4315 searchFromContainer(container);
4316 }
4317 }
4318
4319 typedef decltype(Overridden)::iterator iterator;
4320 iterator begin() const { return Overridden.begin(); }
4321 iterator end() const { return Overridden.end(); }
4322
4323private:
4324 void searchFromContainer(const ObjCContainerDecl *container) {
4325 if (container->isInvalidDecl()) return;
4326
4327 switch (container->getDeclKind()) {
4328#define OBJCCONTAINER(type, base) \
4329 case Decl::type: \
4330 searchFrom(cast<type##Decl>(container)); \
4331 break;
4332#define ABSTRACT_DECL(expansion)
4333#define DECL(type, base) \
4334 case Decl::type:
4335#include "clang/AST/DeclNodes.inc"
4336 llvm_unreachable("not an ObjC container!");
4337 }
4338 }
4339
4340 void searchFrom(const ObjCProtocolDecl *protocol) {
4341 if (!protocol->hasDefinition())
4342 return;
4343
4344 // A method in a protocol declaration overrides declarations from
4345 // referenced ("parent") protocols.
4346 search(protocol->getReferencedProtocols());
4347 }
4348
4349 void searchFrom(const ObjCCategoryDecl *category) {
4350 // A method in a category declaration overrides declarations from
4351 // the main class and from protocols the category references.
4352 // The main class is handled in the constructor.
4353 search(category->getReferencedProtocols());
4354 }
4355
4356 void searchFrom(const ObjCCategoryImplDecl *impl) {
4357 // A method in a category definition that has a category
4358 // declaration overrides declarations from the category
4359 // declaration.
4360 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4361 search(category);
4362 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4363 search(Interface);
4364
4365 // Otherwise it overrides declarations from the class.
4366 } else if (const auto *Interface = impl->getClassInterface()) {
4367 search(Interface);
4368 }
4369 }
4370
4371 void searchFrom(const ObjCInterfaceDecl *iface) {
4372 // A method in a class declaration overrides declarations from
4373 if (!iface->hasDefinition())
4374 return;
4375
4376 // - categories,
4377 for (auto *Cat : iface->known_categories())
4378 search(Cat);
4379
4380 // - the super class, and
4381 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4382 search(super);
4383
4384 // - any referenced protocols.
4385 search(iface->getReferencedProtocols());
4386 }
4387
4388 void searchFrom(const ObjCImplementationDecl *impl) {
4389 // A method in a class implementation overrides declarations from
4390 // the class interface.
4391 if (const auto *Interface = impl->getClassInterface())
4392 search(Interface);
4393 }
4394
4395 void search(const ObjCProtocolList &protocols) {
4396 for (const auto *Proto : protocols)
4397 search(Proto);
4398 }
4399
4400 void search(const ObjCContainerDecl *container) {
4401 // Check for a method in this container which matches this selector.
4402 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4403 Method->isInstanceMethod(),
4404 /*AllowHidden=*/true);
4405
4406 // If we find one, record it and bail out.
4407 if (meth) {
4408 Overridden.insert(meth);
4409 return;
4410 }
4411
4412 // Otherwise, search for methods that a hypothetical method here
4413 // would have overridden.
4414
4415 // Note that we're now in a recursive case.
4416 Recursive = true;
4417
4418 searchFromContainer(container);
4419 }
4420};
4421} // end anonymous namespace
4422
4424 ObjCMethodDecl *overridden) {
4425 if (overridden->isDirectMethod()) {
4426 const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4427 Diag(method->getLocation(), diag::err_objc_override_direct_method);
4428 Diag(attr->getLocation(), diag::note_previous_declaration);
4429 } else if (method->isDirectMethod()) {
4430 const auto *attr = method->getAttr<ObjCDirectAttr>();
4431 Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4432 << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4433 Diag(overridden->getLocation(), diag::note_previous_declaration);
4434 }
4435}
4436
4438 ObjCInterfaceDecl *CurrentClass,
4440 ASTContext &Context = getASTContext();
4441 if (!ObjCMethod)
4442 return;
4443 auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4444 // Checking canonical decl works across modules.
4445 return M->getClassInterface()->getCanonicalDecl() ==
4446 CurrentClass->getCanonicalDecl();
4447 };
4448 // Search for overridden methods and merge information down from them.
4449 OverrideSearch overrides(SemaRef, ObjCMethod);
4450 // Keep track if the method overrides any method in the class's base classes,
4451 // its protocols, or its categories' protocols; we will keep that info
4452 // in the ObjCMethodDecl.
4453 // For this info, a method in an implementation is not considered as
4454 // overriding the same method in the interface or its categories.
4455 bool hasOverriddenMethodsInBaseOrProtocol = false;
4456 for (ObjCMethodDecl *overridden : overrides) {
4457 if (!hasOverriddenMethodsInBaseOrProtocol) {
4458 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4459 !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4460 CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4461 hasOverriddenMethodsInBaseOrProtocol = true;
4462 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4463 // OverrideSearch will return as "overridden" the same method in the
4464 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4465 // check whether a category of a base class introduced a method with the
4466 // same selector, after the interface method declaration.
4467 // To avoid unnecessary lookups in the majority of cases, we use the
4468 // extra info bits in GlobalMethodPool to check whether there were any
4469 // category methods with this selector.
4470 GlobalMethodPool::iterator It =
4471 MethodPool.find(ObjCMethod->getSelector());
4472 if (It != MethodPool.end()) {
4473 ObjCMethodList &List =
4474 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4475 unsigned CategCount = List.getBits();
4476 if (CategCount > 0) {
4477 // If the method is in a category we'll do lookup if there were at
4478 // least 2 category methods recorded, otherwise only one will do.
4479 if (CategCount > 1 ||
4480 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4481 OverrideSearch overrides(SemaRef, overridden);
4482 for (ObjCMethodDecl *SuperOverridden : overrides) {
4483 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4484 !IsMethodInCurrentClass(SuperOverridden)) {
4485 CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4486 hasOverriddenMethodsInBaseOrProtocol = true;
4487 overridden->setOverriding(true);
4488 break;
4489 }
4490 }
4491 }
4492 }
4493 }
4494 }
4495 }
4496
4497 // Propagate down the 'related result type' bit from overridden methods.
4498 if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType())
4499 ObjCMethod->setRelatedResultType();
4500
4501 // Then merge the declarations.
4502 SemaRef.mergeObjCMethodDecls(ObjCMethod, overridden);
4503
4504 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4505 continue; // Conflicting properties are detected elsewhere.
4506
4507 // Check for overriding methods
4508 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4509 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4510 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4511 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4512
4513 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4514 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4515 !overridden->isImplicit() /* not meant for properties */) {
4516 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4517 E = ObjCMethod->param_end();
4518 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4519 PrevE = overridden->param_end();
4520 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4521 assert(PrevI != overridden->param_end() && "Param mismatch");
4522 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4523 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4524 // If type of argument of method in this class does not match its
4525 // respective argument type in the super class method, issue warning;
4526 if (!Context.typesAreCompatible(T1, T2)) {
4527 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4528 << T1 << T2;
4529 Diag(overridden->getLocation(), diag::note_previous_declaration);
4530 break;
4531 }
4532 }
4533 }
4534 }
4535
4536 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4537}
4538
4539/// Merge type nullability from for a redeclaration of the same entity,
4540/// producing the updated type of the redeclared entity.
4542 QualType type,
4543 bool usesCSKeyword,
4544 SourceLocation prevLoc,
4545 QualType prevType,
4546 bool prevUsesCSKeyword) {
4547 // Determine the nullability of both types.
4548 auto nullability = type->getNullability();
4549 auto prevNullability = prevType->getNullability();
4550
4551 // Easy case: both have nullability.
4552 if (nullability.has_value() == prevNullability.has_value()) {
4553 // Neither has nullability; continue.
4554 if (!nullability)
4555 return type;
4556
4557 // The nullabilities are equivalent; do nothing.
4558 if (*nullability == *prevNullability)
4559 return type;
4560
4561 // Complain about mismatched nullability.
4562 S.Diag(loc, diag::err_nullability_conflicting)
4563 << DiagNullabilityKind(*nullability, usesCSKeyword)
4564 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4565 return type;
4566 }
4567
4568 // If it's the redeclaration that has nullability, don't change anything.
4569 if (nullability)
4570 return type;
4571
4572 // Otherwise, provide the result with the same nullability.
4573 return S.Context.getAttributedType(*prevNullability, type, type);
4574}
4575
4576/// Merge information from the declaration of a method in the \@interface
4577/// (or a category/extension) into the corresponding method in the
4578/// @implementation (for a class or category).
4580 ObjCMethodDecl *method,
4581 ObjCMethodDecl *prevMethod) {
4582 // Merge the objc_requires_super attribute.
4583 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4584 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4585 // merge the attribute into implementation.
4586 method->addAttr(
4587 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4588 method->getLocation()));
4589 }
4590
4591 // Merge nullability of the result type.
4592 QualType newReturnType
4594 S, method->getReturnTypeSourceRange().getBegin(),
4595 method->getReturnType(),
4597 prevMethod->getReturnTypeSourceRange().getBegin(),
4598 prevMethod->getReturnType(),
4600 method->setReturnType(newReturnType);
4601
4602 // Handle each of the parameters.
4603 unsigned numParams = method->param_size();
4604 unsigned numPrevParams = prevMethod->param_size();
4605 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4606 ParmVarDecl *param = method->param_begin()[i];
4607 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4608
4609 // Merge nullability.
4610 QualType newParamType
4612 S, param->getLocation(), param->getType(),
4614 prevParam->getLocation(), prevParam->getType(),
4616 param->setType(newParamType);
4617 }
4618}
4619
4620/// Verify that the method parameters/return value have types that are supported
4621/// by the x86 target.
4623 const ObjCMethodDecl *Method) {
4624 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4625 llvm::Triple::x86 &&
4626 "x86-specific check invoked for a different target");
4628 QualType T;
4629 for (const ParmVarDecl *P : Method->parameters()) {
4630 if (P->getType()->isVectorType()) {
4631 Loc = P->getBeginLoc();
4632 T = P->getType();
4633 break;
4634 }
4635 }
4636 if (Loc.isInvalid()) {
4637 if (Method->getReturnType()->isVectorType()) {
4639 T = Method->getReturnType();
4640 } else
4641 return;
4642 }
4643
4644 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4645 // iOS < 9 and macOS < 10.11.
4646 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4647 VersionTuple AcceptedInVersion;
4648 if (Triple.getOS() == llvm::Triple::IOS)
4649 AcceptedInVersion = VersionTuple(/*Major=*/9);
4650 else if (Triple.isMacOSX())
4651 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4652 else
4653 return;
4655 AcceptedInVersion)
4656 return;
4657 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4658 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4659 : /*parameter*/ 0)
4660 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4661}
4662
4663static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4664 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4665 CD->hasAttr<ObjCDirectMembersAttr>()) {
4666 Method->addAttr(
4667 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4668 }
4669}
4670
4672 ObjCMethodDecl *Method,
4673 ObjCImplDecl *ImpDecl = nullptr) {
4674 auto Sel = Method->getSelector();
4675 bool isInstance = Method->isInstanceMethod();
4676 bool diagnosed = false;
4677
4678 auto diagClash = [&](const ObjCMethodDecl *IMD) {
4679 if (diagnosed || IMD->isImplicit())
4680 return;
4681 if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4682 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4683 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4684 << Method->getDeclName();
4685 S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4686 diagnosed = true;
4687 }
4688 };
4689
4690 // Look for any other declaration of this method anywhere we can see in this
4691 // compilation unit.
4692 //
4693 // We do not use IDecl->lookupMethod() because we have specific needs:
4694 //
4695 // - we absolutely do not need to walk protocols, because
4696 // diag::err_objc_direct_on_protocol has already been emitted
4697 // during parsing if there's a conflict,
4698 //
4699 // - when we do not find a match in a given @interface container,
4700 // we need to attempt looking it up in the @implementation block if the
4701 // translation unit sees it to find more clashes.
4702
4703 if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4704 diagClash(IMD);
4705 else if (auto *Impl = IDecl->getImplementation())
4706 if (Impl != ImpDecl)
4707 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4708 diagClash(IMD);
4709
4710 for (const auto *Cat : IDecl->visible_categories())
4711 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4712 diagClash(IMD);
4713 else if (auto CatImpl = Cat->getImplementation())
4714 if (CatImpl != ImpDecl)
4715 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4716 diagClash(IMD);
4717}
4718
4720 ObjCArgInfo &ArgInfo,
4721 int ParamIndex,
4722 bool MethodDefinition) {
4723 ASTContext &Context = getASTContext();
4724 QualType ArgType;
4725 TypeSourceInfo *DI;
4726
4727 if (!ArgInfo.Type) {
4728 ArgType = Context.getObjCIdType();
4729 DI = nullptr;
4730 } else {
4731 ArgType = SemaRef.GetTypeFromParser(ArgInfo.Type, &DI);
4732 }
4733 LookupResult R(SemaRef, ArgInfo.Name, ArgInfo.NameLoc,
4736 SemaRef.LookupName(R, S);
4737 if (R.isSingleResult()) {
4738 NamedDecl *PrevDecl = R.getFoundDecl();
4739 if (S->isDeclScope(PrevDecl)) {
4740 Diag(ArgInfo.NameLoc,
4741 (MethodDefinition ? diag::warn_method_param_redefinition
4742 : diag::warn_method_param_declaration))
4743 << ArgInfo.Name;
4744 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4745 }
4746 }
4747 SourceLocation StartLoc =
4748 DI ? DI->getTypeLoc().getBeginLoc() : ArgInfo.NameLoc;
4749
4750 // Temporarily put parameter variables in the translation unit. This is what
4751 // ActOnParamDeclarator does in the case of C arguments to the Objective-C
4752 // method too.
4754 Context.getTranslationUnitDecl(), StartLoc, ArgInfo.NameLoc, ArgInfo.Name,
4755 ArgType, DI, SC_None);
4756 Param->setObjCMethodScopeInfo(ParamIndex);
4757 Param->setObjCDeclQualifier(
4759
4760 // Apply the attributes to the parameter.
4763 if (Param->hasAttr<BlocksAttr>()) {
4764 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4765 Param->setInvalidDecl();
4766 }
4767
4768 S->AddDecl(Param);
4769 SemaRef.IdResolver.AddDecl(Param);
4770 return Param;
4771}
4772
4774 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4775 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4776 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4777 // optional arguments. The number of types/arguments is obtained
4778 // from the Sel.getNumArgs().
4779 ParmVarDecl **ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4780 unsigned CNumArgs, // c-style args
4781 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4782 bool isVariadic, bool MethodDefinition) {
4783 ASTContext &Context = getASTContext();
4784 // Make sure we can establish a context for the method.
4786 Diag(MethodLoc, diag::err_missing_method_context);
4787 return nullptr;
4788 }
4789
4790 Decl *ClassDecl = cast<ObjCContainerDecl>(SemaRef.CurContext);
4791 QualType resultDeclType;
4792
4793 bool HasRelatedResultType = false;
4794 TypeSourceInfo *ReturnTInfo = nullptr;
4795 if (ReturnType) {
4796 resultDeclType = SemaRef.GetTypeFromParser(ReturnType, &ReturnTInfo);
4797
4798 if (SemaRef.CheckFunctionReturnType(resultDeclType, MethodLoc))
4799 return nullptr;
4800
4801 QualType bareResultType = resultDeclType;
4802 (void)AttributedType::stripOuterNullability(bareResultType);
4803 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4804 } else { // get the type for "id".
4805 resultDeclType = Context.getObjCIdType();
4806 Diag(MethodLoc, diag::warn_missing_method_return_type)
4807 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4808 }
4809
4811 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo,
4812 SemaRef.CurContext, MethodType == tok::minus, isVariadic,
4813 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4814 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4815 MethodDeclKind == tok::objc_optional
4818 HasRelatedResultType);
4819
4821 for (unsigned I = 0; I < Sel.getNumArgs(); ++I) {
4822 ParmVarDecl *Param = ArgInfo[I];
4823 Param->setDeclContext(ObjCMethod);
4824 SemaRef.ProcessAPINotes(Param);
4825 Params.push_back(Param);
4826 }
4827
4828 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4829 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4830 QualType ArgType = Param->getType();
4831 if (ArgType.isNull())
4832 ArgType = Context.getObjCIdType();
4833 else
4834 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4835 ArgType = Context.getAdjustedParameterType(ArgType);
4836
4837 Param->setDeclContext(ObjCMethod);
4838 Params.push_back(Param);
4839 }
4840
4841 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4842 ObjCMethod->setObjCDeclQualifier(
4844
4845 SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, ObjCMethod, AttrList);
4847 SemaRef.ProcessAPINotes(ObjCMethod);
4848
4849 // Add the method now.
4850 const ObjCMethodDecl *PrevMethod = nullptr;
4851 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4852 if (MethodType == tok::minus) {
4853 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4854 ImpDecl->addInstanceMethod(ObjCMethod);
4855 } else {
4856 PrevMethod = ImpDecl->getClassMethod(Sel);
4857 ImpDecl->addClassMethod(ObjCMethod);
4858 }
4859
4860 // If this method overrides a previous @synthesize declaration,
4861 // register it with the property. Linear search through all
4862 // properties here, because the autosynthesized stub hasn't been
4863 // made visible yet, so it can be overridden by a later
4864 // user-specified implementation.
4865 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4866 if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4867 if (Setter->getSelector() == Sel &&
4868 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4869 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4870 PropertyImpl->setSetterMethodDecl(ObjCMethod);
4871 }
4872 if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4873 if (Getter->getSelector() == Sel &&
4874 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4875 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4876 PropertyImpl->setGetterMethodDecl(ObjCMethod);
4877 break;
4878 }
4879 }
4880
4881 // A method is either tagged direct explicitly, or inherits it from its
4882 // canonical declaration.
4883 //
4884 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4885 // because IDecl->lookupMethod() returns more possible matches than just
4886 // the canonical declaration.
4887 if (!ObjCMethod->isDirectMethod()) {
4888 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4889 if (CanonicalMD->isDirectMethod()) {
4890 const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4891 ObjCMethod->addAttr(
4892 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4893 }
4894 }
4895
4896 // Merge information from the @interface declaration into the
4897 // @implementation.
4898 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4899 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4900 ObjCMethod->isInstanceMethod())) {
4901 mergeInterfaceMethodToImpl(SemaRef, ObjCMethod, IMD);
4902
4903 // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4904 // in one of these places:
4905 //
4906 // (1) the canonical declaration in an @interface container paired
4907 // with the ImplDecl,
4908 // (2) non canonical declarations in @interface not paired with the
4909 // ImplDecl for the same Class,
4910 // (3) any superclass container.
4911 //
4912 // Direct methods only allow for canonical declarations in the matching
4913 // container (case 1).
4914 //
4915 // Direct methods overriding a superclass declaration (case 3) is
4916 // handled during overrides checks in CheckObjCMethodOverrides().
4917 //
4918 // We deal with same-class container mismatches (Case 2) here.
4919 if (IDecl == IMD->getClassInterface()) {
4920 auto diagContainerMismatch = [&] {
4921 int decl = 0, impl = 0;
4922
4923 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4924 decl = Cat->IsClassExtension() ? 1 : 2;
4925
4926 if (isa<ObjCCategoryImplDecl>(ImpDecl))
4927 impl = 1 + (decl != 0);
4928
4929 Diag(ObjCMethod->getLocation(),
4930 diag::err_objc_direct_impl_decl_mismatch)
4931 << decl << impl;
4932 Diag(IMD->getLocation(), diag::note_previous_declaration);
4933 };
4934
4935 if (ObjCMethod->isDirectMethod()) {
4936 const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4937 if (ObjCMethod->getCanonicalDecl() != IMD) {
4938 diagContainerMismatch();
4939 } else if (!IMD->isDirectMethod()) {
4940 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4941 Diag(IMD->getLocation(), diag::note_previous_declaration);
4942 }
4943 } else if (IMD->isDirectMethod()) {
4944 const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4945 if (ObjCMethod->getCanonicalDecl() != IMD) {
4946 diagContainerMismatch();
4947 } else {
4948 ObjCMethod->addAttr(
4949 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4950 }
4951 }
4952 }
4953
4954 // Warn about defining -dealloc in a category.
4955 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4956 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4957 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4958 << ObjCMethod->getDeclName();
4959 }
4960 } else {
4961 mergeObjCDirectMembers(SemaRef, ClassDecl, ObjCMethod);
4962 checkObjCDirectMethodClashes(SemaRef, IDecl, ObjCMethod, ImpDecl);
4963 }
4964
4965 // Warn if a method declared in a protocol to which a category or
4966 // extension conforms is non-escaping and the implementation's method is
4967 // escaping.
4968 for (auto *C : IDecl->visible_categories())
4969 for (auto &P : C->protocols())
4970 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4971 ObjCMethod->isInstanceMethod())) {
4972 assert(ObjCMethod->parameters().size() ==
4973 IMD->parameters().size() &&
4974 "Methods have different number of parameters");
4975 auto OI = IMD->param_begin(), OE = IMD->param_end();
4976 auto NI = ObjCMethod->param_begin();
4977 for (; OI != OE; ++OI, ++NI)
4978 diagnoseNoescape(*NI, *OI, C, P, SemaRef);
4979 }
4980 }
4981 } else {
4982 if (!isa<ObjCProtocolDecl>(ClassDecl)) {
4983 mergeObjCDirectMembers(SemaRef, ClassDecl, ObjCMethod);
4984
4985 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4986 if (!IDecl)
4987 IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
4988 // For valid code, we should always know the primary interface
4989 // declaration by now, however for invalid code we'll keep parsing
4990 // but we won't find the primary interface and IDecl will be nil.
4991 if (IDecl)
4992 checkObjCDirectMethodClashes(SemaRef, IDecl, ObjCMethod);
4993 }
4994
4995 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4996 }
4997
4998 if (PrevMethod) {
4999 // You can never have two method definitions with the same name.
5000 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
5001 << ObjCMethod->getDeclName();
5002 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
5003 ObjCMethod->setInvalidDecl();
5004 return ObjCMethod;
5005 }
5006
5007 // If this Objective-C method does not have a related result type, but we
5008 // are allowed to infer related result types, try to do so based on the
5009 // method family.
5010 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
5011 if (!CurrentClass) {
5012 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
5013 CurrentClass = Cat->getClassInterface();
5014 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
5015 CurrentClass = Impl->getClassInterface();
5016 else if (ObjCCategoryImplDecl *CatImpl
5017 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
5018 CurrentClass = CatImpl->getClassInterface();
5019 }
5020
5022 CheckRelatedResultTypeCompatibility(SemaRef, ObjCMethod, CurrentClass);
5023
5024 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5025
5026 bool ARCError = false;
5027 if (getLangOpts().ObjCAutoRefCount)
5028 ARCError = CheckARCMethodDecl(ObjCMethod);
5029
5030 // Infer the related result type when possible.
5031 if (!ARCError && RTC == SemaObjC::RTC_Compatible &&
5032 !ObjCMethod->hasRelatedResultType() &&
5033 getLangOpts().ObjCInferRelatedResultType) {
5034 bool InferRelatedResultType = false;
5035 switch (ObjCMethod->getMethodFamily()) {
5036 case OMF_None:
5037 case OMF_copy:
5038 case OMF_dealloc:
5039 case OMF_finalize:
5040 case OMF_mutableCopy:
5041 case OMF_release:
5042 case OMF_retainCount:
5043 case OMF_initialize:
5045 break;
5046
5047 case OMF_alloc:
5048 case OMF_new:
5049 InferRelatedResultType = ObjCMethod->isClassMethod();
5050 break;
5051
5052 case OMF_init:
5053 case OMF_autorelease:
5054 case OMF_retain:
5055 case OMF_self:
5056 InferRelatedResultType = ObjCMethod->isInstanceMethod();
5057 break;
5058 }
5059
5060 if (InferRelatedResultType &&
5061 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5062 ObjCMethod->setRelatedResultType();
5063 }
5064
5065 if (MethodDefinition &&
5066 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5068
5069 // + load method cannot have availability attributes. It get called on
5070 // startup, so it has to have the availability of the deployment target.
5071 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5072 if (ObjCMethod->isClassMethod() &&
5073 ObjCMethod->getSelector().getAsString() == "load") {
5074 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5075 << 0;
5076 ObjCMethod->dropAttr<AvailabilityAttr>();
5077 }
5078 }
5079
5080 // Insert the invisible arguments, self and _cmd!
5081 ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
5082
5083 SemaRef.ActOnDocumentableDecl(ObjCMethod);
5084
5085 return ObjCMethod;
5086}
5087
5089 // Following is also an error. But it is caused by a missing @end
5090 // and diagnostic is issued elsewhere.
5091 if (isa<ObjCContainerDecl>(SemaRef.CurContext->getRedeclContext()))
5092 return false;
5093
5094 // If we switched context to translation unit while we are still lexically in
5095 // an objc container, it means the parser missed emitting an error.
5096 if (isa<TranslationUnitDecl>(
5098 return false;
5099
5100 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5101 D->setInvalidDecl();
5102
5103 return true;
5104}
5105
5106/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
5107/// instance variables of ClassName into Decls.
5109 const IdentifierInfo *ClassName,
5110 SmallVectorImpl<Decl *> &Decls) {
5111 ASTContext &Context = getASTContext();
5112 // Check that ClassName is a valid class
5113 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
5114 if (!Class) {
5115 Diag(DeclStart, diag::err_undef_interface) << ClassName;
5116 return;
5117 }
5119 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5120 return;
5121 }
5122
5123 // Collect the instance variables
5125 Context.DeepCollectObjCIvars(Class, true, Ivars);
5126 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5127 for (unsigned i = 0; i < Ivars.size(); i++) {
5128 const FieldDecl* ID = Ivars[i];
5129 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
5131 /*FIXME: StartL=*/ID->getLocation(),
5132 ID->getLocation(),
5133 ID->getIdentifier(), ID->getType(),
5134 ID->getBitWidth());
5135 Decls.push_back(FD);
5136 }
5137
5138 // Introduce all of these fields into the appropriate scope.
5139 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5140 D != Decls.end(); ++D) {
5141 FieldDecl *FD = cast<FieldDecl>(*D);
5142 if (getLangOpts().CPlusPlus)
5144 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
5145 Record->addDecl(FD);
5146 }
5147}
5148
5149/// Build a type-check a new Objective-C exception variable declaration.
5151 SourceLocation StartLoc,
5152 SourceLocation IdLoc,
5153 const IdentifierInfo *Id,
5154 bool Invalid) {
5155 ASTContext &Context = getASTContext();
5156 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5157 // duration shall not be qualified by an address-space qualifier."
5158 // Since all parameters have automatic store duration, they can not have
5159 // an address space.
5160 if (T.getAddressSpace() != LangAS::Default) {
5161 Diag(IdLoc, diag::err_arg_with_address_space);
5162 Invalid = true;
5163 }
5164
5165 // An @catch parameter must be an unqualified object pointer type;
5166 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5167 if (Invalid) {
5168 // Don't do any further checking.
5169 } else if (T->isDependentType()) {
5170 // Okay: we don't know what this type will instantiate to.
5171 } else if (T->isObjCQualifiedIdType()) {
5172 Invalid = true;
5173 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5174 } else if (T->isObjCIdType()) {
5175 // Okay: we don't know what this type will instantiate to.
5176 } else if (!T->isObjCObjectPointerType()) {
5177 Invalid = true;
5178 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5179 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5180 Invalid = true;
5181 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5182 }
5183
5184 VarDecl *New = VarDecl::Create(Context, SemaRef.CurContext, StartLoc, IdLoc,
5185 Id, T, TInfo, SC_None);
5186 New->setExceptionVariable(true);
5187
5188 // In ARC, infer 'retaining' for variables of retainable type.
5189 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5190 Invalid = true;
5191
5192 if (Invalid)
5193 New->setInvalidDecl();
5194 return New;
5195}
5196
5198 const DeclSpec &DS = D.getDeclSpec();
5199
5200 // We allow the "register" storage class on exception variables because
5201 // GCC did, but we drop it completely. Any other storage class is an error.
5203 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5205 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5206 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5208 }
5209 if (DS.isInlineSpecified())
5210 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5211 << getLangOpts().CPlusPlus17;
5212 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5213 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5214 diag::err_invalid_thread)
5216 D.getMutableDeclSpec().ClearStorageClassSpecs();
5217
5218 SemaRef.DiagnoseFunctionSpecifiers(D.getDeclSpec());
5219
5220 // Check that there are no default arguments inside the type of this
5221 // exception object (C++ only).
5222 if (getLangOpts().CPlusPlus)
5224
5226 QualType ExceptionType = TInfo->getType();
5227
5228 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
5230 D.getIdentifierLoc(),
5231 D.getIdentifier(),
5232 D.isInvalidType());
5233
5234 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5235 if (D.getCXXScopeSpec().isSet()) {
5236 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5237 << D.getCXXScopeSpec().getRange();
5238 New->setInvalidDecl();
5239 }
5240
5241 // Add the parameter declaration into this scope.
5242 S->AddDecl(New);
5243 if (D.getIdentifier())
5245
5247
5248 if (New->hasAttr<BlocksAttr>())
5249 Diag(New->getLocation(), diag::err_block_on_nonlocal);
5250 return New;
5251}
5252
5253/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5254/// initialization.
5257 ASTContext &Context = getASTContext();
5258 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5259 Iv= Iv->getNextIvar()) {
5260 QualType QT = Context.getBaseElementType(Iv->getType());
5261 if (QT->isRecordType())
5262 Ivars.push_back(Iv);
5263 }
5264}
5265
5267 ASTContext &Context = getASTContext();
5268 // Load referenced selectors from the external source.
5269 if (SemaRef.ExternalSource) {
5271 SemaRef.ExternalSource->ReadReferencedSelectors(Sels);
5272 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5273 ReferencedSelectors[Sels[I].first] = Sels[I].second;
5274 }
5275
5276 // Warning will be issued only when selector table is
5277 // generated (which means there is at lease one implementation
5278 // in the TU). This is to match gcc's behavior.
5279 if (ReferencedSelectors.empty() ||
5280 !Context.AnyObjCImplementation())
5281 return;
5282 for (auto &SelectorAndLocation : ReferencedSelectors) {
5283 Selector Sel = SelectorAndLocation.first;
5284 SourceLocation Loc = SelectorAndLocation.second;
5286 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5287 }
5288}
5289
5292 const ObjCPropertyDecl *&PDecl) const {
5293 if (Method->isClassMethod())
5294 return nullptr;
5295 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5296 if (!IDecl)
5297 return nullptr;
5298 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
5299 /*shallowCategoryLookup=*/false,
5300 /*followSuper=*/false);
5301 if (!Method || !Method->isPropertyAccessor())
5302 return nullptr;
5303 if ((PDecl = Method->findPropertyDecl()))
5304 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5305 // property backing ivar must belong to property's class
5306 // or be a private ivar in class's implementation.
5307 // FIXME. fix the const-ness issue.
5308 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5309 IV->getIdentifier());
5310 return IV;
5311 }
5312 return nullptr;
5313}
5314
5315namespace {
5316/// Used by SemaObjC::DiagnoseUnusedBackingIvarInAccessor to check if a property
5317/// accessor references the backing ivar.
5318class UnusedBackingIvarChecker : public DynamicRecursiveASTVisitor {
5319public:
5320 Sema &S;
5321 const ObjCMethodDecl *Method;
5322 const ObjCIvarDecl *IvarD;
5323 bool AccessedIvar;
5324 bool InvokedSelfMethod;
5325
5326 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5327 const ObjCIvarDecl *IvarD)
5328 : S(S), Method(Method), IvarD(IvarD), AccessedIvar(false),
5329 InvokedSelfMethod(false) {
5330 assert(IvarD);
5331 }
5332
5333 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) override {
5334 if (E->getDecl() == IvarD) {
5335 AccessedIvar = true;
5336 return false;
5337 }
5338 return true;
5339 }
5340
5341 bool VisitObjCMessageExpr(ObjCMessageExpr *E) override {
5342 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5343 S.ObjC().isSelfExpr(E->getInstanceReceiver(), Method)) {
5344 InvokedSelfMethod = true;
5345 }
5346 return true;
5347 }
5348};
5349} // end anonymous namespace
5350
5352 Scope *S, const ObjCImplementationDecl *ImplD) {
5353 if (S->hasUnrecoverableErrorOccurred())
5354 return;
5355
5356 for (const auto *CurMethod : ImplD->instance_methods()) {
5357 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5358 SourceLocation Loc = CurMethod->getLocation();
5359 if (getDiagnostics().isIgnored(DIAG, Loc))
5360 continue;
5361
5362 const ObjCPropertyDecl *PDecl;
5363 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5364 if (!IV)
5365 continue;
5366
5367 if (CurMethod->isSynthesizedAccessorStub())
5368 continue;
5369
5370 UnusedBackingIvarChecker Checker(SemaRef, CurMethod, IV);
5371 Checker.TraverseStmt(CurMethod->getBody());
5372 if (Checker.AccessedIvar)
5373 continue;
5374
5375 // Do not issue this warning if backing ivar is used somewhere and accessor
5376 // implementation makes a self call. This is to prevent false positive in
5377 // cases where the ivar is accessed by another method that the accessor
5378 // delegates to.
5379 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5380 Diag(Loc, DIAG) << IV;
5381 Diag(PDecl->getLocation(), diag::note_property_declare);
5382 }
5383 }
5384}
5385
5387 QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo) {
5388 ASTContext &Context = getASTContext();
5389 // In ARC, infer a lifetime qualifier for appropriate parameter types.
5390 if (!getLangOpts().ObjCAutoRefCount ||
5391 T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType())
5392 return T;
5393
5394 Qualifiers::ObjCLifetime Lifetime;
5395
5396 // Special cases for arrays:
5397 // - if it's const, use __unsafe_unretained
5398 // - otherwise, it's an error
5399 if (T->isArrayType()) {
5400 if (!T.isConstQualified()) {
5404 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
5405 else
5406 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
5407 << TSInfo->getTypeLoc().getSourceRange();
5408 }
5410 } else {
5411 Lifetime = T->getObjCARCImplicitLifetime();
5412 }
5413 T = Context.getLifetimeQualifiedType(T, Lifetime);
5414
5415 return T;
5416}
5417
5419 SourceLocation IdLoc,
5420 bool DoTypoCorrection) {
5421 // The third "scope" argument is 0 since we aren't enabling lazy built-in
5422 // creation from this context.
5425
5426 if (!IDecl && DoTypoCorrection) {
5427 // Perform typo correction at the given location, but only if we
5428 // find an Objective-C class name.
5432 SemaRef.TUScope, nullptr, CCC, Sema::CTK_ErrorRecovery)) {
5433 SemaRef.diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
5434 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
5435 Id = IDecl->getIdentifier();
5436 }
5437 }
5438 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
5439 // This routine must always return a class definition, if any.
5440 if (Def && Def->getDefinition())
5441 Def = Def->getDefinition();
5442 return Def;
5443}
5444
5446 ASTContext &Context = getASTContext();
5447 QualType type = decl->getType();
5448 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5449 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5450 // Various kinds of declaration aren't allowed to be __autoreleasing.
5451 unsigned kind = -1U;
5452 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5453 if (var->hasAttr<BlocksAttr>())
5454 kind = 0; // __block
5455 else if (!var->hasLocalStorage())
5456 kind = 1; // global
5457 } else if (isa<ObjCIvarDecl>(decl)) {
5458 kind = 3; // ivar
5459 } else if (isa<FieldDecl>(decl)) {
5460 kind = 2; // field
5461 }
5462
5463 if (kind != -1U) {
5464 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) << kind;
5465 }
5466 } else if (lifetime == Qualifiers::OCL_None) {
5467 // Try to infer lifetime.
5468 if (!type->isObjCLifetimeType())
5469 return false;
5470
5471 lifetime = type->getObjCARCImplicitLifetime();
5472 type = Context.getLifetimeQualifiedType(type, lifetime);
5473 decl->setType(type);
5474 }
5475
5476 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5477 // Thread-local variables cannot have lifetime.
5478 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5479 var->getTLSKind()) {
5480 Diag(var->getLocation(), diag::err_arc_thread_ownership)
5481 << var->getType();
5482 return true;
5483 }
5484 }
5485
5486 return false;
5487}
5488
5490 return (dyn_cast_or_null<ObjCContainerDecl>(SemaRef.CurContext));
5491}
5492
5494 if (!getLangOpts().CPlusPlus)
5495 return;
5496 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
5497 ASTContext &Context = getASTContext();
5500 if (ivars.empty())
5501 return;
5503 for (unsigned i = 0; i < ivars.size(); i++) {
5504 FieldDecl *Field = ivars[i];
5505 if (Field->isInvalidDecl())
5506 continue;
5507
5510 InitializationKind InitKind =
5511 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
5512
5513 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {});
5514 ExprResult MemberInit =
5515 InitSeq.Perform(SemaRef, InitEntity, InitKind, {});
5516 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
5517 // Note, MemberInit could actually come back empty if no initialization
5518 // is required (e.g., because it would call a trivial default constructor)
5519 if (!MemberInit.get() || MemberInit.isInvalid())
5520 continue;
5521
5522 Member = new (Context)
5524 MemberInit.getAs<Expr>(), SourceLocation());
5525 AllToInit.push_back(Member);
5526
5527 // Be sure that the destructor is accessible and is marked as referenced.
5528 if (const RecordType *RecordTy =
5529 Context.getBaseElementType(Field->getType())
5530 ->getAs<RecordType>()) {
5531 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
5533 SemaRef.MarkFunctionReferenced(Field->getLocation(), Destructor);
5535 Field->getLocation(), Destructor,
5536 PDiag(diag::err_access_dtor_ivar)
5537 << Context.getBaseElementType(Field->getType()));
5538 }
5539 }
5540 }
5541 ObjCImplementation->setIvarInitializers(Context, AllToInit.data(),
5542 AllToInit.size());
5543 }
5544}
5545
5546/// TranslateIvarVisibility - Translate visibility from a token ID to an
5547/// AST enum value.
5550 switch (ivarVisibility) {
5551 default:
5552 llvm_unreachable("Unknown visitibility kind");
5553 case tok::objc_private:
5554 return ObjCIvarDecl::Private;
5555 case tok::objc_public:
5556 return ObjCIvarDecl::Public;
5557 case tok::objc_protected:
5559 case tok::objc_package:
5560 return ObjCIvarDecl::Package;
5561 }
5562}
5563
5564/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5565/// in order to create an IvarDecl object for it.
5568
5569 const IdentifierInfo *II = D.getIdentifier();
5570 SourceLocation Loc = DeclStart;
5571 if (II)
5572 Loc = D.getIdentifierLoc();
5573
5574 // FIXME: Unnamed fields can be handled in various different ways, for
5575 // example, unnamed unions inject all members into the struct namespace!
5576
5578 QualType T = TInfo->getType();
5579
5580 if (BitWidth) {
5581 // 6.7.2.1p3, 6.7.2.1p4
5582 BitWidth =
5583 SemaRef.VerifyBitField(Loc, II, T, /*IsMsStruct*/ false, BitWidth)
5584 .get();
5585 if (!BitWidth)
5586 D.setInvalidType();
5587 } else {
5588 // Not a bitfield.
5589
5590 // validate II.
5591 }
5592 if (T->isReferenceType()) {
5593 Diag(Loc, diag::err_ivar_reference_type);
5594 D.setInvalidType();
5595 }
5596 // C99 6.7.2.1p8: A member of a structure or union may have any type other
5597 // than a variably modified type.
5598 else if (T->isVariablyModifiedType()) {
5600 TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
5601 D.setInvalidType();
5602 }
5603
5604 // Get the visibility (access control) for this ivar.
5605 ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword
5608 // Must set ivar's DeclContext to its enclosing interface.
5609 ObjCContainerDecl *EnclosingDecl =
5610 cast<ObjCContainerDecl>(SemaRef.CurContext);
5611 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
5612 return nullptr;
5613 ObjCContainerDecl *EnclosingContext;
5614 if (ObjCImplementationDecl *IMPDecl =
5615 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5617 // Case of ivar declared in an implementation. Context is that of its
5618 // class.
5619 EnclosingContext = IMPDecl->getClassInterface();
5620 assert(EnclosingContext && "Implementation has no class interface!");
5621 } else
5622 EnclosingContext = EnclosingDecl;
5623 } else {
5624 if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5625 if (getLangOpts().ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
5626 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5627 return nullptr;
5628 }
5629 }
5630 EnclosingContext = EnclosingDecl;
5631 }
5632
5633 // Construct the decl.
5634 ObjCIvarDecl *NewID =
5635 ObjCIvarDecl::Create(getASTContext(), EnclosingContext, DeclStart, Loc,
5636 II, T, TInfo, ac, BitWidth);
5637
5638 if (T->containsErrors())
5639 NewID->setInvalidDecl();
5640
5641 if (II) {
5642 NamedDecl *PrevDecl =
5644 RedeclarationKind::ForVisibleRedeclaration);
5645 if (PrevDecl && SemaRef.isDeclInScope(PrevDecl, EnclosingContext, S) &&
5646 !isa<TagDecl>(PrevDecl)) {
5647 Diag(Loc, diag::err_duplicate_member) << II;
5648 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5649 NewID->setInvalidDecl();
5650 }
5651 }
5652
5653 // Process attributes attached to the ivar.
5654 SemaRef.ProcessDeclAttributes(S, NewID, D);
5655
5656 if (D.isInvalidType())
5657 NewID->setInvalidDecl();
5658
5659 // In ARC, infer 'retaining' for ivars of retainable type.
5660 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
5661 NewID->setInvalidDecl();
5662
5663 if (D.getDeclSpec().isModulePrivateSpecified())
5664 NewID->setModulePrivate();
5665
5666 if (II) {
5667 // FIXME: When interfaces are DeclContexts, we'll need to add
5668 // these to the interface.
5669 S->AddDecl(NewID);
5670 SemaRef.IdResolver.AddDecl(NewID);
5671 }
5672
5673 if (getLangOpts().ObjCRuntime.isNonFragile() && !NewID->isInvalidDecl() &&
5674 isa<ObjCInterfaceDecl>(EnclosingDecl))
5675 Diag(Loc, diag::warn_ivars_in_interface);
5676
5677 return NewID;
5678}
Defines the clang::ASTContext interface.
StringRef P
static char ID
Definition: Arena.cpp:183
const Decl * D
Expr * E
Defines the classes clang::DelayedDiagnostic and clang::AccessedEntity.
#define DIAG(ENUM, FLAGS, DEFAULT_MAPPING, DESC, GROUP, SFINAE, NOWERROR, SHOWINSYSHEADER, SHOWINSYSMACRO, DEFERRABLE, CATEGORY)
static QualType getObjectType(APValue::LValueBase B)
Retrieves the "underlying object type" of the given expression, as used by __builtin_object_size.
int Category
Definition: Format.cpp:3054
llvm::MachO::Record Record
Definition: MachO.h:31
uint32_t Id
Definition: SemaARM.cpp:1134
static bool IsVariableSizedType(QualType T)
static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD)
static bool HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param)
HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer has explicit ownership attribute...
static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl, ObjCMethodDecl *Method, ObjCImplDecl *ImpDecl=nullptr)
static bool CheckMethodOverrideParam(Sema &S, ObjCMethodDecl *MethodImpl, ObjCMethodDecl *MethodDecl, ParmVarDecl *ImplVar, ParmVarDecl *IfaceVar, bool IsProtocolMethodDecl, bool IsOverridingMode, bool Warn)
static SourceRange getTypeRange(TypeSourceInfo *TSI)
std::unique_ptr< ProtocolNameSet > LazyProtocolNameSet
static bool CheckMethodOverrideReturn(Sema &S, ObjCMethodDecl *MethodImpl, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl, bool IsOverridingMode, bool Warn)
static void DiagnoseCategoryDirectMembersProtocolConformance(Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl)
static bool checkTypeParamListConsistency(Sema &S, ObjCTypeParamList *prevTypeParams, ObjCTypeParamList *newTypeParams, TypeParamListContext newContext)
Check consistency between two Objective-C type parameter lists, e.g., between a category/extension an...
static void HelperSelectorsForTypoCorrection(SmallVectorImpl< const ObjCMethodDecl * > &BestMethod, StringRef Typo, const ObjCMethodDecl *Method)
static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, Decl::ObjCDeclQualifier y)
Determine whether two set of Objective-C declaration qualifiers conflict.
static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M)
static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, const ObjCObjectType *TypeBound)
Return true if the given method is wthin the type bound.
static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, SourceLocation ImplLoc)
static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, ProtocolNameSet &PNS)
static bool matchTypes(ASTContext &Context, SemaObjC::MethodMatchStrategy strategy, QualType leftQT, QualType rightQT)
static void DiagnoseRetainableFlexibleArrayMember(Sema &S, ObjCInterfaceDecl *ID)
Diagnose attempts to use flexible array member with retainable object type.
static void mergeInterfaceMethodToImpl(Sema &S, ObjCMethodDecl *method, ObjCMethodDecl *prevMethod)
Merge information from the declaration of a method in the @interface (or a category/extension) into t...
static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, QualType ObjectType)
static SemaObjC::ResultTypeCompatibilityKind CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, ObjCInterfaceDecl *CurrentClass)
Check whether the declared result type of the given Objective-C method declaration is compatible with...
static ObjCIvarDecl::AccessControl TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)
TranslateIvarVisibility - Translate visibility from a token ID to an AST enum value.
static void CheckProtocolMethodDefs(Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl, const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap, ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl)
CheckProtocolMethodDefs - This routine checks unimplemented methods Declared in protocol,...
static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl, ObjCMethodDecl *method, bool &IncompleteImpl, unsigned DiagID, NamedDecl *NeededFor=nullptr)
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, ObjCProtocolDecl *&UndefinedProtocol)
static bool isObjCTypeSubstitutable(ASTContext &Context, const ObjCObjectPointerType *A, const ObjCObjectPointerType *B, bool rejectId)
Determines if type B can be substituted for type A.
llvm::DenseSet< IdentifierInfo * > ProtocolNameSet
FIXME: Type hierarchies in Objective-C can be deep.
static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, QualType type, bool usesCSKeyword, SourceLocation prevLoc, QualType prevType, bool prevUsesCSKeyword)
Merge type nullability from for a redeclaration of the same entity, producing the updated type of the...
static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, Sema &S)
Issue a warning if the parameter of the overridden method is non-escaping but the parameter of the ov...
static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, ObjCMethodDecl *other)
Determines if this is an "acceptable" loose mismatch in the global method pool.
static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method)
static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID)
Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
static void checkObjCMethodX86VectorTypes(Sema &SemaRef, const ObjCMethodDecl *Method)
Verify that the method parameters/return value have types that are supported by the x86 target.
static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, ObjCMethodDecl *decl)
In ARC, check whether the conventional meanings of the two methods match.
static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, ObjCMethodDecl *MethodInList)
static bool tryMatchRecordTypes(ASTContext &Context, SemaObjC::MethodMatchStrategy strategy, const Type *left, const Type *right)
static Decl::ObjCDeclQualifier CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)
CvtQTToAstBitMask - utility routine to produce an AST bitmask for objective-c's type qualifier from t...
static void diagnoseUseOfProtocols(Sema &TheSema, ObjCContainerDecl *CD, ObjCProtocolDecl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs)
SourceLocation Loc
Definition: SemaObjC.cpp:759
This file declares semantic analysis for Objective-C.
Defines the SourceManager interface.
StateNode * Previous
__DEVICE__ long long abs(long long __n)
__device__ __2f16 b
__device__ int
virtual void HandleTopLevelDeclInObjCContainer(DeclGroupRef D)
Handle the specified top-level declaration that occurred inside and ObjC container.
Definition: ASTConsumer.cpp:26
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
SourceManager & getSourceManager()
Definition: ASTContext.h:741
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1141
bool AnyObjCImplementation()
Return true if there is at least one @implementation in the TU.
Definition: ASTContext.h:3197
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl.
void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, ObjCTypeParamDecl *New) const
bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS, const ObjCObjectPointerType *RHS, bool ForCompare)
ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an ObjCQualifiedIDType.
QualType getAttributedType(attr::Kind attrKind, QualType modifiedType, QualType equivalentType, const Attr *attr=nullptr) const
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2716
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
Definition: ASTContext.h:2732
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, const ObjCObjectPointerType *RHSOPT)
canAssignObjCInterfaces - Return true if the two interface types are compatible for assignment from R...
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1703
IdentifierTable & Idents
Definition: ASTContext.h:680
const LangOptions & getLangOpts() const
Definition: ASTContext.h:834
SelectorTable & Selectors
Definition: ASTContext.h:681
QualType getObjCInstanceType()
Retrieve the Objective-C "instancetype" type, if already known; otherwise, returns a NULL type;.
Definition: ASTContext.h:2077
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass, SmallVectorImpl< const ObjCIvarDecl * > &Ivars) const
DeepCollectObjCIvars - This routine first collects all declared, but not synthesized,...
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location,...
TypeInfo getTypeInfo(const Type *T) const
Get the size and alignment of the specified complete type in bits.
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:733
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:2196
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2763
CanQualType VoidTy
Definition: ASTContext.h:1160
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
QualType getLifetimeQualifiedType(QualType type, Qualifiers::ObjCLifetime lifetime)
Return a type with the given lifetime qualifier.
Definition: ASTContext.h:2312
bool typesAreCompatible(QualType T1, QualType T2, bool CompareUnqualified=false)
Compatibility predicates used to check assignment expressions.
bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT, bool IsParam) const
Definition: ASTContext.h:2768
void CollectInheritedProtocols(const Decl *CDecl, llvm::SmallPtrSet< ObjCProtocolDecl *, 8 > &Protocols)
CollectInheritedProtocols - Collect all protocols in current class and those inherited by it.
The result of parsing/analyzing an expression, statement etc.
Definition: Ownership.h:153
PtrTy get() const
Definition: Ownership.h:170
bool isUsable() const
Definition: Ownership.h:168
A factory, from which one makes pools, from which one creates individual attributes which are dealloc...
Definition: ParsedAttr.h:637
Type source information for an attributed type.
Definition: TypeLoc.h:875
static std::optional< NullabilityKind > stripOuterNullability(QualType &T)
Strip off the top-level nullability annotation on the given type, if it's there.
Definition: Type.cpp:4943
Represents a C++ base or member initializer.
Definition: DeclCXX.h:2318
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2817
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
CanQual< T > getUnqualifiedType() const
Retrieve the unqualified form of this type.
const T * getTypePtr() const
Retrieve the underlying type pointer, which refers to a canonical type.
Definition: CanonicalType.h:84
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2380
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1435
bool isFileContext() const
Definition: DeclBase.h:2171
void makeDeclVisibleInContext(NamedDecl *D)
Makes a declaration visible within this context.
Definition: DeclBase.cpp:2045
bool isObjCContainer() const
Definition: DeclBase.h:2139
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1990
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1768
Decl::Kind getDeclKind() const
Definition: DeclBase.h:2093
Simple template class for restricting typo correction candidates to ones having a single Decl* of the...
iterator begin()
Definition: DeclGroup.h:99
iterator end()
Definition: DeclGroup.h:105
Captures information about "declaration specifiers".
Definition: DeclSpec.h:247
static const TST TST_typename
Definition: DeclSpec.h:306
SourceLocation getStorageClassSpecLoc() const
Definition: DeclSpec.h:510
SCS getStorageClassSpec() const
Definition: DeclSpec.h:501
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:860
void SetRangeEnd(SourceLocation Loc)
Definition: DeclSpec.h:709
void SetRangeStart(SourceLocation Loc)
Definition: DeclSpec.h:708
SCS
storage-class-specifier
Definition: DeclSpec.h:251
bool isInlineSpecified() const
Definition: DeclSpec.h:637
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:558
SourceLocation getInlineSpecLoc() const
Definition: DeclSpec.h:640
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:438
T * getAttr() const
Definition: DeclBase.h:576
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:520
void addAttr(Attr *A)
Definition: DeclBase.cpp:1010
bool isImplicit() const
isImplicit - Indicates whether the declaration was implicitly generated by the implementation.
Definition: DeclBase.h:596
bool isUnavailable(std::string *Message=nullptr) const
Determine whether this declaration is marked 'unavailable'.
Definition: DeclBase.h:764
AvailabilityResult getAvailability(std::string *Message=nullptr, VersionTuple EnclosingVersion=VersionTuple(), StringRef *RealizedPlatform=nullptr) const
Determine the availability of the given declaration.
Definition: DeclBase.cpp:745
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:151
bool isUnconditionallyVisible() const
Determine whether this declaration is definitely visible to name lookup, independent of whether the o...
Definition: DeclBase.h:848
void setTopLevelDeclInObjCContainer(bool V=true)
Definition: DeclBase.h:635
bool isReferenced() const
Whether any declaration of this entity was referenced.
Definition: DeclBase.cpp:574
ObjCDeclQualifier
ObjCDeclQualifier - 'Qualifiers' written next to the return and parameter types in method declaration...
Definition: DeclBase.h:198
@ OBJC_TQ_CSNullability
The nullability qualifier is set when the nullability of the result or parameter was expressed via a ...
Definition: DeclBase.h:210
bool isInvalidDecl() const
Definition: DeclBase.h:591
SourceLocation getLocation() const
Definition: DeclBase.h:442
bool isDeprecated(std::string *Message=nullptr) const
Determine whether this declaration is marked 'deprecated'.
Definition: DeclBase.h:755
void setImplicit(bool I=true)
Definition: DeclBase.h:597
DeclContext * getDeclContext()
Definition: DeclBase.h:451
void dropAttr()
Definition: DeclBase.h:559
void setDeclContext(DeclContext *DC)
setDeclContext - Set both the semantic and lexical DeclContext to DC.
Definition: DeclBase.cpp:355
bool hasAttr() const
Definition: DeclBase.h:580
void setLexicalDeclContext(DeclContext *DC)
Definition: DeclBase.cpp:359
virtual SourceRange getSourceRange() const LLVM_READONLY
Source range that this declaration covers.
Definition: DeclBase.h:430
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:764
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1903
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition: Diagnostic.h:939
Recursive AST visitor that supports extension via dynamic dispatch.
This represents one expression.
Definition: Expr.h:110
Represents a member of a struct/union/class.
Definition: Decl.h:3033
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:3136
unsigned getBitWidthValue() const
Computes the bit width of this field, if this is a bit field.
Definition: Decl.cpp:4602
Expr * getBitWidth() const
Returns the expression that represents the bit width, if this field is a bit field.
Definition: Decl.h:3149
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string.
Definition: Diagnostic.h:138
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:127
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:101
One of these records is kept for each identifier that is lexed.
void RemoveDecl(NamedDecl *D)
RemoveDecl - Unlink the decl from its shadowed decl chain.
void AddDecl(NamedDecl *D)
AddDecl - Link the decl to its shadowed decl chain.
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Describes the kind of initialization being performed, along with location information for tokens rela...
static InitializationKind CreateDefault(SourceLocation InitLoc)
Create a default initialization.
Describes the sequence of initializations required to initialize a given object or reference with a s...
Describes an entity that is being initialized.
static InitializedEntity InitializeMember(FieldDecl *Member, const InitializedEntity *Parent=nullptr, bool Implicit=false)
Create the initialization entity for a member subobject.
clang::ObjCRuntime ObjCRuntime
Definition: LangOptions.h:534
Represents the results of name lookup.
Definition: Lookup.h:46
NamedDecl * getFoundDecl() const
Fetch the unique decl found by this lookup.
Definition: Lookup.h:568
bool isSingleResult() const
Determines if this names a single result which is not an unresolved value using decl.
Definition: Lookup.h:331
@ ClassId_NSObject
Definition: NSAPI.h:30
This represents a decl that may have a name.
Definition: Decl.h:253
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:274
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:319
void setModulePrivate()
Specify that this declaration was marked as being private to the module in which it was defined.
Definition: DeclBase.h:699
static ObjCAtDefsFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, Expr *BW)
Definition: DeclObjC.cpp:1909
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2328
static ObjCCategoryDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation AtLoc, SourceLocation ClassNameLoc, SourceLocation CategoryNameLoc, const IdentifierInfo *Id, ObjCInterfaceDecl *IDecl, ObjCTypeParamList *typeParamList, SourceLocation IvarLBraceLoc=SourceLocation(), SourceLocation IvarRBraceLoc=SourceLocation())
Definition: DeclObjC.cpp:2126
void setProtocolList(ObjCProtocolDecl *const *List, unsigned Num, const SourceLocation *Locs, ASTContext &C)
setProtocolList - Set the list of protocols that this interface implements.
Definition: DeclObjC.h:2390
ObjCCategoryImplDecl * getImplementation() const
Definition: DeclObjC.cpp:2156
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.h:2371
bool IsClassExtension() const
Definition: DeclObjC.h:2436
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2395
void setImplementation(ObjCCategoryImplDecl *ImplD)
Definition: DeclObjC.cpp:2161
ObjCCategoryImplDecl - An object of this class encapsulates a category @implementation declaration.
Definition: DeclObjC.h:2544
ObjCCategoryDecl * getCategoryDecl() const
Definition: DeclObjC.cpp:2197
static ObjCCategoryImplDecl * Create(ASTContext &C, DeclContext *DC, const IdentifierInfo *Id, ObjCInterfaceDecl *classInterface, SourceLocation nameLoc, SourceLocation atStartLoc, SourceLocation CategoryNameLoc)
Definition: DeclObjC.cpp:2180
ObjCCompatibleAliasDecl - Represents alias of a class.
Definition: DeclObjC.h:2774
static ObjCCompatibleAliasDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, ObjCInterfaceDecl *aliasedClass)
Definition: DeclObjC.cpp:2333
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:947
ObjCMethodDecl * getMethod(Selector Sel, bool isInstance, bool AllowHidden=false) const
Definition: DeclObjC.cpp:91
method_range methods() const
Definition: DeclObjC.h:1015
SourceRange getAtEndRange() const
Definition: DeclObjC.h:1102
instmeth_range instance_methods() const
Definition: DeclObjC.h:1032
ObjCIvarDecl * getIvarDecl(IdentifierInfo *Id) const
getIvarDecl - This method looks up an ivar in this ContextDecl.
Definition: DeclObjC.cpp:79
void setAtEndRange(SourceRange atEnd)
Definition: DeclObjC.h:1104
ObjCMethodDecl * getClassMethod(Selector Sel, bool AllowHidden=false) const
Definition: DeclObjC.h:1070
prop_range properties() const
Definition: DeclObjC.h:966
classmeth_range class_methods() const
Definition: DeclObjC.h:1049
ObjCMethodDecl * getInstanceMethod(Selector Sel, bool AllowHidden=false) const
Definition: DeclObjC.h:1065
Captures information about "declaration specifiers" specific to Objective-C.
Definition: DeclSpec.h:900
ObjCDeclQualifier
ObjCDeclQualifier - Qualifier used on types in method declarations.
Definition: DeclSpec.h:908
ObjCDeclQualifier getObjCDeclQualifier() const
Definition: DeclSpec.h:924
propimpl_range property_impls() const
Definition: DeclObjC.h:2512
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2485
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2596
static ObjCImplementationDecl * Create(ASTContext &C, DeclContext *DC, ObjCInterfaceDecl *classInterface, ObjCInterfaceDecl *superDecl, SourceLocation nameLoc, SourceLocation atStartLoc, SourceLocation superLoc=SourceLocation(), SourceLocation IvarLBraceLoc=SourceLocation(), SourceLocation IvarRBraceLoc=SourceLocation())
Definition: DeclObjC.cpp:2282
void setIvarInitializers(ASTContext &C, CXXCtorInitializer **initializers, unsigned numInitializers)
Definition: DeclObjC.cpp:2303
const ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.h:2734
Represents an ObjC class declaration.
Definition: DeclObjC.h:1153
void mergeClassExtensionProtocolList(ObjCProtocolDecl *const *List, unsigned Num, ASTContext &C)
mergeClassExtensionProtocolList - Merge class extension's protocol list into the protocol list for th...
Definition: DeclObjC.cpp:440
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:320
ObjCInterfaceDecl * lookupInheritedClass(const IdentifierInfo *ICName)
lookupInheritedClass - This method returns ObjCInterfaceDecl * of the super class whose name is passe...
Definition: DeclObjC.cpp:666
ivar_iterator ivar_end() const
Definition: DeclObjC.h:1460
llvm::iterator_range< specific_decl_iterator< ObjCIvarDecl > > ivar_range
Definition: DeclObjC.h:1448
static ObjCInterfaceDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation atLoc, const IdentifierInfo *Id, ObjCTypeParamList *typeParamList, ObjCInterfaceDecl *PrevDecl, SourceLocation ClassLoc=SourceLocation(), bool isInternal=false)
Definition: DeclObjC.cpp:1540
unsigned ivar_size() const
Definition: DeclObjC.h:1468
ObjCIvarDecl * lookupInstanceVariable(IdentifierInfo *IVarName, ObjCInterfaceDecl *&ClassDeclared)
Definition: DeclObjC.cpp:635
void setProtocolList(ObjCProtocolDecl *const *List, unsigned Num, const SourceLocation *Locs, ASTContext &C)
setProtocolList - Set the list of protocols that this interface implements.
Definition: DeclObjC.h:1484
bool hasDefinition() const
Determine whether this class has been defined.
Definition: DeclObjC.h:1527
ivar_range ivars() const
Definition: DeclObjC.h:1450
all_protocol_range all_referenced_protocols() const
Definition: DeclObjC.h:1416
visible_extensions_range visible_extensions() const
Definition: DeclObjC.h:1722
bool isImplicitInterfaceDecl() const
isImplicitInterfaceDecl - check that this is an implicitly declared ObjCInterfaceDecl node.
Definition: DeclObjC.h:1892
ObjCIvarDecl * all_declared_ivar_begin()
all_declared_ivar_begin - return first ivar declared in this class, its extensions and its implementa...
Definition: DeclObjC.cpp:1670
ObjCCategoryDecl * FindCategoryDeclaration(const IdentifierInfo *CategoryId) const
FindCategoryDeclaration - Finds category declaration in the list of categories for this class and ret...
Definition: DeclObjC.cpp:1746
ivar_iterator ivar_begin() const
Definition: DeclObjC.h:1452
bool ivar_empty() const
Definition: DeclObjC.h:1472
void setImplementation(ObjCImplementationDecl *ImplD)
Definition: DeclObjC.cpp:1640
known_categories_range known_categories() const
Definition: DeclObjC.h:1686
void setSuperClass(TypeSourceInfo *superClass)
Definition: DeclObjC.h:1587
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:1332
ObjCMethodDecl * lookupMethod(Selector Sel, bool isInstance, bool shallowCategoryLookup=false, bool followSuper=true, const ObjCCategoryDecl *C=nullptr) const
lookupMethod - This method returns an instance/class method by looking in the class,...
Definition: DeclObjC.cpp:697
ObjCImplementationDecl * getImplementation() const
Definition: DeclObjC.cpp:1627
void setEndOfDefinitionLoc(SourceLocation LE)
Definition: DeclObjC.h:1884
void startDefinition()
Starts the definition of this Objective-C class, taking it from a forward declaration (@class) to a d...
Definition: DeclObjC.cpp:614
visible_categories_range visible_categories() const
Definition: DeclObjC.h:1652
ObjCInterfaceDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this Objective-C class.
Definition: DeclObjC.h:1914
ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.cpp:350
ObjCInterfaceDecl * getDefinition()
Retrieve the definition of this class, or NULL if this class has been forward-declared (with @class) ...
Definition: DeclObjC.h:1541
void startDuplicateDefinitionForComparison()
Starts the definition without sharing it with other redeclarations.
Definition: DeclObjC.cpp:624
bool isSuperClassOf(const ObjCInterfaceDecl *I) const
isSuperClassOf - Return true if this class is the specified class or is a super class of the specifie...
Definition: DeclObjC.h:1809
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:7529
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1951
ObjCIvarDecl * getNextIvar()
Definition: DeclObjC.h:1986
static ObjCIvarDecl * Create(ASTContext &C, ObjCContainerDecl *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, AccessControl ac, Expr *BW=nullptr, bool synthesized=false)
Definition: DeclObjC.cpp:1831
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:549
ObjCList - This is a simple template class used to hold various lists of decls etc,...
Definition: DeclObjC.h:82
iterator end() const
Definition: DeclObjC.h:91
iterator begin() const
Definition: DeclObjC.h:90
T *const * iterator
Definition: DeclObjC.h:88
void set(T *const *InList, unsigned Elts, ASTContext &Ctx)
Definition: DeclObjC.h:84
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:941
@ Instance
The receiver is an object instance.
Definition: ExprObjC.h:949
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:140
bool isDesignatedInitializerForTheInterface(const ObjCMethodDecl **InitMethod=nullptr) const
Returns true if the method selector resolves to a designated initializer in the class's interface.
Definition: DeclObjC.cpp:887
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:418
void setObjCDeclQualifier(ObjCDeclQualifier QV)
Definition: DeclObjC.h:250
void setDefined(bool isDefined)
Definition: DeclObjC.h:453
ObjCDeclQualifier getObjCDeclQualifier() const
Definition: DeclObjC.h:246
ArrayRef< ParmVarDecl * > parameters() const
Definition: DeclObjC.h:373
unsigned param_size() const
Definition: DeclObjC.h:347
bool isPropertyAccessor() const
Definition: DeclObjC.h:436
static ObjCMethodDecl * Create(ASTContext &C, SourceLocation beginLoc, SourceLocation endLoc, Selector SelInfo, QualType T, TypeSourceInfo *ReturnTInfo, DeclContext *contextDecl, bool isInstance=true, bool isVariadic=false, bool isPropertyAccessor=false, bool isSynthesizedAccessorStub=false, bool isImplicitlyDeclared=false, bool isDefined=false, ObjCImplementationControl impControl=ObjCImplementationControl::None, bool HasRelatedResultType=false)
Definition: DeclObjC.cpp:850
const ObjCPropertyDecl * findPropertyDecl(bool CheckOverrides=true) const
Returns the property associated with this method's selector.
Definition: DeclObjC.cpp:1376
param_const_iterator param_end() const
Definition: DeclObjC.h:358
param_const_iterator param_begin() const
Definition: DeclObjC.h:354
bool isVariadic() const
Definition: DeclObjC.h:431
ObjCMethodDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclObjC.cpp:1010
void setMethodParams(ASTContext &C, ArrayRef< ParmVarDecl * > Params, ArrayRef< SourceLocation > SelLocs={})
Sets the method's parameters and selector source locations.
Definition: DeclObjC.cpp:942
void setAsRedeclaration(const ObjCMethodDecl *PrevMethod)
Definition: DeclObjC.cpp:911
void setRelatedResultType(bool RRT=true)
Note whether this method has a related result type.
Definition: DeclObjC.h:261
bool isSynthesizedAccessorStub() const
Definition: DeclObjC.h:444
SourceLocation getSelectorLoc(unsigned Index) const
Definition: DeclObjC.h:294
SourceRange getReturnTypeSourceRange() const
Definition: DeclObjC.cpp:1229
void setOverriding(bool IsOver)
Definition: DeclObjC.h:463
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:349
bool hasRelatedResultType() const
Determine whether this method has a result type that is related to the message receiver's type.
Definition: DeclObjC.h:256
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclObjC.h:282
bool isDirectMethod() const
True if the method is tagged as objc_direct.
Definition: DeclObjC.cpp:869
Selector getSelector() const
Definition: DeclObjC.h:327
ImplicitParamDecl * getCmdDecl() const
Definition: DeclObjC.h:420
bool isInstanceMethod() const
Definition: DeclObjC.h:426
void setReturnType(QualType T)
Definition: DeclObjC.h:330
bool isDefined() const
Definition: DeclObjC.h:452
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:1051
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implicit parameters.
Definition: DeclObjC.cpp:1188
QualType getReturnType() const
Definition: DeclObjC.h:329
ParmVarDecl *const * param_iterator
Definition: DeclObjC.h:350
ObjCImplementationControl getImplementationControl() const
Definition: DeclObjC.h:500
bool isClassMethod() const
Definition: DeclObjC.h:434
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1209
Wraps an ObjCPointerType with source location information.
Definition: TypeLoc.h:1401
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1407
Represents a pointer to an Objective C object.
Definition: Type.h:7585
bool isObjCQualifiedIdType() const
True if this is equivalent to 'id.
Definition: Type.h:7660
bool isObjCIdType() const
True if this is equivalent to the 'id' type, i.e.
Definition: Type.h:7643
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1833
Represents a class type in Objective C.
Definition: Type.h:7331
bool isObjCClass() const
Definition: Type.h:7399
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface.
Definition: Type.h:7564
bool isObjCId() const
Definition: Type.h:7395
Represents one property declaration in an Objective-C interface.
Definition: DeclObjC.h:730
ObjCIvarDecl * getPropertyIvarDecl() const
Definition: DeclObjC.h:923
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2804
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2083
void startDuplicateDefinitionForComparison()
Starts the definition without sharing it with other redeclarations.
Definition: DeclObjC.cpp:2029
bool hasDefinition() const
Determine whether this protocol has a definition.
Definition: DeclObjC.h:2237
bool isThisDeclarationADefinition() const
Determine whether this particular declaration is also the definition.
Definition: DeclObjC.h:2260
static ObjCProtocolDecl * Create(ASTContext &C, DeclContext *DC, IdentifierInfo *Id, SourceLocation nameLoc, SourceLocation atStartLoc, ObjCProtocolDecl *PrevDecl)
Definition: DeclObjC.cpp:1939
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2152
void setProtocolList(ObjCProtocolDecl *const *List, unsigned Num, const SourceLocation *Locs, ASTContext &C)
setProtocolList - Set the list of protocols that this interface implements.
Definition: DeclObjC.h:2208
ObjCProtocolDecl * getDefinition()
Retrieve the definition of this protocol, if any.
Definition: DeclObjC.h:2249
void startDefinition()
Starts the definition of this Objective-C protocol.
Definition: DeclObjC.cpp:2021
protocol_range protocols() const
Definition: DeclObjC.h:2160
A list of Objective-C protocols, along with the source locations at which they were referenced.
Definition: DeclObjC.h:101
The basic abstraction for the target Objective-C runtime.
Definition: ObjCRuntime.h:28
bool isNeXTFamily() const
Is this runtime basically of the NeXT family of runtimes?
Definition: ObjCRuntime.h:143
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:82
bool isFragile() const
The inverse of isNonFragile(): does this runtime follow the set of implied behaviors for a "fragile" ...
Definition: ObjCRuntime.h:97
Represents the declaration of an Objective-C type parameter.
Definition: DeclObjC.h:578
static ObjCTypeParamDecl * Create(ASTContext &ctx, DeclContext *dc, ObjCTypeParamVariance variance, SourceLocation varianceLoc, unsigned index, SourceLocation nameLoc, IdentifierInfo *name, SourceLocation colonLoc, TypeSourceInfo *boundInfo)
Definition: DeclObjC.cpp:1471
bool hasExplicitBound() const
Whether this type parameter has an explicitly-written type bound, e.g., "T : NSView".
Definition: DeclObjC.h:640
ObjCTypeParamVariance getVariance() const
Determine the variance of this type parameter.
Definition: DeclObjC.h:623
void setVariance(ObjCTypeParamVariance variance)
Set the variance of this type parameter.
Definition: DeclObjC.h:628
SourceLocation getVarianceLoc() const
Retrieve the location of the variance keyword.
Definition: DeclObjC.h:633
Stores a list of Objective-C type parameters for a parameterized class or a category/extension thereo...
Definition: DeclObjC.h:659
SourceRange getSourceRange() const
Definition: DeclObjC.h:711
unsigned size() const
Determine the number of type parameters in this list.
Definition: DeclObjC.h:686
ObjCTypeParamDecl * back() const
Definition: DeclObjC.h:704
static ObjCTypeParamList * create(ASTContext &ctx, SourceLocation lAngleLoc, ArrayRef< ObjCTypeParamDecl * > typeParams, SourceLocation rAngleLoc)
Create a new Objective-C type parameter list.
Definition: DeclObjC.cpp:1518
SourceLocation getLAngleLoc() const
Definition: DeclObjC.h:709
Represents a parameter to a function.
Definition: Decl.h:1725
void setObjCDeclQualifier(ObjCDeclQualifier QTVal)
Definition: Decl.h:1793
ObjCDeclQualifier getObjCDeclQualifier() const
Definition: Decl.h:1789
void setObjCMethodScopeInfo(unsigned parameterIndex)
Definition: Decl.h:1753
static const ParsedAttributesView & none()
Definition: ParsedAttr.h:836
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3198
A (possibly-)qualified type.
Definition: Type.h:929
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition: Type.h:8025
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:996
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:7976
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1433
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:8030
static std::string getAsString(SplitQualType split, const PrintingPolicy &Policy)
Definition: Type.h:1327
The collection of all-type qualifiers we support.
Definition: Type.h:324
void removeCVRQualifiers(unsigned mask)
Definition: Type.h:488
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:347
@ OCL_None
There is no lifetime qualification on this type.
Definition: Type.h:343
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:357
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: Type.h:360
bool empty() const
Definition: Type.h:640
std::string getAsString() const
Represents a struct/union/class.
Definition: Decl.h:4162
field_iterator field_end() const
Definition: Decl.h:4379
field_iterator field_begin() const
Definition: Decl.cpp:5095
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:6077
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:3439
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
Selector getSelector(unsigned NumArgs, const IdentifierInfo **IIV)
Can create any sort of selector.
Smart pointer class that efficiently represents Objective-C method names.
StringRef getNameForSlot(unsigned argIndex) const
Retrieve the name at a given position in the selector.
std::string getAsString() const
Derive the full selector name (e.g.
ObjCMethodFamily getMethodFamily() const
Derive the conventional family of this method.
bool isUnarySelector() const
unsigned getNumArgs() const
A generic diagnostic builder for errors which may or may not be deferred.
Definition: SemaBase.h:110
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition: SemaBase.cpp:60
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaBase.cpp:32
ASTContext & getASTContext() const
Definition: SemaBase.cpp:9
Sema & SemaRef
Definition: SemaBase.h:40
const LangOptions & getLangOpts() const
Definition: SemaBase.cpp:11
DiagnosticsEngine & getDiagnostics() const
Definition: SemaBase.cpp:10
Decl * ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, Expr *BitWidth, tok::ObjCKeywordKind visibility)
ActOnIvar - Each ivar field of an objective-c class is passed into this in order to create an IvarDec...
void ActOnStartOfObjCMethodDef(Scope *S, Decl *D)
ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible and user declared,...
void ActOnSuperClassOfClassInterface(Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperName, SourceLocation SuperLoc, ArrayRef< ParsedType > SuperTypeArgs, SourceRange SuperTypeArgsRange)
VarDecl * BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, bool Invalid=false)
Build a type-check a new Objective-C exception variable declaration.
void DiagnoseUnusedBackingIvarInAccessor(Scope *S, const ObjCImplementationDecl *ImplD)
DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which backs the property is n...
void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation)
SetIvarInitializers - This routine builds initialization ASTs for the Objective-C implementation whos...
void WarnExactTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl)
WarnExactTypedMethods - This routine issues a warning if method implementation declaration matches ex...
const ObjCMethodDecl * SelectorsForTypoCorrection(Selector Sel, QualType ObjectType=QualType())
void ProcessPropertyDecl(ObjCPropertyDecl *property)
Process the specified property declaration and create decls for the setters and getters as needed.
TypeResult actOnObjCTypeArgsAndProtocolQualifiers(Scope *S, SourceLocation Loc, ParsedType BaseType, SourceLocation TypeArgsLAngleLoc, ArrayRef< ParsedType > TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef< Decl * > Protocols, ArrayRef< SourceLocation > ProtocolLocs, SourceLocation ProtocolRAngleLoc)
Build a specialized and/or protocol-qualified Objective-C type.
Definition: SemaObjC.cpp:378
void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method)
Add the given method to the list of globally-known methods.
ObjCInterfaceDecl * ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *SuperName, SourceLocation SuperLoc, ArrayRef< ParsedType > SuperTypeArgs, SourceRange SuperTypeArgsRange, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody)
void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl)
Diagnose any null-resettable synthesized setters.
void updateOutOfDateSelector(Selector Sel)
void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList)
ObjCImplementationDecl * ActOnStartClassImplementation(SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName, SourceLocation ClassLoc, const IdentifierInfo *SuperClassname, SourceLocation SuperClassLoc, const ParsedAttributesView &AttrList)
bool AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, bool receiverIdOrClass, SmallVectorImpl< ObjCMethodDecl * > &Methods)
Decl * ActOnObjCExceptionDecl(Scope *S, Declarator &D)
bool CheckObjCDeclScope(Decl *D)
Checks that the Objective-C declaration is declared in the global scope.
DeclResult actOnObjCTypeParam(Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc, unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc, SourceLocation colonLoc, ParsedType typeBound)
ObjCIvarDecl * GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, const ObjCPropertyDecl *&PDecl) const
GetIvarBackingPropertyAccessor - If method is a property setter/getter and it property has a backing ...
bool CheckARCMethodDecl(ObjCMethodDecl *method)
Check a method declaration for compatibility with the Objective-C ARC conventions.
ObjCContainerKind getObjCContainerKind() const
ObjCInterfaceDecl * getObjCInterfaceDecl(const IdentifierInfo *&Id, SourceLocation IdLoc, bool TypoCorrection=false)
Look for an Objective-C class in the translation unit.
ObjCMethodDecl * LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance)
LookupMethodInType - Look up a method in an ObjCObjectType.
ParmVarDecl * ActOnMethodParmDeclaration(Scope *S, ObjCArgInfo &ArgInfo, int ParamIndex, bool MethodDefinition)
DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef< Decl * > Decls)
ObjCContainerDecl * getObjCDeclContext() const
void WarnConflictingTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl)
bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, const ObjCMethodDecl *PrevMethod, MethodMatchStrategy strategy=MMS_strict)
MatchTwoMethodDeclarations - Checks if two methods' type match and returns true, or false,...
void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl, ObjCContainerDecl *IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false)
MatchAllMethodDeclarations - Check methods declaraed in interface or or protocol against those declar...
llvm::MapVector< Selector, SourceLocation > ReferencedSelectors
Method selectors used in a @selector expression.
Definition: SemaObjC.h:209
void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D)
void ActOnObjCContainerFinishDefinition()
Definition: SemaObjC.cpp:1283
Decl * ActOnCompatibilityAlias(SourceLocation AtCompatibilityAliasLoc, IdentifierInfo *AliasName, SourceLocation AliasLocation, IdentifierInfo *ClassName, SourceLocation ClassLocation)
ActOnCompatibilityAlias - this action is called after complete parsing of a @compatibility_alias decl...
void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID)
DiagnoseDuplicateIvars - Check for duplicate ivars in the entire class at the start of @implementatio...
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall)
Check whether the given method, which must be in the 'init' family, is a valid member of that family.
void CheckConflictingOverridingMethod(ObjCMethodDecl *Method, ObjCMethodDecl *Overridden, bool IsProtocolMethodDecl)
ObjCTypeParamList * actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, ArrayRef< Decl * > typeParams, SourceLocation rAngleLoc)
ObjCCategoryDecl * ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, const IdentifierInfo *CategoryName, SourceLocation CategoryLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList)
void actOnObjCTypeArgsOrProtocolQualifiers(Scope *S, ParsedType baseType, SourceLocation lAngleLoc, ArrayRef< IdentifierInfo * > identifiers, ArrayRef< SourceLocation > identifierLocs, SourceLocation rAngleLoc, SourceLocation &typeArgsLAngleLoc, SmallVectorImpl< ParsedType > &typeArgs, SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc, SmallVectorImpl< Decl * > &protocols, SourceLocation &protocolRAngleLoc, bool warnOnIncompleteProtocols)
Given a list of identifiers (and their locations), resolve the names to either Objective-C protocol q...
bool CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList< ObjCProtocolDecl > &PList)
void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl *IMPDecl, ObjCContainerDecl *CDecl, bool SynthesizeProperties)
DiagnoseUnimplementedProperties - This routine warns on those properties which must be implemented by...
void AtomicPropertySetterGetterRules(ObjCImplDecl *IMPDecl, ObjCInterfaceDecl *IDecl)
AtomicPropertySetterGetterRules - This routine enforces the rule (via warning) when atomic property h...
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID)
DiagnoseClassExtensionDupMethods - Check for duplicate declaration of a class method in its extension...
ObjCCategoryImplDecl * ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName, SourceLocation ClassLoc, const IdentifierInfo *CatName, SourceLocation CatLoc, const ParsedAttributesView &AttrList)
ActOnStartCategoryImplementation - Perform semantic checks on the category implementation declaration...
bool inferObjCARCLifetime(ValueDecl *decl)
void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, const ObjCMethodDecl *Overridden)
Check whether the given new method is a valid override of the given overridden method,...
Decl * ActOnMethodDeclaration(Scope *S, SourceLocation BeginLoc, SourceLocation EndLoc, tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, ArrayRef< SourceLocation > SelectorLocs, Selector Sel, ParmVarDecl **ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind, bool isVariadic, bool MethodDefinition)
void ActOnTypedefedProtocols(SmallVectorImpl< Decl * > &ProtocolRefs, SmallVectorImpl< SourceLocation > &ProtocolLocs, IdentifierInfo *SuperName, SourceLocation SuperLoc)
ActOnTypedefedProtocols - this action finds protocol list as part of the typedef'ed use for a qualifi...
void DiagnoseMissingDesignatedInitOverrides(const ObjCImplementationDecl *ImplD, const ObjCInterfaceDecl *IFD)
void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, SmallVectorImpl< ObjCIvarDecl * > &Ivars)
CollectIvarsToConstructOrDestruct - Collect those ivars which require initialization.
DeclGroupPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc, ArrayRef< IdentifierLocPair > IdentList, const ParsedAttributesView &attrList)
ActOnForwardProtocolDeclaration - Handle @protocol foo;.
ObjCProtocolDecl * LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc, RedeclarationKind Redecl=RedeclarationKind::NotForRedeclaration)
Find the protocol with the given name, if any.
Definition: SemaObjC.cpp:1301
QualType AdjustParameterTypeForObjCAutoRefCount(QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo)
GlobalMethodPool MethodPool
Method Pool - allows efficient lookup when typechecking messages to "id".
Definition: SemaObjC.h:220
ObjCProtocolDecl * ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, Decl *const *ProtoRefNames, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody)
ResultTypeCompatibilityKind
Describes the compatibility of a result type with its method.
Definition: SemaObjC.h:381
void DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl< ObjCMethodDecl * > &Methods, Selector Sel, SourceRange R, bool receiverIdOrClass)
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, ArrayRef< ObjCTypeParamList * > TypeParamLists, unsigned NumElts)
void ReadMethodPool(Selector Sel)
Read the contents of the method pool for a given selector from external storage.
void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, const IdentifierInfo *ClassName, SmallVectorImpl< Decl * > &Decls)
Called whenever @defs(ClassName) is encountered in the source.
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false)
AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
Definition: SemaObjC.h:530
void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, SourceLocation ProtocolLoc, IdentifierInfo *TypeArgId, SourceLocation TypeArgLoc, bool SelectProtocolFirst=false)
bool CollectMultipleMethodsInGlobalPool(Selector Sel, SmallVectorImpl< ObjCMethodDecl * > &Methods, bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound=nullptr)
We first select the type of the method: Instance or Factory, then collect all methods with that type.
void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, ObjCMethodDecl *overridden)
void DiagnoseUseOfUnimplementedSelectors()
Decl * ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef< Decl * > allMethods={}, ArrayRef< DeclGroupPtrTy > allTUVars={})
void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP)
CheckCategoryVsClassMethodMatches - Checks that methods implemented in category matches with those im...
void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl *IMPDecl, ObjCContainerDecl *IDecl, bool IncompleteImpl=false)
ImplMethodsVsClassMethods - This is main routine to warn if any method remains unimplemented in the c...
void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, ObjCInterfaceDecl *CurrentClass, ResultTypeCompatibilityKind RTC)
void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, ObjCIvarDecl **Fields, unsigned nIvars, SourceLocation Loc)
CheckImplementationIvars - This routine checks if the instance variables listed in the implelementati...
ObjCMethodDecl * LookupImplementedMethodInGlobalPool(Selector Sel)
LookupImplementedMethodInGlobalPool - Returns the method which has an implementation.
void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false)
AddInstanceMethodToGlobalPool - All instance methods in a translation unit are added to a global pool...
Definition: SemaObjC.h:524
void AddAnyMethodToGlobalPool(Decl *D)
AddAnyMethodToGlobalPool - Add any method, instance or factory to global pool.
@ OCK_CategoryImplementation
Definition: SemaObjC.h:233
bool isSelfExpr(Expr *RExpr)
Private Helper predicate to check for 'self'.
std::unique_ptr< NSAPI > NSAPIObj
Caches identifiers/selectors for NSFoundation APIs.
Definition: SemaObjC.h:591
void ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl)
Definition: SemaObjC.cpp:1276
void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, ArrayRef< IdentifierLocPair > ProtocolId, SmallVectorImpl< Decl * > &Protocols)
FindProtocolDeclaration - This routine looks up protocols and issues an error if they are not declare...
A RAII object to temporarily push a declaration context.
Definition: Sema.h:3010
bool shouldDelayDiagnostics()
Determines whether diagnostics should be delayed.
Definition: Sema.h:997
void add(const sema::DelayedDiagnostic &diag)
Adds a delayed diagnostic.
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:464
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:6395
bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S=nullptr, bool AllowInlineNamespace=false) const
isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true if 'D' is in Scope 'S',...
Definition: SemaDecl.cpp:1561
LookupNameKind
Describes the kind of name lookup to perform.
Definition: Sema.h:8986
@ LookupOrdinaryName
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc....
Definition: Sema.h:8990
@ LookupObjCProtocolName
Look up the name of an Objective-C protocol.
Definition: Sema.h:9027
@ LookupMemberName
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:8998
@ LookupAnyName
Look up any declaration with any name.
Definition: Sema.h:9035
void DiagnoseFunctionSpecifiers(const DeclSpec &DS)
Diagnose function specifiers on a declaration of an identifier that does not identify a function.
Definition: SemaDecl.cpp:6652
void AddPragmaAttributes(Scope *S, Decl *D)
Adds the attributes that have been specified using the '#pragma clang attribute push' directives to t...
Definition: SemaAttr.cpp:1190
void PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl=nullptr, ExpressionEvaluationContextRecord::ExpressionKind Type=ExpressionEvaluationContextRecord::EK_Other)
Definition: SemaExpr.cpp:17394
class clang::Sema::DelayedDiagnostics DelayedDiagnostics
ExprResult VerifyBitField(SourceLocation FieldLoc, const IdentifierInfo *FieldName, QualType FieldTy, bool IsMsStruct, Expr *BitWidth)
VerifyBitField - verifies that a bit field expression is an ICE and has the correct width,...
Definition: SemaDecl.cpp:18304
NamedDecl * LookupSingleName(Scope *S, DeclarationName Name, SourceLocation Loc, LookupNameKind NameKind, RedeclarationKind Redecl=RedeclarationKind::NotForRedeclaration)
Look up a name, looking for a single declaration.
ASTContext & Context
Definition: Sema.h:909
AccessResult CheckDestructorAccess(SourceLocation Loc, CXXDestructorDecl *Dtor, const PartialDiagnostic &PDiag, QualType objectType=QualType())
SemaObjC & ObjC()
Definition: Sema.h:1111
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext=true)
Add this decl to the scope shadowed decl chains.
Definition: SemaDecl.cpp:1499
ASTContext & getASTContext() const
Definition: Sema.h:532
CXXDestructorDecl * LookupDestructor(CXXRecordDecl *Class)
Look for the destructor of the given class.
ObjCMethodDecl * getCurMethodDecl()
getCurMethodDecl - If inside of a method body, this returns a pointer to the method decl for the meth...
Definition: Sema.cpp:1575
void PushFunctionScope()
Enter a new function scope.
Definition: Sema.cpp:2180
bool CheckFunctionReturnType(QualType T, SourceLocation Loc)
Definition: SemaType.cpp:2528
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition: Sema.cpp:82
const LangOptions & getLangOpts() const
Definition: Sema.h:525
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, CorrectTypoKind Mode, DeclContext *MemberContext=nullptr, bool EnteringContext=false, const ObjCObjectPointerType *OPT=nullptr, bool RecordFailure=true)
Try to "correct" a typo in the source code by finding visible declarations whose names are similar to...
bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, QualType &T, SourceLocation Loc, unsigned FailedFoldDiagID)
Attempt to fold a variable-sized type to a constant-sized type, returning true if we were successful.
Definition: SemaDecl.cpp:6612
void CheckExtraCXXDefaultArguments(Declarator &D)
CheckExtraCXXDefaultArguments - Check for any extra default arguments in the declarator,...
void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AttrList, const ProcessDeclAttributeOptions &Options=ProcessDeclAttributeOptions())
ProcessDeclAttributeList - Apply all the decl attributes in the specified attribute list to the speci...
DeclContext * getCurLexicalContext() const
Definition: Sema.h:736
sema::FunctionScopeInfo * getCurFunction() const
Definition: Sema.h:940
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef< Decl * > Group)
BuildDeclaratorGroup - convert a list of declarations into a declaration group, performing any necess...
Definition: SemaDecl.cpp:14900
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:1044
void ActOnDocumentableDecl(Decl *D)
Should be called on all declarations that might have attached documentation comments.
Definition: SemaDecl.cpp:14940
ParmVarDecl * CheckParameter(DeclContext *DC, SourceLocation StartLoc, SourceLocation NameLoc, const IdentifierInfo *Name, QualType T, TypeSourceInfo *TSInfo, StorageClass SC)
Definition: SemaDecl.cpp:15210
void applyFunctionAttributesBeforeParsingBody(Decl *FD)
Definition: SemaDecl.cpp:15800
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete=false)
Determine if D has a visible definition.
Definition: SemaType.cpp:9241
SourceManager & getSourceManager() const
Definition: Sema.h:530
TypeResult ActOnTypeName(Declarator &D)
Definition: SemaType.cpp:6414
ExternalSemaSource * getExternalSource() const
Definition: Sema.h:535
bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef< SourceLocation > Locs, const ObjCInterfaceDecl *UnknownObjCClass=nullptr, bool ObjCPropertyAccess=false, bool AvoidPartialAvailabilityChecks=false, ObjCInterfaceDecl *ClassReciever=nullptr, bool SkipTrailingRequiresClause=false)
Determine whether the use of this declaration is valid, and emit any corresponding diagnostics.
Definition: SemaExpr.cpp:216
bool CheckParmsForFunctionDef(ArrayRef< ParmVarDecl * > Parameters, bool CheckParameterNames)
CheckParmsForFunctionDef - Check that the parameters of the given function are appropriate for the de...
@ CTK_NonError
Definition: Sema.h:9383
@ CTK_ErrorRecovery
Definition: Sema.h:9384
RedeclarationKind forRedeclarationInCurContext() const
void mergeDeclAttributes(NamedDecl *New, Decl *Old, AvailabilityMergeKind AMK=AMK_Redeclaration)
mergeDeclAttributes - Copy attributes from the Old decl to the New one.
Definition: SemaDecl.cpp:3095
IntrusiveRefCntPtr< ExternalSemaSource > ExternalSource
Source of additional semantic information.
Definition: Sema.h:1177
ASTConsumer & Consumer
Definition: Sema.h:910
TypeSourceInfo * GetTypeForDeclarator(Declarator &D)
GetTypeForDeclarator - Convert the type for the specified declarator to Type instances.
Definition: SemaType.cpp:5704
void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, bool ErrorRecovery=true)
bool RequireCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind, TypeDiagnoser &Diagnoser)
Ensure that the type T is a complete type.
Definition: SemaType.cpp:9119
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:872
Expr * MaybeCreateExprWithCleanups(Expr *SubExpr)
MaybeCreateExprWithCleanups - If the current full-expression requires any cleanups,...
SmallVector< ExpressionEvaluationContextRecord, 8 > ExprEvalContexts
A stack of expression evaluation contexts.
Definition: Sema.h:7917
void PushDeclContext(Scope *S, DeclContext *DC)
Set the current declaration context until it gets popped.
Definition: SemaDecl.cpp:1310
DiagnosticsEngine & Diags
Definition: Sema.h:911
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD)
ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in it, apply them to D.
llvm::BumpPtrAllocator BumpAlloc
Definition: Sema.h:858
void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, bool MightBeOdrUse=true)
Mark a function referenced, and check whether it is odr-used (C++ [basic.def.odr]p2,...
Definition: SemaExpr.cpp:18085
void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old)
Definition: SemaDecl.cpp:4352
void ProcessAPINotes(Decl *D)
Map any API notes provided for this declaration to attributes on the declaration.
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false, bool ForceNoCPlusPlus=false)
Perform unqualified name lookup starting from a given scope.
static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo=nullptr)
Definition: SemaType.cpp:2751
IdentifierResolver IdResolver
Definition: Sema.h:3003
llvm::SmallVector< std::pair< SourceLocation, const BlockDecl * >, 1 > ImplicitlyRetainedSelfLocs
List of SourceLocations where 'self' is implicitly retained inside a block.
Definition: Sema.h:7925
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
bool isInSystemHeader(SourceLocation Loc) const
Returns if a SourceLocation is in a system header.
A trivial tuple used to represent a source range.
bool isInvalid() const
SourceLocation getEnd() const
SourceLocation getBegin() const
bool isValid() const
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:345
bool isUnion() const
Definition: Decl.h:3784
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1262
StringRef getPlatformName() const
Retrieve the name of the platform as it is used in the availability attribute.
Definition: TargetInfo.h:1666
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled.
Definition: TargetInfo.h:1670
Represents a declaration of a type.
Definition: Decl.h:3384
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:3412
TyLocType push(QualType T)
Pushes space for a new TypeLoc of the given type.
void pushFullCopy(TypeLoc L)
Pushes a copy of the given TypeLoc onto this builder.
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:59
TypeLoc findExplicitQualifierLoc() const
Find a type with the location of an explicit type qualifier.
Definition: TypeLoc.cpp:463
T getAs() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition: TypeLoc.h:89
SourceRange getSourceRange() const LLVM_READONLY
Get the full source range.
Definition: TypeLoc.h:153
SourceLocation getEndLoc() const
Get the end source location.
Definition: TypeLoc.cpp:235
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:192
A container of type source information.
Definition: Type.h:7907
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:256
QualType getType() const
Return the type wrapped by this type source info.
Definition: Type.h:7918
The base class of the type hierarchy.
Definition: Type.h:1828
bool isVoidType() const
Definition: Type.h:8515
bool isIncompleteArrayType() const
Definition: Type.h:8271
bool isArrayType() const
Definition: Type.h:8263
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:8555
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8805
bool isReferenceType() const
Definition: Type.h:8209
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1893
bool isScalarType() const
Definition: Type.h:8614
bool isObjCQualifiedIdType() const
Definition: Type.h:8354
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2706
ScalarTypeKind getScalarTypeKind() const
Given that this is a scalar type, classify it.
Definition: Type.cpp:2330
bool containsErrors() const
Whether this type is an error type.
Definition: Type.h:2700
bool isObjCIdType() const
Definition: Type.h:8366
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2724
bool isObjCObjectType() const
Definition: Type.h:8337
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:5048
Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const
Return the implicit lifetime for this type, which must not be dependent.
Definition: Type.cpp:4991
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types,...
Definition: Type.cpp:2396
bool isObjCObjectPointerType() const
Definition: Type.h:8333
bool isVectorType() const
Definition: Type.h:8303
bool isObjCQualifiedClassType() const
Definition: Type.h:8360
bool isObjCClassType() const
Definition: Type.h:8372
ScalarTypeKind
Definition: Type.h:2679
@ STK_BlockPointer
Definition: Type.h:2681
@ STK_Bool
Definition: Type.h:2684
@ STK_ObjCObjectPointer
Definition: Type.h:2682
@ STK_CPointer
Definition: Type.h:2680
@ STK_Integral
Definition: Type.h:2685
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8736
bool isRecordType() const
Definition: Type.h:8291
std::optional< NullabilityKind > getNullability() const
Determine the nullability of the given type.
Definition: Type.cpp:4763
bool isObjCIndependentClassType() const
Definition: Type.cpp:5022
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:3427
TypeSourceInfo * getTypeSourceInfo() const
Definition: Decl.h:3477
QualType getUnderlyingType() const
Definition: Decl.h:3482
Simple class containing the result of Sema::CorrectTypo.
DeclClass * getCorrectionDeclAs() const
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:671
void setType(QualType newType)
Definition: Decl.h:683
QualType getType() const
Definition: Decl.h:682
Represents a variable declaration or definition.
Definition: Decl.h:882
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:2140
void setExceptionVariable(bool EV)
Definition: Decl.h:1441
static DelayedDiagnostic makeForbiddenType(SourceLocation loc, unsigned diagnostic, QualType type, unsigned argument)
bool ObjCIsDesignatedInit
True when this is a method marked as a designated initializer.
Definition: ScopeInfo.h:153
bool ObjCShouldCallSuper
A flag that is set when parsing a method that must call super's implementation, such as -dealloc,...
Definition: ScopeInfo.h:150
bool ObjCWarnForNoInitDelegation
This starts true for a secondary initializer method and will be set to false if there is an invocatio...
Definition: ScopeInfo.h:167
bool ObjCIsSecondaryInit
True when this is an initializer method not marked as a designated initializer within a class that ha...
Definition: ScopeInfo.h:163
bool ObjCWarnForNoDesignatedInitChain
This starts true for a method marked as designated initializer and will be set to false if there is a...
Definition: ScopeInfo.h:158
Defines the clang::TargetInfo interface.
const internal::VariadicAllOfMatcher< Attr > attr
Matches attributes.
SmallVector< BoundNodes, 1 > match(MatcherT Matcher, const NodeT &Node, ASTContext &Context)
Returns the results of matching Matcher on Node.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
ObjCKeywordKind
Provides a namespace for Objective-C keywords which start with an '@'.
Definition: TokenKinds.h:41
TokenKind
Provides a simple uniform namespace for tokens from all C languages.
Definition: TokenKinds.h:25
The JSON file list parser is used to communicate input to InstallAPI.
@ CPlusPlus
Definition: LangStandard.h:55
@ SC_None
Definition: Specifiers.h:250
ThreadStorageClassSpecifier
Thread storage-class-specifier.
Definition: Specifiers.h:235
ObjCMethodFamily
A family of Objective-C methods.
@ OMF_initialize
@ OMF_autorelease
@ OMF_mutableCopy
@ OMF_performSelector
@ OMF_None
No particular method family.
@ OMF_retainCount
@ Property
The type of a property.
Selector GetNullarySelector(StringRef name, ASTContext &Ctx)
Utility function for constructing a nullary selector.
Definition: ASTContext.h:3602
@ Class
The "class" keyword.
AvailabilityResult
Captures the result of checking the availability of a declaration.
Definition: DeclBase.h:72
@ AR_Deprecated
Definition: DeclBase.h:75
@ AR_Unavailable
Definition: DeclBase.h:76
std::pair< NullabilityKind, bool > DiagNullabilityKind
A nullability kind paired with a bit indicating whether it used a context-sensitive keyword.
Definition: Diagnostic.h:1488
const FunctionProtoType * T
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition: DeclBase.h:1274
ObjCTypeParamVariance
Describes the variance of a given generic parameter.
Definition: DeclObjC.h:553
@ Invariant
The parameter is invariant: must match exactly.
@ Contravariant
The parameter is contravariant, e.g., X<T> is a subtype of X when the type parameter is covariant and...
@ Covariant
The parameter is covariant, e.g., X<T> is a subtype of X when the type parameter is covariant and T i...
std::pair< IdentifierInfo *, SourceLocation > IdentifierLocPair
A simple pair of identifier info and location.
@ Interface
The "__interface" keyword introduces the elaborated-type-specifier.
@ Class
The "class" keyword introduces the elaborated-type-specifier.
Visibility
Describes the different kinds of visibility that a declaration may have.
Definition: Visibility.h:34
#define false
Definition: stdbool.h:26
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspon...
ParamInfo - An array of paraminfo objects is allocated whenever a function declarator is parsed.
Definition: DeclSpec.h:1333
static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc, SourceLocation ConstQualLoc, SourceLocation VolatileQualLoc, SourceLocation RestrictQualLoc, SourceLocation AtomicQualLoc, SourceLocation UnalignedQualLoc)
Return a DeclaratorChunk for a pointer.
Definition: DeclSpec.h:1667
a linked list of methods with the same selector name but different signatures.
ObjCMethodDecl * getMethod() const
void setMethod(ObjCMethodDecl *M)
void setNext(ObjCMethodList *L)
bool hasMoreThanOneDecl() const
ObjCMethodList * getNext() const
ParsedAttributesView ArgAttrs
ArgAttrs - Attribute list for this argument.
Definition: SemaObjC.h:351
IdentifierInfo * Name
Definition: SemaObjC.h:343
SourceLocation NameLoc
Definition: SemaObjC.h:344
bool CheckSameAsPrevious
Definition: Sema.h:351
NamedDecl * Previous
Definition: Sema.h:352
NamedDecl * New
Definition: Sema.h:353
uint64_t Width
Definition: ASTContext.h:159
unsigned Align
Definition: ASTContext.h:160