clang 20.0.0git
SemaLookup.cpp
Go to the documentation of this file.
1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements name lookup for C, C++, Objective-C, and
10// Objective-C++.
11//
12//===----------------------------------------------------------------------===//
13
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/Lookup.h"
30#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
34#include "clang/Sema/Sema.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/ADT/STLForwardCompat.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/TinyPtrVector.h"
43#include "llvm/ADT/edit_distance.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/ErrorHandling.h"
46#include <algorithm>
47#include <iterator>
48#include <list>
49#include <optional>
50#include <set>
51#include <utility>
52#include <vector>
53
54#include "OpenCLBuiltins.inc"
55
56using namespace clang;
57using namespace sema;
58
59namespace {
60 class UnqualUsingEntry {
61 const DeclContext *Nominated;
62 const DeclContext *CommonAncestor;
63
64 public:
65 UnqualUsingEntry(const DeclContext *Nominated,
66 const DeclContext *CommonAncestor)
67 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
68 }
69
70 const DeclContext *getCommonAncestor() const {
71 return CommonAncestor;
72 }
73
74 const DeclContext *getNominatedNamespace() const {
75 return Nominated;
76 }
77
78 // Sort by the pointer value of the common ancestor.
79 struct Comparator {
80 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
81 return L.getCommonAncestor() < R.getCommonAncestor();
82 }
83
84 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
85 return E.getCommonAncestor() < DC;
86 }
87
88 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
89 return DC < E.getCommonAncestor();
90 }
91 };
92 };
93
94 /// A collection of using directives, as used by C++ unqualified
95 /// lookup.
96 class UnqualUsingDirectiveSet {
97 Sema &SemaRef;
98
100
101 ListTy list;
103
104 public:
105 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
106
107 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
108 // C++ [namespace.udir]p1:
109 // During unqualified name lookup, the names appear as if they
110 // were declared in the nearest enclosing namespace which contains
111 // both the using-directive and the nominated namespace.
112 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
113 assert(InnermostFileDC && InnermostFileDC->isFileContext());
114
115 for (; S; S = S->getParent()) {
116 // C++ [namespace.udir]p1:
117 // A using-directive shall not appear in class scope, but may
118 // appear in namespace scope or in block scope.
119 DeclContext *Ctx = S->getEntity();
120 if (Ctx && Ctx->isFileContext()) {
121 visit(Ctx, Ctx);
122 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
123 for (auto *I : S->using_directives())
124 if (SemaRef.isVisible(I))
125 visit(I, InnermostFileDC);
126 }
127 }
128 }
129
130 // Visits a context and collect all of its using directives
131 // recursively. Treats all using directives as if they were
132 // declared in the context.
133 //
134 // A given context is only every visited once, so it is important
135 // that contexts be visited from the inside out in order to get
136 // the effective DCs right.
137 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
138 if (!visited.insert(DC).second)
139 return;
140
141 addUsingDirectives(DC, EffectiveDC);
142 }
143
144 // Visits a using directive and collects all of its using
145 // directives recursively. Treats all using directives as if they
146 // were declared in the effective DC.
147 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
149 if (!visited.insert(NS).second)
150 return;
151
152 addUsingDirective(UD, EffectiveDC);
153 addUsingDirectives(NS, EffectiveDC);
154 }
155
156 // Adds all the using directives in a context (and those nominated
157 // by its using directives, transitively) as if they appeared in
158 // the given effective context.
159 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
161 while (true) {
162 for (auto *UD : DC->using_directives()) {
164 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
165 addUsingDirective(UD, EffectiveDC);
166 queue.push_back(NS);
167 }
168 }
169
170 if (queue.empty())
171 return;
172
173 DC = queue.pop_back_val();
174 }
175 }
176
177 // Add a using directive as if it had been declared in the given
178 // context. This helps implement C++ [namespace.udir]p3:
179 // The using-directive is transitive: if a scope contains a
180 // using-directive that nominates a second namespace that itself
181 // contains using-directives, the effect is as if the
182 // using-directives from the second namespace also appeared in
183 // the first.
184 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
185 // Find the common ancestor between the effective context and
186 // the nominated namespace.
187 DeclContext *Common = UD->getNominatedNamespace();
188 while (!Common->Encloses(EffectiveDC))
189 Common = Common->getParent();
190 Common = Common->getPrimaryContext();
191
192 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
193 }
194
195 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
196
197 typedef ListTy::const_iterator const_iterator;
198
199 const_iterator begin() const { return list.begin(); }
200 const_iterator end() const { return list.end(); }
201
202 llvm::iterator_range<const_iterator>
203 getNamespacesFor(const DeclContext *DC) const {
204 return llvm::make_range(std::equal_range(begin(), end(),
205 DC->getPrimaryContext(),
206 UnqualUsingEntry::Comparator()));
207 }
208 };
209} // end anonymous namespace
210
211// Retrieve the set of identifier namespaces that correspond to a
212// specific kind of name lookup.
213static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
214 bool CPlusPlus,
215 bool Redeclaration) {
216 unsigned IDNS = 0;
217 switch (NameKind) {
223 IDNS = Decl::IDNS_Ordinary;
224 if (CPlusPlus) {
226 if (Redeclaration)
228 }
229 if (Redeclaration)
231 break;
232
234 // Operator lookup is its own crazy thing; it is not the same
235 // as (e.g.) looking up an operator name for redeclaration.
236 assert(!Redeclaration && "cannot do redeclaration operator lookup");
238 break;
239
241 if (CPlusPlus) {
242 IDNS = Decl::IDNS_Type;
243
244 // When looking for a redeclaration of a tag name, we add:
245 // 1) TagFriend to find undeclared friend decls
246 // 2) Namespace because they can't "overload" with tag decls.
247 // 3) Tag because it includes class templates, which can't
248 // "overload" with tag decls.
249 if (Redeclaration)
251 } else {
252 IDNS = Decl::IDNS_Tag;
253 }
254 break;
255
257 IDNS = Decl::IDNS_Label;
258 break;
259
261 IDNS = Decl::IDNS_Member;
262 if (CPlusPlus)
264 break;
265
268 break;
269
272 break;
273
275 assert(Redeclaration && "should only be used for redecl lookup");
279 break;
280
283 break;
284
287 break;
288
291 break;
292
297 break;
298 }
299 return IDNS;
300}
301
302void LookupResult::configure() {
303 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
305
306 // If we're looking for one of the allocation or deallocation
307 // operators, make sure that the implicitly-declared new and delete
308 // operators can be found.
309 switch (NameInfo.getName().getCXXOverloadedOperator()) {
310 case OO_New:
311 case OO_Delete:
312 case OO_Array_New:
313 case OO_Array_Delete:
315 break;
316
317 default:
318 break;
319 }
320
321 // Compiler builtins are always visible, regardless of where they end
322 // up being declared.
323 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
324 if (unsigned BuiltinID = Id->getBuiltinID()) {
325 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
326 AllowHidden = true;
327 }
328 }
329}
330
331bool LookupResult::checkDebugAssumptions() const {
332 // This function is never called by NDEBUG builds.
333 assert(ResultKind != NotFound || Decls.size() == 0);
334 assert(ResultKind != Found || Decls.size() == 1);
335 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
336 (Decls.size() == 1 &&
337 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
338 assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
339 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
340 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
341 Ambiguity == AmbiguousBaseSubobjectTypes)));
342 assert((Paths != nullptr) == (ResultKind == Ambiguous &&
343 (Ambiguity == AmbiguousBaseSubobjectTypes ||
344 Ambiguity == AmbiguousBaseSubobjects)));
345 return true;
346}
347
348// Necessary because CXXBasePaths is not complete in Sema.h
349void LookupResult::deletePaths(CXXBasePaths *Paths) {
350 delete Paths;
351}
352
353/// Get a representative context for a declaration such that two declarations
354/// will have the same context if they were found within the same scope.
356 // For function-local declarations, use that function as the context. This
357 // doesn't account for scopes within the function; the caller must deal with
358 // those.
359 if (const DeclContext *DC = D->getLexicalDeclContext();
360 DC->isFunctionOrMethod())
361 return DC;
362
363 // Otherwise, look at the semantic context of the declaration. The
364 // declaration must have been found there.
365 return D->getDeclContext()->getRedeclContext();
366}
367
368/// Determine whether \p D is a better lookup result than \p Existing,
369/// given that they declare the same entity.
371 const NamedDecl *D,
372 const NamedDecl *Existing) {
373 // When looking up redeclarations of a using declaration, prefer a using
374 // shadow declaration over any other declaration of the same entity.
375 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
376 !isa<UsingShadowDecl>(Existing))
377 return true;
378
379 const auto *DUnderlying = D->getUnderlyingDecl();
380 const auto *EUnderlying = Existing->getUnderlyingDecl();
381
382 // If they have different underlying declarations, prefer a typedef over the
383 // original type (this happens when two type declarations denote the same
384 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
385 // might carry additional semantic information, such as an alignment override.
386 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
387 // declaration over a typedef. Also prefer a tag over a typedef for
388 // destructor name lookup because in some contexts we only accept a
389 // class-name in a destructor declaration.
390 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
391 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
392 bool HaveTag = isa<TagDecl>(EUnderlying);
393 bool WantTag =
395 return HaveTag != WantTag;
396 }
397
398 // Pick the function with more default arguments.
399 // FIXME: In the presence of ambiguous default arguments, we should keep both,
400 // so we can diagnose the ambiguity if the default argument is needed.
401 // See C++ [over.match.best]p3.
402 if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
403 const auto *EFD = cast<FunctionDecl>(EUnderlying);
404 unsigned DMin = DFD->getMinRequiredArguments();
405 unsigned EMin = EFD->getMinRequiredArguments();
406 // If D has more default arguments, it is preferred.
407 if (DMin != EMin)
408 return DMin < EMin;
409 // FIXME: When we track visibility for default function arguments, check
410 // that we pick the declaration with more visible default arguments.
411 }
412
413 // Pick the template with more default template arguments.
414 if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
415 const auto *ETD = cast<TemplateDecl>(EUnderlying);
416 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
417 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
418 // If D has more default arguments, it is preferred. Note that default
419 // arguments (and their visibility) is monotonically increasing across the
420 // redeclaration chain, so this is a quick proxy for "is more recent".
421 if (DMin != EMin)
422 return DMin < EMin;
423 // If D has more *visible* default arguments, it is preferred. Note, an
424 // earlier default argument being visible does not imply that a later
425 // default argument is visible, so we can't just check the first one.
426 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
427 I != N; ++I) {
429 ETD->getTemplateParameters()->getParam(I)) &&
431 DTD->getTemplateParameters()->getParam(I)))
432 return true;
433 }
434 }
435
436 // VarDecl can have incomplete array types, prefer the one with more complete
437 // array type.
438 if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) {
439 const auto *EVD = cast<VarDecl>(EUnderlying);
440 if (EVD->getType()->isIncompleteType() &&
441 !DVD->getType()->isIncompleteType()) {
442 // Prefer the decl with a more complete type if visible.
443 return S.isVisible(DVD);
444 }
445 return false; // Avoid picking up a newer decl, just because it was newer.
446 }
447
448 // For most kinds of declaration, it doesn't really matter which one we pick.
449 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
450 // If the existing declaration is hidden, prefer the new one. Otherwise,
451 // keep what we've got.
452 return !S.isVisible(Existing);
453 }
454
455 // Pick the newer declaration; it might have a more precise type.
456 for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
457 Prev = Prev->getPreviousDecl())
458 if (Prev == EUnderlying)
459 return true;
460 return false;
461}
462
463/// Determine whether \p D can hide a tag declaration.
464static bool canHideTag(const NamedDecl *D) {
465 // C++ [basic.scope.declarative]p4:
466 // Given a set of declarations in a single declarative region [...]
467 // exactly one declaration shall declare a class name or enumeration name
468 // that is not a typedef name and the other declarations shall all refer to
469 // the same variable, non-static data member, or enumerator, or all refer
470 // to functions and function templates; in this case the class name or
471 // enumeration name is hidden.
472 // C++ [basic.scope.hiding]p2:
473 // A class name or enumeration name can be hidden by the name of a
474 // variable, data member, function, or enumerator declared in the same
475 // scope.
476 // An UnresolvedUsingValueDecl always instantiates to one of these.
477 D = D->getUnderlyingDecl();
478 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
479 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
480 isa<UnresolvedUsingValueDecl>(D);
481}
482
483/// Resolves the result kind of this lookup.
485 unsigned N = Decls.size();
486
487 // Fast case: no possible ambiguity.
488 if (N == 0) {
489 assert(ResultKind == NotFound ||
490 ResultKind == NotFoundInCurrentInstantiation);
491 return;
492 }
493
494 // If there's a single decl, we need to examine it to decide what
495 // kind of lookup this is.
496 if (N == 1) {
497 const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
498 if (isa<FunctionTemplateDecl>(D))
499 ResultKind = FoundOverloaded;
500 else if (isa<UnresolvedUsingValueDecl>(D))
501 ResultKind = FoundUnresolvedValue;
502 return;
503 }
504
505 // Don't do any extra resolution if we've already resolved as ambiguous.
506 if (ResultKind == Ambiguous) return;
507
508 llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique;
509 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
510
511 bool Ambiguous = false;
512 bool ReferenceToPlaceHolderVariable = false;
513 bool HasTag = false, HasFunction = false;
514 bool HasFunctionTemplate = false, HasUnresolved = false;
515 const NamedDecl *HasNonFunction = nullptr;
516
517 llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions;
518 llvm::BitVector RemovedDecls(N);
519
520 for (unsigned I = 0; I < N; I++) {
521 const NamedDecl *D = Decls[I]->getUnderlyingDecl();
522 D = cast<NamedDecl>(D->getCanonicalDecl());
523
524 // Ignore an invalid declaration unless it's the only one left.
525 // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
526 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) &&
527 N - RemovedDecls.count() > 1) {
528 RemovedDecls.set(I);
529 continue;
530 }
531
532 // C++ [basic.scope.hiding]p2:
533 // A class name or enumeration name can be hidden by the name of
534 // an object, function, or enumerator declared in the same
535 // scope. If a class or enumeration name and an object, function,
536 // or enumerator are declared in the same scope (in any order)
537 // with the same name, the class or enumeration name is hidden
538 // wherever the object, function, or enumerator name is visible.
539 if (HideTags && isa<TagDecl>(D)) {
540 bool Hidden = false;
541 for (auto *OtherDecl : Decls) {
542 if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() &&
543 getContextForScopeMatching(OtherDecl)->Equals(
544 getContextForScopeMatching(Decls[I]))) {
545 RemovedDecls.set(I);
546 Hidden = true;
547 break;
548 }
549 }
550 if (Hidden)
551 continue;
552 }
553
554 std::optional<unsigned> ExistingI;
555
556 // Redeclarations of types via typedef can occur both within a scope
557 // and, through using declarations and directives, across scopes. There is
558 // no ambiguity if they all refer to the same type, so unique based on the
559 // canonical type.
560 if (const auto *TD = dyn_cast<TypeDecl>(D)) {
562 auto UniqueResult = UniqueTypes.insert(
563 std::make_pair(getSema().Context.getCanonicalType(T), I));
564 if (!UniqueResult.second) {
565 // The type is not unique.
566 ExistingI = UniqueResult.first->second;
567 }
568 }
569
570 // For non-type declarations, check for a prior lookup result naming this
571 // canonical declaration.
572 if (!ExistingI) {
573 auto UniqueResult = Unique.insert(std::make_pair(D, I));
574 if (!UniqueResult.second) {
575 // We've seen this entity before.
576 ExistingI = UniqueResult.first->second;
577 }
578 }
579
580 if (ExistingI) {
581 // This is not a unique lookup result. Pick one of the results and
582 // discard the other.
584 Decls[*ExistingI]))
585 Decls[*ExistingI] = Decls[I];
586 RemovedDecls.set(I);
587 continue;
588 }
589
590 // Otherwise, do some decl type analysis and then continue.
591
592 if (isa<UnresolvedUsingValueDecl>(D)) {
593 HasUnresolved = true;
594 } else if (isa<TagDecl>(D)) {
595 if (HasTag)
596 Ambiguous = true;
597 HasTag = true;
598 } else if (isa<FunctionTemplateDecl>(D)) {
599 HasFunction = true;
600 HasFunctionTemplate = true;
601 } else if (isa<FunctionDecl>(D)) {
602 HasFunction = true;
603 } else {
604 if (HasNonFunction) {
605 // If we're about to create an ambiguity between two declarations that
606 // are equivalent, but one is an internal linkage declaration from one
607 // module and the other is an internal linkage declaration from another
608 // module, just skip it.
609 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
610 D)) {
611 EquivalentNonFunctions.push_back(D);
612 RemovedDecls.set(I);
613 continue;
614 }
615 if (D->isPlaceholderVar(getSema().getLangOpts()) &&
617 getContextForScopeMatching(Decls[I])) {
618 ReferenceToPlaceHolderVariable = true;
619 }
620 Ambiguous = true;
621 }
622 HasNonFunction = D;
623 }
624 }
625
626 // FIXME: This diagnostic should really be delayed until we're done with
627 // the lookup result, in case the ambiguity is resolved by the caller.
628 if (!EquivalentNonFunctions.empty() && !Ambiguous)
630 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
631
632 // Remove decls by replacing them with decls from the end (which
633 // means that we need to iterate from the end) and then truncating
634 // to the new size.
635 for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I))
636 Decls[I] = Decls[--N];
637 Decls.truncate(N);
638
639 if ((HasNonFunction && (HasFunction || HasUnresolved)) ||
640 (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved)))
641 Ambiguous = true;
642
643 if (Ambiguous && ReferenceToPlaceHolderVariable)
645 else if (Ambiguous)
647 else if (HasUnresolved)
649 else if (N > 1 || HasFunctionTemplate)
651 else
652 ResultKind = LookupResult::Found;
653}
654
655void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
657 for (I = P.begin(), E = P.end(); I != E; ++I)
658 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
659 ++DI)
660 addDecl(*DI);
661}
662
664 Paths = new CXXBasePaths;
665 Paths->swap(P);
666 addDeclsFromBasePaths(*Paths);
667 resolveKind();
668 setAmbiguous(AmbiguousBaseSubobjects);
669}
670
672 Paths = new CXXBasePaths;
673 Paths->swap(P);
674 addDeclsFromBasePaths(*Paths);
675 resolveKind();
676 setAmbiguous(AmbiguousBaseSubobjectTypes);
677}
678
679void LookupResult::print(raw_ostream &Out) {
680 Out << Decls.size() << " result(s)";
681 if (isAmbiguous()) Out << ", ambiguous";
682 if (Paths) Out << ", base paths present";
683
684 for (iterator I = begin(), E = end(); I != E; ++I) {
685 Out << "\n";
686 (*I)->print(Out, 2);
687 }
688}
689
690LLVM_DUMP_METHOD void LookupResult::dump() {
691 llvm::errs() << "lookup results for " << getLookupName().getAsString()
692 << ":\n";
693 for (NamedDecl *D : *this)
694 D->dump();
695}
696
697/// Diagnose a missing builtin type.
698static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
699 llvm::StringRef Name) {
700 S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
701 << TypeClass << Name;
702 return S.Context.VoidTy;
703}
704
705/// Lookup an OpenCL enum type.
706static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
710 if (Result.empty())
711 return diagOpenCLBuiltinTypeError(S, "enum", Name);
712 EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
713 if (!Decl)
714 return diagOpenCLBuiltinTypeError(S, "enum", Name);
715 return S.Context.getEnumType(Decl);
716}
717
718/// Lookup an OpenCL typedef type.
719static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
723 if (Result.empty())
724 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
725 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
726 if (!Decl)
727 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
728 return S.Context.getTypedefType(Decl);
729}
730
731/// Get the QualType instances of the return type and arguments for an OpenCL
732/// builtin function signature.
733/// \param S (in) The Sema instance.
734/// \param OpenCLBuiltin (in) The signature currently handled.
735/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
736/// type used as return type or as argument.
737/// Only meaningful for generic types, otherwise equals 1.
738/// \param RetTypes (out) List of the possible return types.
739/// \param ArgTypes (out) List of the possible argument types. For each
740/// argument, ArgTypes contains QualTypes for the Cartesian product
741/// of (vector sizes) x (types) .
743 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
744 SmallVector<QualType, 1> &RetTypes,
746 // Get the QualType instances of the return types.
747 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
748 OCL2Qual(S, TypeTable[Sig], RetTypes);
749 GenTypeMaxCnt = RetTypes.size();
750
751 // Get the QualType instances of the arguments.
752 // First type is the return type, skip it.
753 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
755 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
756 Ty);
757 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
758 ArgTypes.push_back(std::move(Ty));
759 }
760}
761
762/// Create a list of the candidate function overloads for an OpenCL builtin
763/// function.
764/// \param Context (in) The ASTContext instance.
765/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
766/// type used as return type or as argument.
767/// Only meaningful for generic types, otherwise equals 1.
768/// \param FunctionList (out) List of FunctionTypes.
769/// \param RetTypes (in) List of the possible return types.
770/// \param ArgTypes (in) List of the possible types for the arguments.
772 ASTContext &Context, unsigned GenTypeMaxCnt,
773 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
776 Context.getDefaultCallingConvention(false, false, true));
777 PI.Variadic = false;
778
779 // Do not attempt to create any FunctionTypes if there are no return types,
780 // which happens when a type belongs to a disabled extension.
781 if (RetTypes.size() == 0)
782 return;
783
784 // Create FunctionTypes for each (gen)type.
785 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
787
788 for (unsigned A = 0; A < ArgTypes.size(); A++) {
789 // Bail out if there is an argument that has no available types.
790 if (ArgTypes[A].size() == 0)
791 return;
792
793 // Builtins such as "max" have an "sgentype" argument that represents
794 // the corresponding scalar type of a gentype. The number of gentypes
795 // must be a multiple of the number of sgentypes.
796 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
797 "argument type count not compatible with gentype type count");
798 unsigned Idx = IGenType % ArgTypes[A].size();
799 ArgList.push_back(ArgTypes[A][Idx]);
800 }
801
802 FunctionList.push_back(Context.getFunctionType(
803 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
804 }
805}
806
807/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
808/// non-null <Index, Len> pair, then the name is referencing an OpenCL
809/// builtin function. Add all candidate signatures to the LookUpResult.
810///
811/// \param S (in) The Sema instance.
812/// \param LR (inout) The LookupResult instance.
813/// \param II (in) The identifier being resolved.
814/// \param FctIndex (in) Starting index in the BuiltinTable.
815/// \param Len (in) The signature list has Len elements.
817 IdentifierInfo *II,
818 const unsigned FctIndex,
819 const unsigned Len) {
820 // The builtin function declaration uses generic types (gentype).
821 bool HasGenType = false;
822
823 // Maximum number of types contained in a generic type used as return type or
824 // as argument. Only meaningful for generic types, otherwise equals 1.
825 unsigned GenTypeMaxCnt;
826
827 ASTContext &Context = S.Context;
828
829 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
830 const OpenCLBuiltinStruct &OpenCLBuiltin =
831 BuiltinTable[FctIndex + SignatureIndex];
832
833 // Ignore this builtin function if it is not available in the currently
834 // selected language version.
835 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
836 OpenCLBuiltin.Versions))
837 continue;
838
839 // Ignore this builtin function if it carries an extension macro that is
840 // not defined. This indicates that the extension is not supported by the
841 // target, so the builtin function should not be available.
842 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
843 if (!Extensions.empty()) {
845 Extensions.split(ExtVec, " ");
846 bool AllExtensionsDefined = true;
847 for (StringRef Ext : ExtVec) {
848 if (!S.getPreprocessor().isMacroDefined(Ext)) {
849 AllExtensionsDefined = false;
850 break;
851 }
852 }
853 if (!AllExtensionsDefined)
854 continue;
855 }
856
859
860 // Obtain QualType lists for the function signature.
861 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
862 ArgTypes);
863 if (GenTypeMaxCnt > 1) {
864 HasGenType = true;
865 }
866
867 // Create function overload for each type combination.
868 std::vector<QualType> FunctionList;
869 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
870 ArgTypes);
871
874 FunctionDecl *NewOpenCLBuiltin;
875
876 for (const auto &FTy : FunctionList) {
877 NewOpenCLBuiltin = FunctionDecl::Create(
878 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
880 FTy->isFunctionProtoType());
881 NewOpenCLBuiltin->setImplicit();
882
883 // Create Decl objects for each parameter, adding them to the
884 // FunctionDecl.
885 const auto *FP = cast<FunctionProtoType>(FTy);
887 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
889 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
890 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
891 Parm->setScopeInfo(0, IParm);
892 ParmList.push_back(Parm);
893 }
894 NewOpenCLBuiltin->setParams(ParmList);
895
896 // Add function attributes.
897 if (OpenCLBuiltin.IsPure)
898 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
899 if (OpenCLBuiltin.IsConst)
900 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
901 if (OpenCLBuiltin.IsConv)
902 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
903
904 if (!S.getLangOpts().OpenCLCPlusPlus)
905 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
906
907 LR.addDecl(NewOpenCLBuiltin);
908 }
909 }
910
911 // If we added overloads, need to resolve the lookup result.
912 if (Len > 1 || HasGenType)
913 LR.resolveKind();
914}
915
917 Sema::LookupNameKind NameKind = R.getLookupKind();
918
919 // If we didn't find a use of this identifier, and if the identifier
920 // corresponds to a compiler builtin, create the decl object for the builtin
921 // now, injecting it into translation unit scope, and return it.
922 if (NameKind == Sema::LookupOrdinaryName ||
925 if (II) {
926 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
927 if (II == getASTContext().getMakeIntegerSeqName()) {
928 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
929 return true;
930 }
931 if (II == getASTContext().getTypePackElementName()) {
932 R.addDecl(getASTContext().getTypePackElementDecl());
933 return true;
934 }
935 if (II == getASTContext().getBuiltinCommonTypeName()) {
936 R.addDecl(getASTContext().getBuiltinCommonTypeDecl());
937 return true;
938 }
939 }
940
941 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
942 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
943 auto Index = isOpenCLBuiltin(II->getName());
944 if (Index.first) {
945 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
946 Index.second);
947 return true;
948 }
949 }
950
951 if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins) {
952 if (!RISCV().IntrinsicManager)
954
955 RISCV().IntrinsicManager->InitIntrinsicList();
956
957 if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
958 return true;
959 }
960
961 // If this is a builtin on this (or all) targets, create the decl.
962 if (unsigned BuiltinID = II->getBuiltinID()) {
963 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
964 // library functions like 'malloc'. Instead, we'll just error.
967 return false;
968
969 if (NamedDecl *D =
970 LazilyCreateBuiltin(II, BuiltinID, TUScope,
971 R.isForRedeclaration(), R.getNameLoc())) {
972 R.addDecl(D);
973 return true;
974 }
975 }
976 }
977 }
978
979 return false;
980}
981
982/// Looks up the declaration of "struct objc_super" and
983/// saves it for later use in building builtin declaration of
984/// objc_msgSendSuper and objc_msgSendSuper_stret.
986 ASTContext &Context = Sema.Context;
987 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
990 if (Result.getResultKind() == LookupResult::Found)
991 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
992 Context.setObjCSuperType(Context.getTagDeclType(TD));
993}
994
996 if (ID == Builtin::BIobjc_msgSendSuper)
998}
999
1000/// Determine whether we can declare a special member function within
1001/// the class at this point.
1003 // We need to have a definition for the class.
1004 if (!Class->getDefinition() || Class->isDependentContext())
1005 return false;
1006
1007 // We can't be in the middle of defining the class.
1008 return !Class->isBeingDefined();
1009}
1010
1013 return;
1014
1015 // If the default constructor has not yet been declared, do so now.
1016 if (Class->needsImplicitDefaultConstructor())
1018
1019 // If the copy constructor has not yet been declared, do so now.
1020 if (Class->needsImplicitCopyConstructor())
1022
1023 // If the copy assignment operator has not yet been declared, do so now.
1024 if (Class->needsImplicitCopyAssignment())
1026
1027 if (getLangOpts().CPlusPlus11) {
1028 // If the move constructor has not yet been declared, do so now.
1029 if (Class->needsImplicitMoveConstructor())
1031
1032 // If the move assignment operator has not yet been declared, do so now.
1033 if (Class->needsImplicitMoveAssignment())
1035 }
1036
1037 // If the destructor has not yet been declared, do so now.
1038 if (Class->needsImplicitDestructor())
1040}
1041
1042/// Determine whether this is the name of an implicitly-declared
1043/// special member function.
1045 switch (Name.getNameKind()) {
1048 return true;
1049
1051 return Name.getCXXOverloadedOperator() == OO_Equal;
1052
1053 default:
1054 break;
1055 }
1056
1057 return false;
1058}
1059
1060/// If there are any implicit member functions with the given name
1061/// that need to be declared in the given declaration context, do so.
1063 DeclarationName Name,
1065 const DeclContext *DC) {
1066 if (!DC)
1067 return;
1068
1069 switch (Name.getNameKind()) {
1071 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1072 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1073 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1074 if (Record->needsImplicitDefaultConstructor())
1076 if (Record->needsImplicitCopyConstructor())
1078 if (S.getLangOpts().CPlusPlus11 &&
1079 Record->needsImplicitMoveConstructor())
1081 }
1082 break;
1083
1085 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1086 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1089 break;
1090
1092 if (Name.getCXXOverloadedOperator() != OO_Equal)
1093 break;
1094
1095 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1096 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1097 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1098 if (Record->needsImplicitCopyAssignment())
1100 if (S.getLangOpts().CPlusPlus11 &&
1101 Record->needsImplicitMoveAssignment())
1103 }
1104 }
1105 break;
1106
1108 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1109 break;
1110
1111 default:
1112 break;
1113 }
1114}
1115
1116// Adds all qualifying matches for a name within a decl context to the
1117// given lookup result. Returns true if any matches were found.
1118static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1119 bool Found = false;
1120
1121 // Lazily declare C++ special member functions.
1122 if (S.getLangOpts().CPlusPlus)
1124 DC);
1125
1126 // Perform lookup into this declaration context.
1128 for (NamedDecl *D : DR) {
1129 if ((D = R.getAcceptableDecl(D))) {
1130 R.addDecl(D);
1131 Found = true;
1132 }
1133 }
1134
1135 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1136 return true;
1137
1138 if (R.getLookupName().getNameKind()
1141 !isa<CXXRecordDecl>(DC))
1142 return Found;
1143
1144 // C++ [temp.mem]p6:
1145 // A specialization of a conversion function template is not found by
1146 // name lookup. Instead, any conversion function templates visible in the
1147 // context of the use are considered. [...]
1148 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1149 if (!Record->isCompleteDefinition())
1150 return Found;
1151
1152 // For conversion operators, 'operator auto' should only match
1153 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1154 // as a candidate for template substitution.
1155 auto *ContainedDeducedType =
1157 if (R.getLookupName().getNameKind() ==
1159 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1160 return Found;
1161
1162 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1163 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1164 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1165 if (!ConvTemplate)
1166 continue;
1167
1168 // When we're performing lookup for the purposes of redeclaration, just
1169 // add the conversion function template. When we deduce template
1170 // arguments for specializations, we'll end up unifying the return
1171 // type of the new declaration with the type of the function template.
1172 if (R.isForRedeclaration()) {
1173 R.addDecl(ConvTemplate);
1174 Found = true;
1175 continue;
1176 }
1177
1178 // C++ [temp.mem]p6:
1179 // [...] For each such operator, if argument deduction succeeds
1180 // (14.9.2.3), the resulting specialization is used as if found by
1181 // name lookup.
1182 //
1183 // When referencing a conversion function for any purpose other than
1184 // a redeclaration (such that we'll be building an expression with the
1185 // result), perform template argument deduction and place the
1186 // specialization into the result set. We do this to avoid forcing all
1187 // callers to perform special deduction for conversion functions.
1189 FunctionDecl *Specialization = nullptr;
1190
1191 const FunctionProtoType *ConvProto
1192 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1193 assert(ConvProto && "Nonsensical conversion function template type");
1194
1195 // Compute the type of the function that we would expect the conversion
1196 // function to have, if it were to match the name given.
1197 // FIXME: Calling convention!
1200 EPI.ExceptionSpec = EST_None;
1202 R.getLookupName().getCXXNameType(), {}, EPI);
1203
1204 // Perform template argument deduction against the type that we would
1205 // expect the function to have.
1206 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1207 Specialization, Info) ==
1210 Found = true;
1211 }
1212 }
1213
1214 return Found;
1215}
1216
1217// Performs C++ unqualified lookup into the given file context.
1218static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1219 const DeclContext *NS,
1220 UnqualUsingDirectiveSet &UDirs) {
1221
1222 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1223
1224 // Perform direct name lookup into the LookupCtx.
1225 bool Found = LookupDirect(S, R, NS);
1226
1227 // Perform direct name lookup into the namespaces nominated by the
1228 // using directives whose common ancestor is this namespace.
1229 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1230 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1231 Found = true;
1232
1233 R.resolveKind();
1234
1235 return Found;
1236}
1237
1239 if (DeclContext *Ctx = S->getEntity())
1240 return Ctx->isFileContext();
1241 return false;
1242}
1243
1244/// Find the outer declaration context from this scope. This indicates the
1245/// context that we should search up to (exclusive) before considering the
1246/// parent of the specified scope.
1248 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1249 if (DeclContext *DC = OuterS->getLookupEntity())
1250 return DC;
1251 return nullptr;
1252}
1253
1254namespace {
1255/// An RAII object to specify that we want to find block scope extern
1256/// declarations.
1257struct FindLocalExternScope {
1258 FindLocalExternScope(LookupResult &R)
1259 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1260 Decl::IDNS_LocalExtern) {
1263 }
1264 void restore() {
1265 R.setFindLocalExtern(OldFindLocalExtern);
1266 }
1267 ~FindLocalExternScope() {
1268 restore();
1269 }
1270 LookupResult &R;
1271 bool OldFindLocalExtern;
1272};
1273} // end anonymous namespace
1274
1275bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1276 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1277
1278 DeclarationName Name = R.getLookupName();
1279 Sema::LookupNameKind NameKind = R.getLookupKind();
1280
1281 // If this is the name of an implicitly-declared special member function,
1282 // go through the scope stack to implicitly declare
1284 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1285 if (DeclContext *DC = PreS->getEntity())
1287 }
1288
1289 // C++23 [temp.dep.general]p2:
1290 // The component name of an unqualified-id is dependent if
1291 // - it is a conversion-function-id whose conversion-type-id
1292 // is dependent, or
1293 // - it is operator= and the current class is a templated entity, or
1294 // - the unqualified-id is the postfix-expression in a dependent call.
1295 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1296 Name.getCXXNameType()->isDependentType()) {
1298 return false;
1299 }
1300
1301 // Implicitly declare member functions with the name we're looking for, if in
1302 // fact we are in a scope where it matters.
1303
1304 Scope *Initial = S;
1306 I = IdResolver.begin(Name),
1307 IEnd = IdResolver.end();
1308
1309 // First we lookup local scope.
1310 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1311 // ...During unqualified name lookup (3.4.1), the names appear as if
1312 // they were declared in the nearest enclosing namespace which contains
1313 // both the using-directive and the nominated namespace.
1314 // [Note: in this context, "contains" means "contains directly or
1315 // indirectly".
1316 //
1317 // For example:
1318 // namespace A { int i; }
1319 // void foo() {
1320 // int i;
1321 // {
1322 // using namespace A;
1323 // ++i; // finds local 'i', A::i appears at global scope
1324 // }
1325 // }
1326 //
1327 UnqualUsingDirectiveSet UDirs(*this);
1328 bool VisitedUsingDirectives = false;
1329 bool LeftStartingScope = false;
1330
1331 // When performing a scope lookup, we want to find local extern decls.
1332 FindLocalExternScope FindLocals(R);
1333
1334 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1335 bool SearchNamespaceScope = true;
1336 // Check whether the IdResolver has anything in this scope.
1337 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1338 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1339 if (NameKind == LookupRedeclarationWithLinkage &&
1340 !(*I)->isTemplateParameter()) {
1341 // If it's a template parameter, we still find it, so we can diagnose
1342 // the invalid redeclaration.
1343
1344 // Determine whether this (or a previous) declaration is
1345 // out-of-scope.
1346 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1347 LeftStartingScope = true;
1348
1349 // If we found something outside of our starting scope that
1350 // does not have linkage, skip it.
1351 if (LeftStartingScope && !((*I)->hasLinkage())) {
1352 R.setShadowed();
1353 continue;
1354 }
1355 } else {
1356 // We found something in this scope, we should not look at the
1357 // namespace scope
1358 SearchNamespaceScope = false;
1359 }
1360 R.addDecl(ND);
1361 }
1362 }
1363 if (!SearchNamespaceScope) {
1364 R.resolveKind();
1365 if (S->isClassScope())
1366 if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity()))
1368 return true;
1369 }
1370
1371 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1372 // C++11 [class.friend]p11:
1373 // If a friend declaration appears in a local class and the name
1374 // specified is an unqualified name, a prior declaration is
1375 // looked up without considering scopes that are outside the
1376 // innermost enclosing non-class scope.
1377 return false;
1378 }
1379
1380 if (DeclContext *Ctx = S->getLookupEntity()) {
1381 DeclContext *OuterCtx = findOuterContext(S);
1382 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1383 // We do not directly look into transparent contexts, since
1384 // those entities will be found in the nearest enclosing
1385 // non-transparent context.
1386 if (Ctx->isTransparentContext())
1387 continue;
1388
1389 // We do not look directly into function or method contexts,
1390 // since all of the local variables and parameters of the
1391 // function/method are present within the Scope.
1392 if (Ctx->isFunctionOrMethod()) {
1393 // If we have an Objective-C instance method, look for ivars
1394 // in the corresponding interface.
1395 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1396 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1397 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1398 ObjCInterfaceDecl *ClassDeclared;
1399 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1400 Name.getAsIdentifierInfo(),
1401 ClassDeclared)) {
1402 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1403 R.addDecl(ND);
1404 R.resolveKind();
1405 return true;
1406 }
1407 }
1408 }
1409 }
1410
1411 continue;
1412 }
1413
1414 // If this is a file context, we need to perform unqualified name
1415 // lookup considering using directives.
1416 if (Ctx->isFileContext()) {
1417 // If we haven't handled using directives yet, do so now.
1418 if (!VisitedUsingDirectives) {
1419 // Add using directives from this context up to the top level.
1420 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1421 if (UCtx->isTransparentContext())
1422 continue;
1423
1424 UDirs.visit(UCtx, UCtx);
1425 }
1426
1427 // Find the innermost file scope, so we can add using directives
1428 // from local scopes.
1429 Scope *InnermostFileScope = S;
1430 while (InnermostFileScope &&
1431 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1432 InnermostFileScope = InnermostFileScope->getParent();
1433 UDirs.visitScopeChain(Initial, InnermostFileScope);
1434
1435 UDirs.done();
1436
1437 VisitedUsingDirectives = true;
1438 }
1439
1440 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1441 R.resolveKind();
1442 return true;
1443 }
1444
1445 continue;
1446 }
1447
1448 // Perform qualified name lookup into this context.
1449 // FIXME: In some cases, we know that every name that could be found by
1450 // this qualified name lookup will also be on the identifier chain. For
1451 // example, inside a class without any base classes, we never need to
1452 // perform qualified lookup because all of the members are on top of the
1453 // identifier chain.
1454 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1455 return true;
1456 }
1457 }
1458 }
1459
1460 // Stop if we ran out of scopes.
1461 // FIXME: This really, really shouldn't be happening.
1462 if (!S) return false;
1463
1464 // If we are looking for members, no need to look into global/namespace scope.
1465 if (NameKind == LookupMemberName)
1466 return false;
1467
1468 // Collect UsingDirectiveDecls in all scopes, and recursively all
1469 // nominated namespaces by those using-directives.
1470 //
1471 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1472 // don't build it for each lookup!
1473 if (!VisitedUsingDirectives) {
1474 UDirs.visitScopeChain(Initial, S);
1475 UDirs.done();
1476 }
1477
1478 // If we're not performing redeclaration lookup, do not look for local
1479 // extern declarations outside of a function scope.
1480 if (!R.isForRedeclaration())
1481 FindLocals.restore();
1482
1483 // Lookup namespace scope, and global scope.
1484 // Unqualified name lookup in C++ requires looking into scopes
1485 // that aren't strictly lexical, and therefore we walk through the
1486 // context as well as walking through the scopes.
1487 for (; S; S = S->getParent()) {
1488 // Check whether the IdResolver has anything in this scope.
1489 bool Found = false;
1490 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1491 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1492 // We found something. Look for anything else in our scope
1493 // with this same name and in an acceptable identifier
1494 // namespace, so that we can construct an overload set if we
1495 // need to.
1496 Found = true;
1497 R.addDecl(ND);
1498 }
1499 }
1500
1501 if (Found && S->isTemplateParamScope()) {
1502 R.resolveKind();
1503 return true;
1504 }
1505
1506 DeclContext *Ctx = S->getLookupEntity();
1507 if (Ctx) {
1508 DeclContext *OuterCtx = findOuterContext(S);
1509 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1510 // We do not directly look into transparent contexts, since
1511 // those entities will be found in the nearest enclosing
1512 // non-transparent context.
1513 if (Ctx->isTransparentContext())
1514 continue;
1515
1516 // If we have a context, and it's not a context stashed in the
1517 // template parameter scope for an out-of-line definition, also
1518 // look into that context.
1519 if (!(Found && S->isTemplateParamScope())) {
1520 assert(Ctx->isFileContext() &&
1521 "We should have been looking only at file context here already.");
1522
1523 // Look into context considering using-directives.
1524 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1525 Found = true;
1526 }
1527
1528 if (Found) {
1529 R.resolveKind();
1530 return true;
1531 }
1532
1533 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1534 return false;
1535 }
1536 }
1537
1538 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1539 return false;
1540 }
1541
1542 return !R.empty();
1543}
1544
1546 if (auto *M = getCurrentModule())
1548 else
1549 // We're not building a module; just make the definition visible.
1551
1552 // If ND is a template declaration, make the template parameters
1553 // visible too. They're not (necessarily) within a mergeable DeclContext.
1554 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1555 for (auto *Param : *TD->getTemplateParameters())
1557}
1558
1559/// Find the module in which the given declaration was defined.
1560static Module *getDefiningModule(Sema &S, Decl *Entity) {
1561 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1562 // If this function was instantiated from a template, the defining module is
1563 // the module containing the pattern.
1564 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1565 Entity = Pattern;
1566 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1568 Entity = Pattern;
1569 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1570 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1571 Entity = Pattern;
1572 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1573 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1574 Entity = Pattern;
1575 }
1576
1577 // Walk up to the containing context. That might also have been instantiated
1578 // from a template.
1579 DeclContext *Context = Entity->getLexicalDeclContext();
1580 if (Context->isFileContext())
1581 return S.getOwningModule(Entity);
1582 return getDefiningModule(S, cast<Decl>(Context));
1583}
1584
1585llvm::DenseSet<Module*> &Sema::getLookupModules() {
1586 unsigned N = CodeSynthesisContexts.size();
1587 for (unsigned I = CodeSynthesisContextLookupModules.size();
1588 I != N; ++I) {
1589 Module *M = CodeSynthesisContexts[I].Entity ?
1590 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1591 nullptr;
1592 if (M && !LookupModulesCache.insert(M).second)
1593 M = nullptr;
1595 }
1596 return LookupModulesCache;
1597}
1598
1599bool Sema::isUsableModule(const Module *M) {
1600 assert(M && "We shouldn't check nullness for module here");
1601 // Return quickly if we cached the result.
1602 if (UsableModuleUnitsCache.count(M))
1603 return true;
1604
1605 // If M is the global module fragment of the current translation unit. So it
1606 // should be usable.
1607 // [module.global.frag]p1:
1608 // The global module fragment can be used to provide declarations that are
1609 // attached to the global module and usable within the module unit.
1610 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) {
1611 UsableModuleUnitsCache.insert(M);
1612 return true;
1613 }
1614
1615 // Otherwise, the global module fragment from other translation unit is not
1616 // directly usable.
1617 if (M->isGlobalModule())
1618 return false;
1619
1620 Module *Current = getCurrentModule();
1621
1622 // If we're not parsing a module, we can't use all the declarations from
1623 // another module easily.
1624 if (!Current)
1625 return false;
1626
1627 // If M is the module we're parsing or M and the current module unit lives in
1628 // the same module, M should be usable.
1629 //
1630 // Note: It should be fine to search the vector `ModuleScopes` linearly since
1631 // it should be generally small enough. There should be rare module fragments
1632 // in a named module unit.
1633 if (llvm::count_if(ModuleScopes,
1634 [&M](const ModuleScope &MS) { return MS.Module == M; }) ||
1635 getASTContext().isInSameModule(M, Current)) {
1636 UsableModuleUnitsCache.insert(M);
1637 return true;
1638 }
1639
1640 return false;
1641}
1642
1644 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1645 if (isModuleVisible(Merged))
1646 return true;
1647 return false;
1648}
1649
1651 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1652 if (isUsableModule(Merged))
1653 return true;
1654 return false;
1655}
1656
1657template <typename ParmDecl>
1658static bool
1661 Sema::AcceptableKind Kind) {
1662 if (!D->hasDefaultArgument())
1663 return false;
1664
1666 while (D && Visited.insert(D).second) {
1667 auto &DefaultArg = D->getDefaultArgStorage();
1668 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1669 return true;
1670
1671 if (!DefaultArg.isInherited() && Modules) {
1672 auto *NonConstD = const_cast<ParmDecl*>(D);
1673 Modules->push_back(S.getOwningModule(NonConstD));
1674 }
1675
1676 // If there was a previous default argument, maybe its parameter is
1677 // acceptable.
1678 D = DefaultArg.getInheritedFrom();
1679 }
1680 return false;
1681}
1682
1685 Sema::AcceptableKind Kind) {
1686 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1687 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1688
1689 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1690 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1691
1692 return ::hasAcceptableDefaultArgument(
1693 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1694}
1695
1698 return hasAcceptableDefaultArgument(D, Modules,
1700}
1701
1703 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1704 return hasAcceptableDefaultArgument(D, Modules,
1706}
1707
1708template <typename Filter>
1709static bool
1711 llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1712 Sema::AcceptableKind Kind) {
1713 bool HasFilteredRedecls = false;
1714
1715 for (auto *Redecl : D->redecls()) {
1716 auto *R = cast<NamedDecl>(Redecl);
1717 if (!F(R))
1718 continue;
1719
1720 if (S.isAcceptable(R, Kind))
1721 return true;
1722
1723 HasFilteredRedecls = true;
1724
1725 if (Modules)
1726 Modules->push_back(R->getOwningModule());
1727 }
1728
1729 // Only return false if there is at least one redecl that is not filtered out.
1730 if (HasFilteredRedecls)
1731 return false;
1732
1733 return true;
1734}
1735
1736static bool
1739 Sema::AcceptableKind Kind) {
1741 S, D, Modules,
1742 [](const NamedDecl *D) {
1743 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1744 return RD->getTemplateSpecializationKind() ==
1746 if (auto *FD = dyn_cast<FunctionDecl>(D))
1747 return FD->getTemplateSpecializationKind() ==
1749 if (auto *VD = dyn_cast<VarDecl>(D))
1750 return VD->getTemplateSpecializationKind() ==
1752 llvm_unreachable("unknown explicit specialization kind");
1753 },
1754 Kind);
1755}
1756
1758 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1759 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1761}
1762
1764 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1765 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1767}
1768
1769static bool
1772 Sema::AcceptableKind Kind) {
1773 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1774 "not a member specialization");
1776 S, D, Modules,
1777 [](const NamedDecl *D) {
1778 // If the specialization is declared at namespace scope, then it's a
1779 // member specialization declaration. If it's lexically inside the class
1780 // definition then it was instantiated.
1781 //
1782 // FIXME: This is a hack. There should be a better way to determine
1783 // this.
1784 // FIXME: What about MS-style explicit specializations declared within a
1785 // class definition?
1786 return D->getLexicalDeclContext()->isFileContext();
1787 },
1788 Kind);
1789}
1790
1792 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1793 return hasAcceptableMemberSpecialization(*this, D, Modules,
1795}
1796
1798 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1799 return hasAcceptableMemberSpecialization(*this, D, Modules,
1801}
1802
1803/// Determine whether a declaration is acceptable to name lookup.
1804///
1805/// This routine determines whether the declaration D is acceptable in the
1806/// current lookup context, taking into account the current template
1807/// instantiation stack. During template instantiation, a declaration is
1808/// acceptable if it is acceptable from a module containing any entity on the
1809/// template instantiation path (by instantiating a template, you allow it to
1810/// see the declarations that your module can see, including those later on in
1811/// your module).
1812bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1813 Sema::AcceptableKind Kind) {
1814 assert(!D->isUnconditionallyVisible() &&
1815 "should not call this: not in slow case");
1816
1817 Module *DeclModule = SemaRef.getOwningModule(D);
1818 assert(DeclModule && "hidden decl has no owning module");
1819
1820 // If the owning module is visible, the decl is acceptable.
1821 if (SemaRef.isModuleVisible(DeclModule,
1823 return true;
1824
1825 // Determine whether a decl context is a file context for the purpose of
1826 // visibility/reachability. This looks through some (export and linkage spec)
1827 // transparent contexts, but not others (enums).
1828 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1829 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1830 isa<ExportDecl>(DC);
1831 };
1832
1833 // If this declaration is not at namespace scope
1834 // then it is acceptable if its lexical parent has a acceptable definition.
1836 if (DC && !IsEffectivelyFileContext(DC)) {
1837 // For a parameter, check whether our current template declaration's
1838 // lexical context is acceptable, not whether there's some other acceptable
1839 // definition of it, because parameters aren't "within" the definition.
1840 //
1841 // In C++ we need to check for a acceptable definition due to ODR merging,
1842 // and in C we must not because each declaration of a function gets its own
1843 // set of declarations for tags in prototype scope.
1844 bool AcceptableWithinParent;
1845 if (D->isTemplateParameter()) {
1846 bool SearchDefinitions = true;
1847 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1848 if (const auto *TD = DCD->getDescribedTemplate()) {
1849 TemplateParameterList *TPL = TD->getTemplateParameters();
1850 auto Index = getDepthAndIndex(D).second;
1851 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1852 }
1853 }
1854 if (SearchDefinitions)
1855 AcceptableWithinParent =
1856 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1857 else
1858 AcceptableWithinParent =
1859 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1860 } else if (isa<ParmVarDecl>(D) ||
1861 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1862 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1863 else if (D->isModulePrivate()) {
1864 // A module-private declaration is only acceptable if an enclosing lexical
1865 // parent was merged with another definition in the current module.
1866 AcceptableWithinParent = false;
1867 do {
1868 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1869 AcceptableWithinParent = true;
1870 break;
1871 }
1872 DC = DC->getLexicalParent();
1873 } while (!IsEffectivelyFileContext(DC));
1874 } else {
1875 AcceptableWithinParent =
1876 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1877 }
1878
1879 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1881 // FIXME: Do something better in this case.
1882 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1883 // Cache the fact that this declaration is implicitly visible because
1884 // its parent has a visible definition.
1886 }
1887 return AcceptableWithinParent;
1888 }
1889
1891 return false;
1892
1893 assert(Kind == Sema::AcceptableKind::Reachable &&
1894 "Additional Sema::AcceptableKind?");
1895 return isReachableSlow(SemaRef, D);
1896}
1897
1898bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1899 // The module might be ordinarily visible. For a module-private query, that
1900 // means it is part of the current module.
1901 if (ModulePrivate && isUsableModule(M))
1902 return true;
1903
1904 // For a query which is not module-private, that means it is in our visible
1905 // module set.
1906 if (!ModulePrivate && VisibleModules.isVisible(M))
1907 return true;
1908
1909 // Otherwise, it might be visible by virtue of the query being within a
1910 // template instantiation or similar that is permitted to look inside M.
1911
1912 // Find the extra places where we need to look.
1913 const auto &LookupModules = getLookupModules();
1914 if (LookupModules.empty())
1915 return false;
1916
1917 // If our lookup set contains the module, it's visible.
1918 if (LookupModules.count(M))
1919 return true;
1920
1921 // The global module fragments are visible to its corresponding module unit.
1922 // So the global module fragment should be visible if the its corresponding
1923 // module unit is visible.
1924 if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule()))
1925 return true;
1926
1927 // For a module-private query, that's everywhere we get to look.
1928 if (ModulePrivate)
1929 return false;
1930
1931 // Check whether M is transitively exported to an import of the lookup set.
1932 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1933 return LookupM->isModuleVisible(M);
1934 });
1935}
1936
1937// FIXME: Return false directly if we don't have an interface dependency on the
1938// translation unit containing D.
1939bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1940 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1941
1942 Module *DeclModule = SemaRef.getOwningModule(D);
1943 assert(DeclModule && "hidden decl has no owning module");
1944
1945 // Entities in header like modules are reachable only if they're visible.
1946 if (DeclModule->isHeaderLikeModule())
1947 return false;
1948
1949 if (!D->isInAnotherModuleUnit())
1950 return true;
1951
1952 // [module.reach]/p3:
1953 // A declaration D is reachable from a point P if:
1954 // ...
1955 // - D is not discarded ([module.global.frag]), appears in a translation unit
1956 // that is reachable from P, and does not appear within a private module
1957 // fragment.
1958 //
1959 // A declaration that's discarded in the GMF should be module-private.
1960 if (D->isModulePrivate())
1961 return false;
1962
1963 // [module.reach]/p1
1964 // A translation unit U is necessarily reachable from a point P if U is a
1965 // module interface unit on which the translation unit containing P has an
1966 // interface dependency, or the translation unit containing P imports U, in
1967 // either case prior to P ([module.import]).
1968 //
1969 // [module.import]/p10
1970 // A translation unit has an interface dependency on a translation unit U if
1971 // it contains a declaration (possibly a module-declaration) that imports U
1972 // or if it has an interface dependency on a translation unit that has an
1973 // interface dependency on U.
1974 //
1975 // So we could conclude the module unit U is necessarily reachable if:
1976 // (1) The module unit U is module interface unit.
1977 // (2) The current unit has an interface dependency on the module unit U.
1978 //
1979 // Here we only check for the first condition. Since we couldn't see
1980 // DeclModule if it isn't (transitively) imported.
1981 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1982 return true;
1983
1984 // [module.reach]/p2
1985 // Additional translation units on
1986 // which the point within the program has an interface dependency may be
1987 // considered reachable, but it is unspecified which are and under what
1988 // circumstances.
1989 //
1990 // The decision here is to treat all additional tranditional units as
1991 // unreachable.
1992 return false;
1993}
1994
1995bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1996 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1997}
1998
1999bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
2000 // FIXME: If there are both visible and hidden declarations, we need to take
2001 // into account whether redeclaration is possible. Example:
2002 //
2003 // Non-imported module:
2004 // int f(T); // #1
2005 // Some TU:
2006 // static int f(U); // #2, not a redeclaration of #1
2007 // int f(T); // #3, finds both, should link with #1 if T != U, but
2008 // // with #2 if T == U; neither should be ambiguous.
2009 for (auto *D : R) {
2010 if (isVisible(D))
2011 return true;
2012 assert(D->isExternallyDeclarable() &&
2013 "should not have hidden, non-externally-declarable result here");
2014 }
2015
2016 // This function is called once "New" is essentially complete, but before a
2017 // previous declaration is attached. We can't query the linkage of "New" in
2018 // general, because attaching the previous declaration can change the
2019 // linkage of New to match the previous declaration.
2020 //
2021 // However, because we've just determined that there is no *visible* prior
2022 // declaration, we can compute the linkage here. There are two possibilities:
2023 //
2024 // * This is not a redeclaration; it's safe to compute the linkage now.
2025 //
2026 // * This is a redeclaration of a prior declaration that is externally
2027 // redeclarable. In that case, the linkage of the declaration is not
2028 // changed by attaching the prior declaration, because both are externally
2029 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
2030 //
2031 // FIXME: This is subtle and fragile.
2032 return New->isExternallyDeclarable();
2033}
2034
2035/// Retrieve the visible declaration corresponding to D, if any.
2036///
2037/// This routine determines whether the declaration D is visible in the current
2038/// module, with the current imports. If not, it checks whether any
2039/// redeclaration of D is visible, and if so, returns that declaration.
2040///
2041/// \returns D, or a visible previous declaration of D, whichever is more recent
2042/// and visible. If no declaration of D is visible, returns null.
2044 unsigned IDNS) {
2045 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2046
2047 for (auto *RD : D->redecls()) {
2048 // Don't bother with extra checks if we already know this one isn't visible.
2049 if (RD == D)
2050 continue;
2051
2052 auto ND = cast<NamedDecl>(RD);
2053 // FIXME: This is wrong in the case where the previous declaration is not
2054 // visible in the same scope as D. This needs to be done much more
2055 // carefully.
2056 if (ND->isInIdentifierNamespace(IDNS) &&
2058 return ND;
2059 }
2060
2061 return nullptr;
2062}
2063
2066 assert(!isVisible(D) && "not in slow case");
2068 *this, D, Modules, [](const NamedDecl *) { return true; },
2070}
2071
2073 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2074 assert(!isReachable(D) && "not in slow case");
2076 *this, D, Modules, [](const NamedDecl *) { return true; },
2078}
2079
2080NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2081 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2082 // Namespaces are a bit of a special case: we expect there to be a lot of
2083 // redeclarations of some namespaces, all declarations of a namespace are
2084 // essentially interchangeable, all declarations are found by name lookup
2085 // if any is, and namespaces are never looked up during template
2086 // instantiation. So we benefit from caching the check in this case, and
2087 // it is correct to do so.
2088 auto *Key = ND->getCanonicalDecl();
2089 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2090 return Acceptable;
2091 auto *Acceptable = isVisible(getSema(), Key)
2092 ? Key
2093 : findAcceptableDecl(getSema(), Key, IDNS);
2094 if (Acceptable)
2095 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2096 return Acceptable;
2097 }
2098
2099 return findAcceptableDecl(getSema(), D, IDNS);
2100}
2101
2103 // If this declaration is already visible, return it directly.
2105 return true;
2106
2107 // During template instantiation, we can refer to hidden declarations, if
2108 // they were visible in any module along the path of instantiation.
2109 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2110}
2111
2114 return true;
2115
2116 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2117}
2118
2120 // We should check the visibility at the callsite already.
2121 if (isVisible(SemaRef, ND))
2122 return true;
2123
2124 // Deduction guide lives in namespace scope generally, but it is just a
2125 // hint to the compilers. What we actually lookup for is the generated member
2126 // of the corresponding template. So it is sufficient to check the
2127 // reachability of the template decl.
2128 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2129 return SemaRef.hasReachableDefinition(DeductionGuide);
2130
2131 // FIXME: The lookup for allocation function is a standalone process.
2132 // (We can find the logics in Sema::FindAllocationFunctions)
2133 //
2134 // Such structure makes it a problem when we instantiate a template
2135 // declaration using placement allocation function if the placement
2136 // allocation function is invisible.
2137 // (See https://github.com/llvm/llvm-project/issues/59601)
2138 //
2139 // Here we workaround it by making the placement allocation functions
2140 // always acceptable. The downside is that we can't diagnose the direct
2141 // use of the invisible placement allocation functions. (Although such uses
2142 // should be rare).
2143 if (auto *FD = dyn_cast<FunctionDecl>(ND);
2144 FD && FD->isReservedGlobalPlacementOperator())
2145 return true;
2146
2147 auto *DC = ND->getDeclContext();
2148 // If ND is not visible and it is at namespace scope, it shouldn't be found
2149 // by name lookup.
2150 if (DC->isFileContext())
2151 return false;
2152
2153 // [module.interface]p7
2154 // Class and enumeration member names can be found by name lookup in any
2155 // context in which a definition of the type is reachable.
2156 //
2157 // FIXME: The current implementation didn't consider about scope. For example,
2158 // ```
2159 // // m.cppm
2160 // export module m;
2161 // enum E1 { e1 };
2162 // // Use.cpp
2163 // import m;
2164 // void test() {
2165 // auto a = E1::e1; // Error as expected.
2166 // auto b = e1; // Should be error. namespace-scope name e1 is not visible
2167 // }
2168 // ```
2169 // For the above example, the current implementation would emit error for `a`
2170 // correctly. However, the implementation wouldn't diagnose about `b` now.
2171 // Since we only check the reachability for the parent only.
2172 // See clang/test/CXX/module/module.interface/p7.cpp for example.
2173 if (auto *TD = dyn_cast<TagDecl>(DC))
2174 return SemaRef.hasReachableDefinition(TD);
2175
2176 return false;
2177}
2178
2179bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2180 bool ForceNoCPlusPlus) {
2181 DeclarationName Name = R.getLookupName();
2182 if (!Name) return false;
2183
2184 LookupNameKind NameKind = R.getLookupKind();
2185
2186 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2187 // Unqualified name lookup in C/Objective-C is purely lexical, so
2188 // search in the declarations attached to the name.
2189 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2190 // Find the nearest non-transparent declaration scope.
2191 while (!(S->getFlags() & Scope::DeclScope) ||
2192 (S->getEntity() && S->getEntity()->isTransparentContext()))
2193 S = S->getParent();
2194 }
2195
2196 // When performing a scope lookup, we want to find local extern decls.
2197 FindLocalExternScope FindLocals(R);
2198
2199 // Scan up the scope chain looking for a decl that matches this
2200 // identifier that is in the appropriate namespace. This search
2201 // should not take long, as shadowing of names is uncommon, and
2202 // deep shadowing is extremely uncommon.
2203 bool LeftStartingScope = false;
2204
2206 IEnd = IdResolver.end();
2207 I != IEnd; ++I)
2208 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2209 if (NameKind == LookupRedeclarationWithLinkage) {
2210 // Determine whether this (or a previous) declaration is
2211 // out-of-scope.
2212 if (!LeftStartingScope && !S->isDeclScope(*I))
2213 LeftStartingScope = true;
2214
2215 // If we found something outside of our starting scope that
2216 // does not have linkage, skip it.
2217 if (LeftStartingScope && !((*I)->hasLinkage())) {
2218 R.setShadowed();
2219 continue;
2220 }
2221 }
2222 else if (NameKind == LookupObjCImplicitSelfParam &&
2223 !isa<ImplicitParamDecl>(*I))
2224 continue;
2225
2226 R.addDecl(D);
2227
2228 // Check whether there are any other declarations with the same name
2229 // and in the same scope.
2230 if (I != IEnd) {
2231 // Find the scope in which this declaration was declared (if it
2232 // actually exists in a Scope).
2233 while (S && !S->isDeclScope(D))
2234 S = S->getParent();
2235
2236 // If the scope containing the declaration is the translation unit,
2237 // then we'll need to perform our checks based on the matching
2238 // DeclContexts rather than matching scopes.
2240 S = nullptr;
2241
2242 // Compute the DeclContext, if we need it.
2243 DeclContext *DC = nullptr;
2244 if (!S)
2245 DC = (*I)->getDeclContext()->getRedeclContext();
2246
2248 for (++LastI; LastI != IEnd; ++LastI) {
2249 if (S) {
2250 // Match based on scope.
2251 if (!S->isDeclScope(*LastI))
2252 break;
2253 } else {
2254 // Match based on DeclContext.
2255 DeclContext *LastDC
2256 = (*LastI)->getDeclContext()->getRedeclContext();
2257 if (!LastDC->Equals(DC))
2258 break;
2259 }
2260
2261 // If the declaration is in the right namespace and visible, add it.
2262 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2263 R.addDecl(LastD);
2264 }
2265
2266 R.resolveKind();
2267 }
2268
2269 return true;
2270 }
2271 } else {
2272 // Perform C++ unqualified name lookup.
2273 if (CppLookupName(R, S))
2274 return true;
2275 }
2276
2277 // If we didn't find a use of this identifier, and if the identifier
2278 // corresponds to a compiler builtin, create the decl object for the builtin
2279 // now, injecting it into translation unit scope, and return it.
2280 if (AllowBuiltinCreation && LookupBuiltin(R))
2281 return true;
2282
2283 // If we didn't find a use of this identifier, the ExternalSource
2284 // may be able to handle the situation.
2285 // Note: some lookup failures are expected!
2286 // See e.g. R.isForRedeclaration().
2287 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2288}
2289
2290/// Perform qualified name lookup in the namespaces nominated by
2291/// using directives by the given context.
2292///
2293/// C++98 [namespace.qual]p2:
2294/// Given X::m (where X is a user-declared namespace), or given \::m
2295/// (where X is the global namespace), let S be the set of all
2296/// declarations of m in X and in the transitive closure of all
2297/// namespaces nominated by using-directives in X and its used
2298/// namespaces, except that using-directives are ignored in any
2299/// namespace, including X, directly containing one or more
2300/// declarations of m. No namespace is searched more than once in
2301/// the lookup of a name. If S is the empty set, the program is
2302/// ill-formed. Otherwise, if S has exactly one member, or if the
2303/// context of the reference is a using-declaration
2304/// (namespace.udecl), S is the required set of declarations of
2305/// m. Otherwise if the use of m is not one that allows a unique
2306/// declaration to be chosen from S, the program is ill-formed.
2307///
2308/// C++98 [namespace.qual]p5:
2309/// During the lookup of a qualified namespace member name, if the
2310/// lookup finds more than one declaration of the member, and if one
2311/// declaration introduces a class name or enumeration name and the
2312/// other declarations either introduce the same object, the same
2313/// enumerator or a set of functions, the non-type name hides the
2314/// class or enumeration name if and only if the declarations are
2315/// from the same namespace; otherwise (the declarations are from
2316/// different namespaces), the program is ill-formed.
2318 DeclContext *StartDC) {
2319 assert(StartDC->isFileContext() && "start context is not a file context");
2320
2321 // We have not yet looked into these namespaces, much less added
2322 // their "using-children" to the queue.
2324
2325 // We have at least added all these contexts to the queue.
2327 Visited.insert(StartDC);
2328
2329 // We have already looked into the initial namespace; seed the queue
2330 // with its using-children.
2331 for (auto *I : StartDC->using_directives()) {
2332 NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl();
2333 if (S.isVisible(I) && Visited.insert(ND).second)
2334 Queue.push_back(ND);
2335 }
2336
2337 // The easiest way to implement the restriction in [namespace.qual]p5
2338 // is to check whether any of the individual results found a tag
2339 // and, if so, to declare an ambiguity if the final result is not
2340 // a tag.
2341 bool FoundTag = false;
2342 bool FoundNonTag = false;
2343
2345
2346 bool Found = false;
2347 while (!Queue.empty()) {
2348 NamespaceDecl *ND = Queue.pop_back_val();
2349
2350 // We go through some convolutions here to avoid copying results
2351 // between LookupResults.
2352 bool UseLocal = !R.empty();
2353 LookupResult &DirectR = UseLocal ? LocalR : R;
2354 bool FoundDirect = LookupDirect(S, DirectR, ND);
2355
2356 if (FoundDirect) {
2357 // First do any local hiding.
2358 DirectR.resolveKind();
2359
2360 // If the local result is a tag, remember that.
2361 if (DirectR.isSingleTagDecl())
2362 FoundTag = true;
2363 else
2364 FoundNonTag = true;
2365
2366 // Append the local results to the total results if necessary.
2367 if (UseLocal) {
2368 R.addAllDecls(LocalR);
2369 LocalR.clear();
2370 }
2371 }
2372
2373 // If we find names in this namespace, ignore its using directives.
2374 if (FoundDirect) {
2375 Found = true;
2376 continue;
2377 }
2378
2379 for (auto *I : ND->using_directives()) {
2380 NamespaceDecl *Nom = I->getNominatedNamespace();
2381 if (S.isVisible(I) && Visited.insert(Nom).second)
2382 Queue.push_back(Nom);
2383 }
2384 }
2385
2386 if (Found) {
2387 if (FoundTag && FoundNonTag)
2389 else
2390 R.resolveKind();
2391 }
2392
2393 return Found;
2394}
2395
2397 bool InUnqualifiedLookup) {
2398 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2399
2400 if (!R.getLookupName())
2401 return false;
2402
2403 // Make sure that the declaration context is complete.
2404 assert((!isa<TagDecl>(LookupCtx) ||
2405 LookupCtx->isDependentContext() ||
2406 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2407 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2408 "Declaration context must already be complete!");
2409
2410 struct QualifiedLookupInScope {
2411 bool oldVal;
2412 DeclContext *Context;
2413 // Set flag in DeclContext informing debugger that we're looking for qualified name
2414 QualifiedLookupInScope(DeclContext *ctx)
2415 : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) {
2416 ctx->setUseQualifiedLookup();
2417 }
2418 ~QualifiedLookupInScope() {
2419 Context->setUseQualifiedLookup(oldVal);
2420 }
2421 } QL(LookupCtx);
2422
2423 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2424 // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent
2425 // if it's a dependent conversion-function-id or operator= where the current
2426 // class is a templated entity. This should be handled in LookupName.
2427 if (!InUnqualifiedLookup && !R.isForRedeclaration()) {
2428 // C++23 [temp.dep.type]p5:
2429 // A qualified name is dependent if
2430 // - it is a conversion-function-id whose conversion-type-id
2431 // is dependent, or
2432 // - [...]
2433 // - its lookup context is the current instantiation and it
2434 // is operator=, or
2435 // - [...]
2436 if (DeclarationName Name = R.getLookupName();
2437 Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2438 Name.getCXXNameType()->isDependentType()) {
2440 return false;
2441 }
2442 }
2443
2444 if (LookupDirect(*this, R, LookupCtx)) {
2445 R.resolveKind();
2446 if (LookupRec)
2447 R.setNamingClass(LookupRec);
2448 return true;
2449 }
2450
2451 // Don't descend into implied contexts for redeclarations.
2452 // C++98 [namespace.qual]p6:
2453 // In a declaration for a namespace member in which the
2454 // declarator-id is a qualified-id, given that the qualified-id
2455 // for the namespace member has the form
2456 // nested-name-specifier unqualified-id
2457 // the unqualified-id shall name a member of the namespace
2458 // designated by the nested-name-specifier.
2459 // See also [class.mfct]p5 and [class.static.data]p2.
2460 if (R.isForRedeclaration())
2461 return false;
2462
2463 // If this is a namespace, look it up in the implied namespaces.
2464 if (LookupCtx->isFileContext())
2465 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2466
2467 // If this isn't a C++ class, we aren't allowed to look into base
2468 // classes, we're done.
2469 if (!LookupRec || !LookupRec->getDefinition())
2470 return false;
2471
2472 // We're done for lookups that can never succeed for C++ classes.
2473 if (R.getLookupKind() == LookupOperatorName ||
2477 return false;
2478
2479 // If we're performing qualified name lookup into a dependent class,
2480 // then we are actually looking into a current instantiation. If we have any
2481 // dependent base classes, then we either have to delay lookup until
2482 // template instantiation time (at which point all bases will be available)
2483 // or we have to fail.
2484 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2485 LookupRec->hasAnyDependentBases()) {
2487 return false;
2488 }
2489
2490 // Perform lookup into our base classes.
2491
2492 DeclarationName Name = R.getLookupName();
2493 unsigned IDNS = R.getIdentifierNamespace();
2494
2495 // Look for this member in our base classes.
2496 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2497 CXXBasePath &Path) -> bool {
2498 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2499 // Drop leading non-matching lookup results from the declaration list so
2500 // we don't need to consider them again below.
2501 for (Path.Decls = BaseRecord->lookup(Name).begin();
2502 Path.Decls != Path.Decls.end(); ++Path.Decls) {
2503 if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2504 return true;
2505 }
2506 return false;
2507 };
2508
2509 CXXBasePaths Paths;
2510 Paths.setOrigin(LookupRec);
2511 if (!LookupRec->lookupInBases(BaseCallback, Paths))
2512 return false;
2513
2514 R.setNamingClass(LookupRec);
2515
2516 // C++ [class.member.lookup]p2:
2517 // [...] If the resulting set of declarations are not all from
2518 // sub-objects of the same type, or the set has a nonstatic member
2519 // and includes members from distinct sub-objects, there is an
2520 // ambiguity and the program is ill-formed. Otherwise that set is
2521 // the result of the lookup.
2522 QualType SubobjectType;
2523 int SubobjectNumber = 0;
2524 AccessSpecifier SubobjectAccess = AS_none;
2525
2526 // Check whether the given lookup result contains only static members.
2527 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2528 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2529 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2530 return false;
2531 return true;
2532 };
2533
2534 bool TemplateNameLookup = R.isTemplateNameLookup();
2535
2536 // Determine whether two sets of members contain the same members, as
2537 // required by C++ [class.member.lookup]p6.
2538 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2540 using Iterator = DeclContextLookupResult::iterator;
2541 using Result = const void *;
2542
2543 auto Next = [&](Iterator &It, Iterator End) -> Result {
2544 while (It != End) {
2545 NamedDecl *ND = *It++;
2546 if (!ND->isInIdentifierNamespace(IDNS))
2547 continue;
2548
2549 // C++ [temp.local]p3:
2550 // A lookup that finds an injected-class-name (10.2) can result in
2551 // an ambiguity in certain cases (for example, if it is found in
2552 // more than one base class). If all of the injected-class-names
2553 // that are found refer to specializations of the same class
2554 // template, and if the name is used as a template-name, the
2555 // reference refers to the class template itself and not a
2556 // specialization thereof, and is not ambiguous.
2557 if (TemplateNameLookup)
2558 if (auto *TD = getAsTemplateNameDecl(ND))
2559 ND = TD;
2560
2561 // C++ [class.member.lookup]p3:
2562 // type declarations (including injected-class-names) are replaced by
2563 // the types they designate
2564 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2566 return T.getCanonicalType().getAsOpaquePtr();
2567 }
2568
2569 return ND->getUnderlyingDecl()->getCanonicalDecl();
2570 }
2571 return nullptr;
2572 };
2573
2574 // We'll often find the declarations are in the same order. Handle this
2575 // case (and the special case of only one declaration) efficiently.
2576 Iterator AIt = A, BIt = B, AEnd, BEnd;
2577 while (true) {
2578 Result AResult = Next(AIt, AEnd);
2579 Result BResult = Next(BIt, BEnd);
2580 if (!AResult && !BResult)
2581 return true;
2582 if (!AResult || !BResult)
2583 return false;
2584 if (AResult != BResult) {
2585 // Found a mismatch; carefully check both lists, accounting for the
2586 // possibility of declarations appearing more than once.
2587 llvm::SmallDenseMap<Result, bool, 32> AResults;
2588 for (; AResult; AResult = Next(AIt, AEnd))
2589 AResults.insert({AResult, /*FoundInB*/false});
2590 unsigned Found = 0;
2591 for (; BResult; BResult = Next(BIt, BEnd)) {
2592 auto It = AResults.find(BResult);
2593 if (It == AResults.end())
2594 return false;
2595 if (!It->second) {
2596 It->second = true;
2597 ++Found;
2598 }
2599 }
2600 return AResults.size() == Found;
2601 }
2602 }
2603 };
2604
2605 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2606 Path != PathEnd; ++Path) {
2607 const CXXBasePathElement &PathElement = Path->back();
2608
2609 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2610 // across all paths.
2611 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2612
2613 // Determine whether we're looking at a distinct sub-object or not.
2614 if (SubobjectType.isNull()) {
2615 // This is the first subobject we've looked at. Record its type.
2616 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2617 SubobjectNumber = PathElement.SubobjectNumber;
2618 continue;
2619 }
2620
2621 if (SubobjectType !=
2622 Context.getCanonicalType(PathElement.Base->getType())) {
2623 // We found members of the given name in two subobjects of
2624 // different types. If the declaration sets aren't the same, this
2625 // lookup is ambiguous.
2626 //
2627 // FIXME: The language rule says that this applies irrespective of
2628 // whether the sets contain only static members.
2629 if (HasOnlyStaticMembers(Path->Decls) &&
2630 HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2631 continue;
2632
2633 R.setAmbiguousBaseSubobjectTypes(Paths);
2634 return true;
2635 }
2636
2637 // FIXME: This language rule no longer exists. Checking for ambiguous base
2638 // subobjects should be done as part of formation of a class member access
2639 // expression (when converting the object parameter to the member's type).
2640 if (SubobjectNumber != PathElement.SubobjectNumber) {
2641 // We have a different subobject of the same type.
2642
2643 // C++ [class.member.lookup]p5:
2644 // A static member, a nested type or an enumerator defined in
2645 // a base class T can unambiguously be found even if an object
2646 // has more than one base class subobject of type T.
2647 if (HasOnlyStaticMembers(Path->Decls))
2648 continue;
2649
2650 // We have found a nonstatic member name in multiple, distinct
2651 // subobjects. Name lookup is ambiguous.
2652 R.setAmbiguousBaseSubobjects(Paths);
2653 return true;
2654 }
2655 }
2656
2657 // Lookup in a base class succeeded; return these results.
2658
2659 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2660 I != E; ++I) {
2661 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2662 (*I)->getAccess());
2663 if (NamedDecl *ND = R.getAcceptableDecl(*I))
2664 R.addDecl(ND, AS);
2665 }
2666 R.resolveKind();
2667 return true;
2668}
2669
2671 CXXScopeSpec &SS) {
2672 auto *NNS = SS.getScopeRep();
2673 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2674 return LookupInSuper(R, NNS->getAsRecordDecl());
2675 else
2676
2677 return LookupQualifiedName(R, LookupCtx);
2678}
2679
2681 QualType ObjectType, bool AllowBuiltinCreation,
2682 bool EnteringContext) {
2683 // When the scope specifier is invalid, don't even look for anything.
2684 if (SS && SS->isInvalid())
2685 return false;
2686
2687 // Determine where to perform name lookup
2688 DeclContext *DC = nullptr;
2689 bool IsDependent = false;
2690 if (!ObjectType.isNull()) {
2691 // This nested-name-specifier occurs in a member access expression, e.g.,
2692 // x->B::f, and we are looking into the type of the object.
2693 assert((!SS || SS->isEmpty()) &&
2694 "ObjectType and scope specifier cannot coexist");
2695 DC = computeDeclContext(ObjectType);
2696 IsDependent = !DC && ObjectType->isDependentType();
2697 assert(((!DC && ObjectType->isDependentType()) ||
2698 !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() ||
2699 ObjectType->castAs<TagType>()->isBeingDefined()) &&
2700 "Caller should have completed object type");
2701 } else if (SS && SS->isNotEmpty()) {
2702 // This nested-name-specifier occurs after another nested-name-specifier,
2703 // so long into the context associated with the prior nested-name-specifier.
2704 if ((DC = computeDeclContext(*SS, EnteringContext))) {
2705 // The declaration context must be complete.
2706 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2707 return false;
2708 R.setContextRange(SS->getRange());
2709 // FIXME: '__super' lookup semantics could be implemented by a
2710 // LookupResult::isSuperLookup flag which skips the initial search of
2711 // the lookup context in LookupQualified.
2712 if (NestedNameSpecifier *NNS = SS->getScopeRep();
2714 return LookupInSuper(R, NNS->getAsRecordDecl());
2715 }
2716 IsDependent = !DC && isDependentScopeSpecifier(*SS);
2717 } else {
2718 // Perform unqualified name lookup starting in the given scope.
2719 return LookupName(R, S, AllowBuiltinCreation);
2720 }
2721
2722 // If we were able to compute a declaration context, perform qualified name
2723 // lookup in that context.
2724 if (DC)
2725 return LookupQualifiedName(R, DC);
2726 else if (IsDependent)
2727 // We could not resolve the scope specified to a specific declaration
2728 // context, which means that SS refers to an unknown specialization.
2729 // Name lookup can't find anything in this case.
2731 return false;
2732}
2733
2735 // The access-control rules we use here are essentially the rules for
2736 // doing a lookup in Class that just magically skipped the direct
2737 // members of Class itself. That is, the naming class is Class, and the
2738 // access includes the access of the base.
2739 for (const auto &BaseSpec : Class->bases()) {
2740 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2741 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2743 Result.setBaseObjectType(Context.getRecordType(Class));
2745
2746 // Copy the lookup results into the target, merging the base's access into
2747 // the path access.
2748 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2749 R.addDecl(I.getDecl(),
2750 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2751 I.getAccess()));
2752 }
2753
2754 Result.suppressDiagnostics();
2755 }
2756
2757 R.resolveKind();
2759
2760 return !R.empty();
2761}
2762
2764 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2765
2766 DeclarationName Name = Result.getLookupName();
2767 SourceLocation NameLoc = Result.getNameLoc();
2768 SourceRange LookupRange = Result.getContextRange();
2769
2770 switch (Result.getAmbiguityKind()) {
2772 CXXBasePaths *Paths = Result.getBasePaths();
2773 QualType SubobjectType = Paths->front().back().Base->getType();
2774 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2775 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2776 << LookupRange;
2777
2778 DeclContext::lookup_iterator Found = Paths->front().Decls;
2779 while (isa<CXXMethodDecl>(*Found) &&
2780 cast<CXXMethodDecl>(*Found)->isStatic())
2781 ++Found;
2782
2783 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2784 break;
2785 }
2786
2788 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2789 << Name << LookupRange;
2790
2791 CXXBasePaths *Paths = Result.getBasePaths();
2792 std::set<const NamedDecl *> DeclsPrinted;
2793 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2794 PathEnd = Paths->end();
2795 Path != PathEnd; ++Path) {
2796 const NamedDecl *D = *Path->Decls;
2797 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2798 continue;
2799 if (DeclsPrinted.insert(D).second) {
2800 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2801 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2802 << TD->getUnderlyingType();
2803 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2804 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2805 << Context.getTypeDeclType(TD);
2806 else
2807 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2808 }
2809 }
2810 break;
2811 }
2812
2814 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2815
2817
2818 for (auto *D : Result)
2819 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2820 TagDecls.insert(TD);
2821 Diag(TD->getLocation(), diag::note_hidden_tag);
2822 }
2823
2824 for (auto *D : Result)
2825 if (!isa<TagDecl>(D))
2826 Diag(D->getLocation(), diag::note_hiding_object);
2827
2828 // For recovery purposes, go ahead and implement the hiding.
2829 LookupResult::Filter F = Result.makeFilter();
2830 while (F.hasNext()) {
2831 if (TagDecls.count(F.next()))
2832 F.erase();
2833 }
2834 F.done();
2835 break;
2836 }
2837
2839 Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange;
2840 DeclContext *DC = nullptr;
2841 for (auto *D : Result) {
2842 Diag(D->getLocation(), diag::note_reference_placeholder) << D;
2843 if (DC != nullptr && DC != D->getDeclContext())
2844 break;
2845 DC = D->getDeclContext();
2846 }
2847 break;
2848 }
2849
2851 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2852
2853 for (auto *D : Result)
2854 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2855 break;
2856 }
2857 }
2858}
2859
2860namespace {
2861 struct AssociatedLookup {
2862 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2863 Sema::AssociatedNamespaceSet &Namespaces,
2864 Sema::AssociatedClassSet &Classes)
2865 : S(S), Namespaces(Namespaces), Classes(Classes),
2866 InstantiationLoc(InstantiationLoc) {
2867 }
2868
2869 bool addClassTransitive(CXXRecordDecl *RD) {
2870 Classes.insert(RD);
2871 return ClassesTransitive.insert(RD);
2872 }
2873
2874 Sema &S;
2875 Sema::AssociatedNamespaceSet &Namespaces;
2876 Sema::AssociatedClassSet &Classes;
2877 SourceLocation InstantiationLoc;
2878
2879 private:
2880 Sema::AssociatedClassSet ClassesTransitive;
2881 };
2882} // end anonymous namespace
2883
2884static void
2886
2887// Given the declaration context \param Ctx of a class, class template or
2888// enumeration, add the associated namespaces to \param Namespaces as described
2889// in [basic.lookup.argdep]p2.
2891 DeclContext *Ctx) {
2892 // The exact wording has been changed in C++14 as a result of
2893 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2894 // to all language versions since it is possible to return a local type
2895 // from a lambda in C++11.
2896 //
2897 // C++14 [basic.lookup.argdep]p2:
2898 // If T is a class type [...]. Its associated namespaces are the innermost
2899 // enclosing namespaces of its associated classes. [...]
2900 //
2901 // If T is an enumeration type, its associated namespace is the innermost
2902 // enclosing namespace of its declaration. [...]
2903
2904 // We additionally skip inline namespaces. The innermost non-inline namespace
2905 // contains all names of all its nested inline namespaces anyway, so we can
2906 // replace the entire inline namespace tree with its root.
2907 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2908 Ctx = Ctx->getParent();
2909
2910 Namespaces.insert(Ctx->getPrimaryContext());
2911}
2912
2913// Add the associated classes and namespaces for argument-dependent
2914// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2915static void
2917 const TemplateArgument &Arg) {
2918 // C++ [basic.lookup.argdep]p2, last bullet:
2919 // -- [...] ;
2920 switch (Arg.getKind()) {
2922 break;
2923
2925 // [...] the namespaces and classes associated with the types of the
2926 // template arguments provided for template type parameters (excluding
2927 // template template parameters)
2929 break;
2930
2933 // [...] the namespaces in which any template template arguments are
2934 // defined; and the classes in which any member templates used as
2935 // template template arguments are defined.
2937 if (ClassTemplateDecl *ClassTemplate
2938 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2939 DeclContext *Ctx = ClassTemplate->getDeclContext();
2940 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2941 Result.Classes.insert(EnclosingClass);
2942 // Add the associated namespace for this class.
2943 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2944 }
2945 break;
2946 }
2947
2953 // [Note: non-type template arguments do not contribute to the set of
2954 // associated namespaces. ]
2955 break;
2956
2958 for (const auto &P : Arg.pack_elements())
2960 break;
2961 }
2962}
2963
2964// Add the associated classes and namespaces for argument-dependent lookup
2965// with an argument of class type (C++ [basic.lookup.argdep]p2).
2966static void
2969
2970 // Just silently ignore anything whose name is __va_list_tag.
2971 if (Class->getDeclName() == Result.S.VAListTagName)
2972 return;
2973
2974 // C++ [basic.lookup.argdep]p2:
2975 // [...]
2976 // -- If T is a class type (including unions), its associated
2977 // classes are: the class itself; the class of which it is a
2978 // member, if any; and its direct and indirect base classes.
2979 // Its associated namespaces are the innermost enclosing
2980 // namespaces of its associated classes.
2981
2982 // Add the class of which it is a member, if any.
2983 DeclContext *Ctx = Class->getDeclContext();
2984 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2985 Result.Classes.insert(EnclosingClass);
2986
2987 // Add the associated namespace for this class.
2988 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2989
2990 // -- If T is a template-id, its associated namespaces and classes are
2991 // the namespace in which the template is defined; for member
2992 // templates, the member template's class; the namespaces and classes
2993 // associated with the types of the template arguments provided for
2994 // template type parameters (excluding template template parameters); the
2995 // namespaces in which any template template arguments are defined; and
2996 // the classes in which any member templates used as template template
2997 // arguments are defined. [Note: non-type template arguments do not
2998 // contribute to the set of associated namespaces. ]
3000 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3001 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3002 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3003 Result.Classes.insert(EnclosingClass);
3004 // Add the associated namespace for this class.
3005 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3006
3007 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3008 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3009 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3010 }
3011
3012 // Add the class itself. If we've already transitively visited this class,
3013 // we don't need to visit base classes.
3014 if (!Result.addClassTransitive(Class))
3015 return;
3016
3017 // Only recurse into base classes for complete types.
3018 if (!Result.S.isCompleteType(Result.InstantiationLoc,
3019 Result.S.Context.getRecordType(Class)))
3020 return;
3021
3022 // Add direct and indirect base classes along with their associated
3023 // namespaces.
3025 Bases.push_back(Class);
3026 while (!Bases.empty()) {
3027 // Pop this class off the stack.
3028 Class = Bases.pop_back_val();
3029
3030 // Visit the base classes.
3031 for (const auto &Base : Class->bases()) {
3032 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3033 // In dependent contexts, we do ADL twice, and the first time around,
3034 // the base type might be a dependent TemplateSpecializationType, or a
3035 // TemplateTypeParmType. If that happens, simply ignore it.
3036 // FIXME: If we want to support export, we probably need to add the
3037 // namespace of the template in a TemplateSpecializationType, or even
3038 // the classes and namespaces of known non-dependent arguments.
3039 if (!BaseType)
3040 continue;
3041 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3042 if (Result.addClassTransitive(BaseDecl)) {
3043 // Find the associated namespace for this base class.
3044 DeclContext *BaseCtx = BaseDecl->getDeclContext();
3045 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3046
3047 // Make sure we visit the bases of this base class.
3048 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3049 Bases.push_back(BaseDecl);
3050 }
3051 }
3052 }
3053}
3054
3055// Add the associated classes and namespaces for
3056// argument-dependent lookup with an argument of type T
3057// (C++ [basic.lookup.koenig]p2).
3058static void
3060 // C++ [basic.lookup.koenig]p2:
3061 //
3062 // For each argument type T in the function call, there is a set
3063 // of zero or more associated namespaces and a set of zero or more
3064 // associated classes to be considered. The sets of namespaces and
3065 // classes is determined entirely by the types of the function
3066 // arguments (and the namespace of any template template
3067 // argument). Typedef names and using-declarations used to specify
3068 // the types do not contribute to this set. The sets of namespaces
3069 // and classes are determined in the following way:
3070
3072 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3073
3074 while (true) {
3075 switch (T->getTypeClass()) {
3076
3077#define TYPE(Class, Base)
3078#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3079#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3080#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3081#define ABSTRACT_TYPE(Class, Base)
3082#include "clang/AST/TypeNodes.inc"
3083 // T is canonical. We can also ignore dependent types because
3084 // we don't need to do ADL at the definition point, but if we
3085 // wanted to implement template export (or if we find some other
3086 // use for associated classes and namespaces...) this would be
3087 // wrong.
3088 break;
3089
3090 // -- If T is a pointer to U or an array of U, its associated
3091 // namespaces and classes are those associated with U.
3092 case Type::Pointer:
3093 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3094 continue;
3095 case Type::ConstantArray:
3096 case Type::IncompleteArray:
3097 case Type::VariableArray:
3098 T = cast<ArrayType>(T)->getElementType().getTypePtr();
3099 continue;
3100
3101 // -- If T is a fundamental type, its associated sets of
3102 // namespaces and classes are both empty.
3103 case Type::Builtin:
3104 break;
3105
3106 // -- If T is a class type (including unions), its associated
3107 // classes are: the class itself; the class of which it is
3108 // a member, if any; and its direct and indirect base classes.
3109 // Its associated namespaces are the innermost enclosing
3110 // namespaces of its associated classes.
3111 case Type::Record: {
3113 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3115 break;
3116 }
3117
3118 // -- If T is an enumeration type, its associated namespace
3119 // is the innermost enclosing namespace of its declaration.
3120 // If it is a class member, its associated class is the
3121 // member’s class; else it has no associated class.
3122 case Type::Enum: {
3123 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3124
3125 DeclContext *Ctx = Enum->getDeclContext();
3126 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3127 Result.Classes.insert(EnclosingClass);
3128
3129 // Add the associated namespace for this enumeration.
3130 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3131
3132 break;
3133 }
3134
3135 // -- If T is a function type, its associated namespaces and
3136 // classes are those associated with the function parameter
3137 // types and those associated with the return type.
3138 case Type::FunctionProto: {
3139 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3140 for (const auto &Arg : Proto->param_types())
3141 Queue.push_back(Arg.getTypePtr());
3142 // fallthrough
3143 [[fallthrough]];
3144 }
3145 case Type::FunctionNoProto: {
3146 const FunctionType *FnType = cast<FunctionType>(T);
3147 T = FnType->getReturnType().getTypePtr();
3148 continue;
3149 }
3150
3151 // -- If T is a pointer to a member function of a class X, its
3152 // associated namespaces and classes are those associated
3153 // with the function parameter types and return type,
3154 // together with those associated with X.
3155 //
3156 // -- If T is a pointer to a data member of class X, its
3157 // associated namespaces and classes are those associated
3158 // with the member type together with those associated with
3159 // X.
3160 case Type::MemberPointer: {
3161 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3162
3163 // Queue up the class type into which this points.
3164 Queue.push_back(MemberPtr->getClass());
3165
3166 // And directly continue with the pointee type.
3167 T = MemberPtr->getPointeeType().getTypePtr();
3168 continue;
3169 }
3170
3171 // As an extension, treat this like a normal pointer.
3172 case Type::BlockPointer:
3173 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3174 continue;
3175
3176 // References aren't covered by the standard, but that's such an
3177 // obvious defect that we cover them anyway.
3178 case Type::LValueReference:
3179 case Type::RValueReference:
3180 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3181 continue;
3182
3183 // These are fundamental types.
3184 case Type::Vector:
3185 case Type::ExtVector:
3186 case Type::ConstantMatrix:
3187 case Type::Complex:
3188 case Type::BitInt:
3189 break;
3190
3191 // Non-deduced auto types only get here for error cases.
3192 case Type::Auto:
3193 case Type::DeducedTemplateSpecialization:
3194 break;
3195
3196 // If T is an Objective-C object or interface type, or a pointer to an
3197 // object or interface type, the associated namespace is the global
3198 // namespace.
3199 case Type::ObjCObject:
3200 case Type::ObjCInterface:
3201 case Type::ObjCObjectPointer:
3202 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3203 break;
3204
3205 // Atomic types are just wrappers; use the associations of the
3206 // contained type.
3207 case Type::Atomic:
3208 T = cast<AtomicType>(T)->getValueType().getTypePtr();
3209 continue;
3210 case Type::Pipe:
3211 T = cast<PipeType>(T)->getElementType().getTypePtr();
3212 continue;
3213
3214 // Array parameter types are treated as fundamental types.
3215 case Type::ArrayParameter:
3216 break;
3217
3218 case Type::HLSLAttributedResource:
3219 T = cast<HLSLAttributedResourceType>(T)->getWrappedType().getTypePtr();
3220 }
3221
3222 if (Queue.empty())
3223 break;
3224 T = Queue.pop_back_val();
3225 }
3226}
3227
3229 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3230 AssociatedNamespaceSet &AssociatedNamespaces,
3231 AssociatedClassSet &AssociatedClasses) {
3232 AssociatedNamespaces.clear();
3233 AssociatedClasses.clear();
3234
3235 AssociatedLookup Result(*this, InstantiationLoc,
3236 AssociatedNamespaces, AssociatedClasses);
3237
3238 // C++ [basic.lookup.koenig]p2:
3239 // For each argument type T in the function call, there is a set
3240 // of zero or more associated namespaces and a set of zero or more
3241 // associated classes to be considered. The sets of namespaces and
3242 // classes is determined entirely by the types of the function
3243 // arguments (and the namespace of any template template
3244 // argument).
3245 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3246 Expr *Arg = Args[ArgIdx];
3247
3248 if (Arg->getType() != Context.OverloadTy) {
3250 continue;
3251 }
3252
3253 // [...] In addition, if the argument is the name or address of a
3254 // set of overloaded functions and/or function templates, its
3255 // associated classes and namespaces are the union of those
3256 // associated with each of the members of the set: the namespace
3257 // in which the function or function template is defined and the
3258 // classes and namespaces associated with its (non-dependent)
3259 // parameter types and return type.
3261
3262 for (const NamedDecl *D : OE->decls()) {
3263 // Look through any using declarations to find the underlying function.
3264 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3265
3266 // Add the classes and namespaces associated with the parameter
3267 // types and return type of this function.
3269 }
3270 }
3271}
3272
3275 LookupNameKind NameKind,
3276 RedeclarationKind Redecl) {
3277 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3278 LookupName(R, S);
3279 return R.getAsSingle<NamedDecl>();
3280}
3281
3283 UnresolvedSetImpl &Functions) {
3284 // C++ [over.match.oper]p3:
3285 // -- The set of non-member candidates is the result of the
3286 // unqualified lookup of operator@ in the context of the
3287 // expression according to the usual rules for name lookup in
3288 // unqualified function calls (3.4.2) except that all member
3289 // functions are ignored.
3291 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3292 LookupName(Operators, S);
3293
3294 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3295 Functions.append(Operators.begin(), Operators.end());
3296}
3297
3300 bool ConstArg, bool VolatileArg, bool RValueThis,
3301 bool ConstThis, bool VolatileThis) {
3303 "doing special member lookup into record that isn't fully complete");
3304 RD = RD->getDefinition();
3305 if (RValueThis || ConstThis || VolatileThis)
3308 "constructors and destructors always have unqualified lvalue this");
3309 if (ConstArg || VolatileArg)
3312 "parameter-less special members can't have qualified arguments");
3313
3314 // FIXME: Get the caller to pass in a location for the lookup.
3315 SourceLocation LookupLoc = RD->getLocation();
3316
3317 llvm::FoldingSetNodeID ID;
3318 ID.AddPointer(RD);
3319 ID.AddInteger(llvm::to_underlying(SM));
3320 ID.AddInteger(ConstArg);
3321 ID.AddInteger(VolatileArg);
3322 ID.AddInteger(RValueThis);
3323 ID.AddInteger(ConstThis);
3324 ID.AddInteger(VolatileThis);
3325
3326 void *InsertPoint;
3328 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3329
3330 // This was already cached
3331 if (Result)
3332 return *Result;
3333
3336 SpecialMemberCache.InsertNode(Result, InsertPoint);
3337
3339 if (RD->needsImplicitDestructor()) {
3341 DeclareImplicitDestructor(RD);
3342 });
3343 }
3344 CXXDestructorDecl *DD = RD->getDestructor();
3345 Result->setMethod(DD);
3346 Result->setKind(DD && !DD->isDeleted()
3349 return *Result;
3350 }
3351
3352 // Prepare for overload resolution. Here we construct a synthetic argument
3353 // if necessary and make sure that implicit functions are declared.
3355 DeclarationName Name;
3356 Expr *Arg = nullptr;
3357 unsigned NumArgs;
3358
3359 QualType ArgType = CanTy;
3361
3364 NumArgs = 0;
3367 DeclareImplicitDefaultConstructor(RD);
3368 });
3369 }
3370 } else {
3374 if (RD->needsImplicitCopyConstructor()) {
3376 DeclareImplicitCopyConstructor(RD);
3377 });
3378 }
3381 DeclareImplicitMoveConstructor(RD);
3382 });
3383 }
3384 } else {
3386 if (RD->needsImplicitCopyAssignment()) {
3388 DeclareImplicitCopyAssignment(RD);
3389 });
3390 }
3393 DeclareImplicitMoveAssignment(RD);
3394 });
3395 }
3396 }
3397
3398 if (ConstArg)
3399 ArgType.addConst();
3400 if (VolatileArg)
3401 ArgType.addVolatile();
3402
3403 // This isn't /really/ specified by the standard, but it's implied
3404 // we should be working from a PRValue in the case of move to ensure
3405 // that we prefer to bind to rvalue references, and an LValue in the
3406 // case of copy to ensure we don't bind to rvalue references.
3407 // Possibly an XValue is actually correct in the case of move, but
3408 // there is no semantic difference for class types in this restricted
3409 // case.
3412 VK = VK_LValue;
3413 else
3414 VK = VK_PRValue;
3415 }
3416
3417 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3418
3420 NumArgs = 1;
3421 Arg = &FakeArg;
3422 }
3423
3424 // Create the object argument
3425 QualType ThisTy = CanTy;
3426 if (ConstThis)
3427 ThisTy.addConst();
3428 if (VolatileThis)
3429 ThisTy.addVolatile();
3430 Expr::Classification Classification =
3431 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3432 .Classify(Context);
3433
3434 // Now we perform lookup on the name we computed earlier and do overload
3435 // resolution. Lookup is only performed directly into the class since there
3436 // will always be a (possibly implicit) declaration to shadow any others.
3438 DeclContext::lookup_result R = RD->lookup(Name);
3439
3440 if (R.empty()) {
3441 // We might have no default constructor because we have a lambda's closure
3442 // type, rather than because there's some other declared constructor.
3443 // Every class has a copy/move constructor, copy/move assignment, and
3444 // destructor.
3446 "lookup for a constructor or assignment operator was empty");
3447 Result->setMethod(nullptr);
3449 return *Result;
3450 }
3451
3452 // Copy the candidates as our processing of them may load new declarations
3453 // from an external source and invalidate lookup_result.
3454 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3455
3456 for (NamedDecl *CandDecl : Candidates) {
3457 if (CandDecl->isInvalidDecl())
3458 continue;
3459
3461 auto CtorInfo = getConstructorInfo(Cand);
3462 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3465 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3466 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3467 else if (CtorInfo)
3468 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3469 llvm::ArrayRef(&Arg, NumArgs), OCS,
3470 /*SuppressUserConversions*/ true);
3471 else
3472 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3473 /*SuppressUserConversions*/ true);
3474 } else if (FunctionTemplateDecl *Tmpl =
3475 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3478 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3479 Classification,
3480 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3481 else if (CtorInfo)
3482 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3483 CtorInfo.FoundDecl, nullptr,
3484 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3485 else
3486 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3487 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3488 } else {
3489 assert(isa<UsingDecl>(Cand.getDecl()) &&
3490 "illegal Kind of operator = Decl");
3491 }
3492 }
3493
3495 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3496 case OR_Success:
3497 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3499 break;
3500
3501 case OR_Deleted:
3502 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3504 break;
3505
3506 case OR_Ambiguous:
3507 Result->setMethod(nullptr);
3509 break;
3510
3512 Result->setMethod(nullptr);
3514 break;
3515 }
3516
3517 return *Result;
3518}
3519
3523 false, false, false, false, false);
3524
3525 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3526}
3527
3529 unsigned Quals) {
3530 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3531 "non-const, non-volatile qualifiers for copy ctor arg");
3534 Quals & Qualifiers::Volatile, false, false, false);
3535
3536 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3537}
3538
3540 unsigned Quals) {
3543 Quals & Qualifiers::Volatile, false, false, false);
3544
3545 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3546}
3547
3549 // If the implicit constructors have not yet been declared, do so now.
3551 runWithSufficientStackSpace(Class->getLocation(), [&] {
3552 if (Class->needsImplicitDefaultConstructor())
3553 DeclareImplicitDefaultConstructor(Class);
3554 if (Class->needsImplicitCopyConstructor())
3555 DeclareImplicitCopyConstructor(Class);
3556 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3557 DeclareImplicitMoveConstructor(Class);
3558 });
3559 }
3560
3563 return Class->lookup(Name);
3564}
3565
3567 unsigned Quals, bool RValueThis,
3568 unsigned ThisQuals) {
3569 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3570 "non-const, non-volatile qualifiers for copy assignment arg");
3571 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3572 "non-const, non-volatile qualifiers for copy assignment this");
3575 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const,
3576 ThisQuals & Qualifiers::Volatile);
3577
3578 return Result.getMethod();
3579}
3580
3582 unsigned Quals,
3583 bool RValueThis,
3584 unsigned ThisQuals) {
3585 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3586 "non-const, non-volatile qualifiers for copy assignment this");
3589 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const,
3590 ThisQuals & Qualifiers::Volatile);
3591
3592 return Result.getMethod();
3593}
3594
3596 return cast_or_null<CXXDestructorDecl>(
3598 false, false, false)
3599 .getMethod());
3600}
3601
3604 ArrayRef<QualType> ArgTys, bool AllowRaw,
3605 bool AllowTemplate, bool AllowStringTemplatePack,
3606 bool DiagnoseMissing, StringLiteral *StringLit) {
3607 LookupName(R, S);
3608 assert(R.getResultKind() != LookupResult::Ambiguous &&
3609 "literal operator lookup can't be ambiguous");
3610
3611 // Filter the lookup results appropriately.
3613
3614 bool AllowCooked = true;
3615 bool FoundRaw = false;
3616 bool FoundTemplate = false;
3617 bool FoundStringTemplatePack = false;
3618 bool FoundCooked = false;
3619
3620 while (F.hasNext()) {
3621 Decl *D = F.next();
3622 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3623 D = USD->getTargetDecl();
3624
3625 // If the declaration we found is invalid, skip it.
3626 if (D->isInvalidDecl()) {
3627 F.erase();
3628 continue;
3629 }
3630
3631 bool IsRaw = false;
3632 bool IsTemplate = false;
3633 bool IsStringTemplatePack = false;
3634 bool IsCooked = false;
3635
3636 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3637 if (FD->getNumParams() == 1 &&
3638 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3639 IsRaw = true;
3640 else if (FD->getNumParams() == ArgTys.size()) {
3641 IsCooked = true;
3642 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3643 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3644 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3645 IsCooked = false;
3646 break;
3647 }
3648 }
3649 }
3650 }
3651 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3652 TemplateParameterList *Params = FD->getTemplateParameters();
3653 if (Params->size() == 1) {
3654 IsTemplate = true;
3655 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3656 // Implied but not stated: user-defined integer and floating literals
3657 // only ever use numeric literal operator templates, not templates
3658 // taking a parameter of class type.
3659 F.erase();
3660 continue;
3661 }
3662
3663 // A string literal template is only considered if the string literal
3664 // is a well-formed template argument for the template parameter.
3665 if (StringLit) {
3666 SFINAETrap Trap(*this);
3667 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3668 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3670 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3671 0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3672 Trap.hasErrorOccurred())
3673 IsTemplate = false;
3674 }
3675 } else {
3676 IsStringTemplatePack = true;
3677 }
3678 }
3679
3680 if (AllowTemplate && StringLit && IsTemplate) {
3681 FoundTemplate = true;
3682 AllowRaw = false;
3683 AllowCooked = false;
3684 AllowStringTemplatePack = false;
3685 if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3686 F.restart();
3687 FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3688 }
3689 } else if (AllowCooked && IsCooked) {
3690 FoundCooked = true;
3691 AllowRaw = false;
3692 AllowTemplate = StringLit;
3693 AllowStringTemplatePack = false;
3694 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3695 // Go through again and remove the raw and template decls we've
3696 // already found.
3697 F.restart();
3698 FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3699 }
3700 } else if (AllowRaw && IsRaw) {
3701 FoundRaw = true;
3702 } else if (AllowTemplate && IsTemplate) {
3703 FoundTemplate = true;
3704 } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3705 FoundStringTemplatePack = true;
3706 } else {
3707 F.erase();
3708 }
3709 }
3710
3711 F.done();
3712
3713 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3714 // form for string literal operator templates.
3715 if (StringLit && FoundTemplate)
3716 return LOLR_Template;
3717
3718 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3719 // parameter type, that is used in preference to a raw literal operator
3720 // or literal operator template.
3721 if (FoundCooked)
3722 return LOLR_Cooked;
3723
3724 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3725 // operator template, but not both.
3726 if (FoundRaw && FoundTemplate) {
3727 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3728 for (const NamedDecl *D : R)
3729 NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction());
3730 return LOLR_Error;
3731 }
3732
3733 if (FoundRaw)
3734 return LOLR_Raw;
3735
3736 if (FoundTemplate)
3737 return LOLR_Template;
3738
3739 if (FoundStringTemplatePack)
3741
3742 // Didn't find anything we could use.
3743 if (DiagnoseMissing) {
3744 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3745 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3746 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3747 << (AllowTemplate || AllowStringTemplatePack);
3748 return LOLR_Error;
3749 }
3750
3752}
3753
3755 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3756
3757 // If we haven't yet seen a decl for this key, or the last decl
3758 // was exactly this one, we're done.
3759 if (Old == nullptr || Old == New) {
3760 Old = New;
3761 return;
3762 }
3763
3764 // Otherwise, decide which is a more recent redeclaration.
3765 FunctionDecl *OldFD = Old->getAsFunction();
3766 FunctionDecl *NewFD = New->getAsFunction();
3767
3768 FunctionDecl *Cursor = NewFD;
3769 while (true) {
3770 Cursor = Cursor->getPreviousDecl();
3771
3772 // If we got to the end without finding OldFD, OldFD is the newer
3773 // declaration; leave things as they are.
3774 if (!Cursor) return;
3775
3776 // If we do find OldFD, then NewFD is newer.
3777 if (Cursor == OldFD) break;
3778
3779 // Otherwise, keep looking.
3780 }
3781
3782 Old = New;
3783}
3784
3787 // Find all of the associated namespaces and classes based on the
3788 // arguments we have.
3789 AssociatedNamespaceSet AssociatedNamespaces;
3790 AssociatedClassSet AssociatedClasses;
3792 AssociatedNamespaces,
3793 AssociatedClasses);
3794
3795 // C++ [basic.lookup.argdep]p3:
3796 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3797 // and let Y be the lookup set produced by argument dependent
3798 // lookup (defined as follows). If X contains [...] then Y is
3799 // empty. Otherwise Y is the set of declarations found in the
3800 // namespaces associated with the argument types as described
3801 // below. The set of declarations found by the lookup of the name
3802 // is the union of X and Y.
3803 //
3804 // Here, we compute Y and add its members to the overloaded
3805 // candidate set.
3806 for (auto *NS : AssociatedNamespaces) {
3807 // When considering an associated namespace, the lookup is the
3808 // same as the lookup performed when the associated namespace is
3809 // used as a qualifier (3.4.3.2) except that:
3810 //
3811 // -- Any using-directives in the associated namespace are
3812 // ignored.
3813 //
3814 // -- Any namespace-scope friend functions declared in
3815 // associated classes are visible within their respective
3816 // namespaces even if they are not visible during an ordinary
3817 // lookup (11.4).
3818 //
3819 // C++20 [basic.lookup.argdep] p4.3
3820 // -- are exported, are attached to a named module M, do not appear
3821 // in the translation unit containing the point of the lookup, and
3822 // have the same innermost enclosing non-inline namespace scope as
3823 // a declaration of an associated entity attached to M.
3824 DeclContext::lookup_result R = NS->lookup(Name);
3825 for (auto *D : R) {
3826 auto *Underlying = D;
3827 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3828 Underlying = USD->getTargetDecl();
3829
3830 if (!isa<FunctionDecl>(Underlying) &&
3831 !isa<FunctionTemplateDecl>(Underlying))
3832 continue;
3833
3834 // The declaration is visible to argument-dependent lookup if either
3835 // it's ordinarily visible or declared as a friend in an associated
3836 // class.
3837 bool Visible = false;
3838 for (D = D->getMostRecentDecl(); D;
3839 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3841 if (isVisible(D)) {
3842 Visible = true;
3843 break;
3844 }
3845
3846 if (!getLangOpts().CPlusPlusModules)
3847 continue;
3848
3849 if (D->isInExportDeclContext()) {
3850 Module *FM = D->getOwningModule();
3851 // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3852 // exports are only valid in module purview and outside of any
3853 // PMF (although a PMF should not even be present in a module
3854 // with an import).
3855 assert(FM &&
3856 (FM->isNamedModule() || FM->isImplicitGlobalModule()) &&
3857 !FM->isPrivateModule() && "bad export context");
3858 // .. are attached to a named module M, do not appear in the
3859 // translation unit containing the point of the lookup..
3860 if (D->isInAnotherModuleUnit() &&
3861 llvm::any_of(AssociatedClasses, [&](auto *E) {
3862 // ... and have the same innermost enclosing non-inline
3863 // namespace scope as a declaration of an associated entity
3864 // attached to M
3865 if (E->getOwningModule() != FM)
3866 return false;
3867 // TODO: maybe this could be cached when generating the
3868 // associated namespaces / entities.
3869 DeclContext *Ctx = E->getDeclContext();
3870 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3871 Ctx = Ctx->getParent();
3872 return Ctx == NS;
3873 })) {
3874 Visible = true;
3875 break;
3876 }
3877 }
3878 } else if (D->getFriendObjectKind()) {
3879 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3880 // [basic.lookup.argdep]p4:
3881 // Argument-dependent lookup finds all declarations of functions and
3882 // function templates that
3883 // - ...
3884 // - are declared as a friend ([class.friend]) of any class with a
3885 // reachable definition in the set of associated entities,
3886 //
3887 // FIXME: If there's a merged definition of D that is reachable, then
3888 // the friend declaration should be considered.
3889 if (AssociatedClasses.count(RD) && isReachable(D)) {
3890 Visible = true;
3891 break;
3892 }
3893 }
3894 }
3895
3896 // FIXME: Preserve D as the FoundDecl.
3897 if (Visible)
3898 Result.insert(Underlying);
3899 }
3900 }
3901}
3902
3903//----------------------------------------------------------------------------
3904// Search for all visible declarations.
3905//----------------------------------------------------------------------------
3907
3908bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3909
3910namespace {
3911
3912class ShadowContextRAII;
3913
3914class VisibleDeclsRecord {
3915public:
3916 /// An entry in the shadow map, which is optimized to store a
3917 /// single declaration (the common case) but can also store a list
3918 /// of declarations.
3919 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3920
3921private:
3922 /// A mapping from declaration names to the declarations that have
3923 /// this name within a particular scope.
3924 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3925
3926 /// A list of shadow maps, which is used to model name hiding.
3927 std::list<ShadowMap> ShadowMaps;
3928
3929 /// The declaration contexts we have already visited.
3931
3932 friend class ShadowContextRAII;
3933
3934public:
3935 /// Determine whether we have already visited this context
3936 /// (and, if not, note that we are going to visit that context now).
3937 bool visitedContext(DeclContext *Ctx) {
3938 return !VisitedContexts.insert(Ctx).second;
3939 }
3940
3941 bool alreadyVisitedContext(DeclContext *Ctx) {
3942 return VisitedContexts.count(Ctx);
3943 }
3944
3945 /// Determine whether the given declaration is hidden in the
3946 /// current scope.
3947 ///
3948 /// \returns the declaration that hides the given declaration, or
3949 /// NULL if no such declaration exists.
3950 NamedDecl *checkHidden(NamedDecl *ND);
3951
3952 /// Add a declaration to the current shadow map.
3953 void add(NamedDecl *ND) {
3954 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3955 }
3956};
3957
3958/// RAII object that records when we've entered a shadow context.
3959class ShadowContextRAII {
3960 VisibleDeclsRecord &Visible;
3961
3962 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3963
3964public:
3965 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3966 Visible.ShadowMaps.emplace_back();
3967 }
3968
3969 ~ShadowContextRAII() {
3970 Visible.ShadowMaps.pop_back();
3971 }
3972};
3973
3974} // end anonymous namespace
3975
3976NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3977 unsigned IDNS = ND->getIdentifierNamespace();
3978 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3979 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3980 SM != SMEnd; ++SM) {
3981 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3982 if (Pos == SM->end())
3983 continue;
3984
3985 for (auto *D : Pos->second) {
3986 // A tag declaration does not hide a non-tag declaration.
3990 continue;
3991
3992 // Protocols are in distinct namespaces from everything else.
3994 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3995 D->getIdentifierNamespace() != IDNS)
3996 continue;
3997
3998 // Functions and function templates in the same scope overload
3999 // rather than hide. FIXME: Look for hiding based on function
4000 // signatures!
4001 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4003 SM == ShadowMaps.rbegin())
4004 continue;
4005
4006 // A shadow declaration that's created by a resolved using declaration
4007 // is not hidden by the same using declaration.
4008 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4009 cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4010 continue;
4011
4012 // We've found a declaration that hides this one.
4013 return D;
4014 }
4015 }
4016
4017 return nullptr;
4018}
4019
4020namespace {
4021class LookupVisibleHelper {
4022public:
4023 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4024 bool LoadExternal)
4025 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4026 LoadExternal(LoadExternal) {}
4027
4028 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4029 bool IncludeGlobalScope) {
4030 // Determine the set of using directives available during
4031 // unqualified name lookup.
4032 Scope *Initial = S;
4033 UnqualUsingDirectiveSet UDirs(SemaRef);
4034 if (SemaRef.getLangOpts().CPlusPlus) {
4035 // Find the first namespace or translation-unit scope.
4036 while (S && !isNamespaceOrTranslationUnitScope(S))
4037 S = S->getParent();
4038
4039 UDirs.visitScopeChain(Initial, S);
4040 }
4041 UDirs.done();
4042
4043 // Look for visible declarations.
4044 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4045 Result.setAllowHidden(Consumer.includeHiddenDecls());
4046 if (!IncludeGlobalScope)
4047 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4048 ShadowContextRAII Shadow(Visited);
4049 lookupInScope(Initial, Result, UDirs);
4050 }
4051
4052 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4053 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4054 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4055 Result.setAllowHidden(Consumer.includeHiddenDecls());
4056 if (!IncludeGlobalScope)
4057 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4058
4059 ShadowContextRAII Shadow(Visited);
4060 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4061 /*InBaseClass=*/false);
4062 }
4063
4064private:
4065 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4066 bool QualifiedNameLookup, bool InBaseClass) {
4067 if (!Ctx)
4068 return;
4069
4070 // Make sure we don't visit the same context twice.
4071 if (Visited.visitedContext(Ctx->getPrimaryContext()))
4072 return;
4073
4074 Consumer.EnteredContext(Ctx);
4075
4076 // Outside C++, lookup results for the TU live on identifiers.
4077 if (isa<TranslationUnitDecl>(Ctx) &&
4078 !Result.getSema().getLangOpts().CPlusPlus) {
4079 auto &S = Result.getSema();
4080 auto &Idents = S.Context.Idents;
4081
4082 // Ensure all external identifiers are in the identifier table.
4083 if (LoadExternal)
4085 Idents.getExternalIdentifierLookup()) {
4086 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4087 for (StringRef Name = Iter->Next(); !Name.empty();
4088 Name = Iter->Next())
4089 Idents.get(Name);
4090 }
4091
4092 // Walk all lookup results in the TU for each identifier.
4093 for (const auto &Ident : Idents) {
4094 for (auto I = S.IdResolver.begin(Ident.getValue()),
4095 E = S.IdResolver.end();
4096 I != E; ++I) {
4097 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4098 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4099 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4100 Visited.add(ND);
4101 }
4102 }
4103 }
4104 }
4105
4106 return;
4107 }
4108
4109 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4110 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4111
4113 // We sometimes skip loading namespace-level results (they tend to be huge).
4114 bool Load = LoadExternal ||
4115 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4116 // Enumerate all of the results in this context.
4118 Load ? Ctx->lookups()
4119 : Ctx->noload_lookups(/*PreserveInternalState=*/false))
4120 for (auto *D : R)
4121 // Rather than visit immediately, we put ND into a vector and visit
4122 // all decls, in order, outside of this loop. The reason is that
4123 // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D)
4124 // may invalidate the iterators used in the two
4125 // loops above.
4126 DeclsToVisit.push_back(D);
4127
4128 for (auto *D : DeclsToVisit)
4129 if (auto *ND = Result.getAcceptableDecl(D)) {
4130 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4131 Visited.add(ND);
4132 }
4133
4134 DeclsToVisit.clear();
4135
4136 // Traverse using directives for qualified name lookup.
4137 if (QualifiedNameLookup) {
4138 ShadowContextRAII Shadow(Visited);
4139 for (auto *I : Ctx->using_directives()) {
4140 if (!Result.getSema().isVisible(I))
4141 continue;
4142 lookupInDeclContext(I->getNominatedNamespace(), Result,
4143 QualifiedNameLookup, InBaseClass);
4144 }
4145 }
4146
4147 // Traverse the contexts of inherited C++ classes.
4148 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4149 if (!Record->hasDefinition())
4150 return;
4151
4152 for (const auto &B : Record->bases()) {
4153 QualType BaseType = B.getType();
4154
4155 RecordDecl *RD;
4156 if (BaseType->isDependentType()) {
4157 if (!IncludeDependentBases) {
4158 // Don't look into dependent bases, because name lookup can't look
4159 // there anyway.
4160 continue;
4161 }
4162 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4163 if (!TST)
4164 continue;
4165 TemplateName TN = TST->getTemplateName();
4166 const auto *TD =
4167 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4168 if (!TD)
4169 continue;
4170 RD = TD->getTemplatedDecl();
4171 } else {
4172 const auto *Record = BaseType->getAs<RecordType>();
4173 if (!Record)
4174 continue;
4175 RD = Record->getDecl();
4176 }
4177
4178 // FIXME: It would be nice to be able to determine whether referencing
4179 // a particular member would be ambiguous. For example, given
4180 //
4181 // struct A { int member; };
4182 // struct B { int member; };
4183 // struct C : A, B { };
4184 //
4185 // void f(C *c) { c->### }
4186 //
4187 // accessing 'member' would result in an ambiguity. However, we
4188 // could be smart enough to qualify the member with the base
4189 // class, e.g.,
4190 //
4191 // c->B::member
4192 //
4193 // or
4194 //
4195 // c->A::member
4196
4197 // Find results in this base class (and its bases).
4198 ShadowContextRAII Shadow(Visited);
4199 lookupInDeclContext(RD, Result, QualifiedNameLookup,
4200 /*InBaseClass=*/true);
4201 }
4202 }
4203
4204 // Traverse the contexts of Objective-C classes.
4205 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4206 // Traverse categories.
4207 for (auto *Cat : IFace->visible_categories()) {
4208 ShadowContextRAII Shadow(Visited);
4209 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4210 /*InBaseClass=*/false);
4211 }
4212
4213 // Traverse protocols.
4214 for (auto *I : IFace->all_referenced_protocols()) {
4215 ShadowContextRAII Shadow(Visited);
4216 lookupInDeclContext(I, Result, QualifiedNameLookup,
4217 /*InBaseClass=*/false);
4218 }
4219
4220 // Traverse the superclass.
4221 if (IFace->getSuperClass()) {
4222 ShadowContextRAII Shadow(Visited);
4223 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4224 /*InBaseClass=*/true);
4225 }
4226
4227 // If there is an implementation, traverse it. We do this to find
4228 // synthesized ivars.
4229 if (IFace->getImplementation()) {
4230 ShadowContextRAII Shadow(Visited);
4231 lookupInDeclContext(IFace->getImplementation(), Result,
4232 QualifiedNameLookup, InBaseClass);
4233 }
4234 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4235 for (auto *I : Protocol->protocols()) {
4236 ShadowContextRAII Shadow(Visited);
4237 lookupInDeclContext(I, Result, QualifiedNameLookup,
4238 /*InBaseClass=*/false);
4239 }
4240 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4241 for (auto *I : Category->protocols()) {
4242 ShadowContextRAII Shadow(Visited);
4243 lookupInDeclContext(I, Result, QualifiedNameLookup,
4244 /*InBaseClass=*/false);
4245 }
4246
4247 // If there is an implementation, traverse it.
4248 if (Category->getImplementation()) {
4249 ShadowContextRAII Shadow(Visited);
4250 lookupInDeclContext(Category->getImplementation(), Result,
4251 QualifiedNameLookup, /*InBaseClass=*/true);
4252 }
4253 }
4254 }
4255
4256 void lookupInScope(Scope *S, LookupResult &Result,
4257 UnqualUsingDirectiveSet &UDirs) {
4258 // No clients run in this mode and it's not supported. Please add tests and
4259 // remove the assertion if you start relying on it.
4260 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4261
4262 if (!S)
4263 return;
4264
4265 if (!S->getEntity() ||
4266 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4267 (S->getEntity())->isFunctionOrMethod()) {
4268 FindLocalExternScope FindLocals(Result);
4269 // Walk through the declarations in this Scope. The consumer might add new
4270 // decls to the scope as part of deserialization, so make a copy first.
4271 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4272 for (Decl *D : ScopeDecls) {
4273 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4274 if ((ND = Result.getAcceptableDecl(ND))) {
4275 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4276 Visited.add(ND);
4277 }
4278 }
4279 }
4280
4281 DeclContext *Entity = S->getLookupEntity();
4282 if (Entity) {
4283 // Look into this scope's declaration context, along with any of its
4284 // parent lookup contexts (e.g., enclosing classes), up to the point
4285 // where we hit the context stored in the next outer scope.
4286 DeclContext *OuterCtx = findOuterContext(S);
4287
4288 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4289 Ctx = Ctx->getLookupParent()) {
4290 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4291 if (Method->isInstanceMethod()) {
4292 // For instance methods, look for ivars in the method's interface.
4293 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4294 Result.getNameLoc(),
4296 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4297 lookupInDeclContext(IFace, IvarResult,
4298 /*QualifiedNameLookup=*/false,
4299 /*InBaseClass=*/false);
4300 }
4301 }
4302
4303 // We've already performed all of the name lookup that we need
4304 // to for Objective-C methods; the next context will be the
4305 // outer scope.
4306 break;
4307 }
4308
4309 if (Ctx->isFunctionOrMethod())
4310 continue;
4311
4312 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4313 /*InBaseClass=*/false);
4314 }
4315 } else if (!S->getParent()) {
4316 // Look into the translation unit scope. We walk through the translation
4317 // unit's declaration context, because the Scope itself won't have all of
4318 // the declarations if we loaded a precompiled header.
4319 // FIXME: We would like the translation unit's Scope object to point to
4320 // the translation unit, so we don't need this special "if" branch.
4321 // However, doing so would force the normal C++ name-lookup code to look
4322 // into the translation unit decl when the IdentifierInfo chains would
4323 // suffice. Once we fix that problem (which is part of a more general
4324 // "don't look in DeclContexts unless we have to" optimization), we can
4325 // eliminate this.
4326 Entity = Result.getSema().Context.getTranslationUnitDecl();
4327 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4328 /*InBaseClass=*/false);
4329 }
4330
4331 if (Entity) {
4332 // Lookup visible declarations in any namespaces found by using
4333 // directives.
4334 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4335 lookupInDeclContext(
4336 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4337 /*QualifiedNameLookup=*/false,
4338 /*InBaseClass=*/false);
4339 }
4340
4341 // Lookup names in the parent scope.
4342 ShadowContextRAII Shadow(Visited);
4343 lookupInScope(S->getParent(), Result, UDirs);
4344 }
4345
4346private:
4347 VisibleDeclsRecord Visited;
4348 VisibleDeclConsumer &Consumer;
4349 bool IncludeDependentBases;
4350 bool LoadExternal;
4351};
4352} // namespace
4353
4355 VisibleDeclConsumer &Consumer,
4356 bool IncludeGlobalScope, bool LoadExternal) {
4357 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4358 LoadExternal);
4359 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4360}
4361
4363 VisibleDeclConsumer &Consumer,
4364 bool IncludeGlobalScope,
4365 bool IncludeDependentBases, bool LoadExternal) {
4366 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4367 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4368}
4369
4371 SourceLocation GnuLabelLoc) {
4372 // Do a lookup to see if we have a label with this name already.
4373 NamedDecl *Res = nullptr;
4374
4375 if (GnuLabelLoc.isValid()) {
4376 // Local label definitions always shadow existing labels.
4377 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4378 Scope *S = CurScope;
4379 PushOnScopeChains(Res, S, true);
4380 return cast<LabelDecl>(Res);
4381 }
4382
4383 // Not a GNU local label.
4384 Res = LookupSingleName(CurScope, II, Loc, LookupLabel,
4385 RedeclarationKind::NotForRedeclaration);
4386 // If we found a label, check to see if it is in the same context as us.
4387 // When in a Block, we don't want to reuse a label in an enclosing function.
4388 if (Res && Res->getDeclContext() != CurContext)
4389 Res = nullptr;
4390 if (!Res) {
4391 // If not forward referenced or defined already, create the backing decl.
4393 Scope *S = CurScope->getFnParent();
4394 assert(S && "Not in a function?");
4395 PushOnScopeChains(Res, S, true);
4396 }
4397 return cast<LabelDecl>(Res);
4398}
4399
4400//===----------------------------------------------------------------------===//
4401// Typo correction
4402//===----------------------------------------------------------------------===//
4403
4405 TypoCorrection &Candidate) {
4406 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4407 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4408}
4409
4410static void LookupPotentialTypoResult(Sema &SemaRef,
4411 LookupResult &Res,
4412 IdentifierInfo *Name,
4413 Scope *S, CXXScopeSpec *SS,
4414 DeclContext *MemberContext,
4415 bool EnteringContext,
4416 bool isObjCIvarLookup,
4417 bool FindHidden);
4418
4419/// Check whether the declarations found for a typo correction are
4420/// visible. Set the correction's RequiresImport flag to true if none of the
4421/// declarations are visible, false otherwise.
4423 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4424
4425 for (/**/; DI != DE; ++DI)
4426 if (!LookupResult::isVisible(SemaRef, *DI))
4427 break;
4428 // No filtering needed if all decls are visible.
4429 if (DI == DE) {
4430 TC.setRequiresImport(false);
4431 return;
4432 }
4433
4434 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4435 bool AnyVisibleDecls = !NewDecls.empty();
4436
4437 for (/**/; DI != DE; ++DI) {
4438 if (LookupResult::isVisible(SemaRef, *DI)) {
4439 if (!AnyVisibleDecls) {
4440 // Found a visible decl, discard all hidden ones.
4441 AnyVisibleDecls = true;
4442 NewDecls.clear();
4443 }
4444 NewDecls.push_back(*DI);
4445 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4446 NewDecls.push_back(*DI);
4447 }
4448
4449 if (NewDecls.empty())
4450 TC = TypoCorrection();
4451 else {
4452 TC.setCorrectionDecls(NewDecls);
4453 TC.setRequiresImport(!AnyVisibleDecls);
4454 }
4455}
4456
4457// Fill the supplied vector with the IdentifierInfo pointers for each piece of
4458// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4459// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4463 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4464 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4465 else
4466 Identifiers.clear();
4467
4468 const IdentifierInfo *II = nullptr;
4469
4470 switch (NNS->getKind()) {
4472 II = NNS->getAsIdentifier();
4473 break;
4474
4477 return;
4478 II = NNS->getAsNamespace()->getIdentifier();
4479 break;
4480
4482 II = NNS->getAsNamespaceAlias()->getIdentifier();
4483 break;
4484
4487 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4488 break;
4489
4492 return;
4493 }
4494
4495 if (II)
4496 Identifiers.push_back(II);
4497}
4498
4500 DeclContext *Ctx, bool InBaseClass) {
4501 // Don't consider hidden names for typo correction.
4502 if (Hiding)
4503 return;
4504
4505 // Only consider entities with identifiers for names, ignoring
4506 // special names (constructors, overloaded operators, selectors,
4507 // etc.).
4508 IdentifierInfo *Name = ND->getIdentifier();
4509 if (!Name)
4510 return;
4511
4512 // Only consider visible declarations and declarations from modules with
4513 // names that exactly match.
4514 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4515 return;
4516
4517 FoundName(Name->getName());
4518}
4519
4521 // Compute the edit distance between the typo and the name of this
4522 // entity, and add the identifier to the list of results.
4523 addName(Name, nullptr);
4524}
4525
4527 // Compute the edit distance between the typo and this keyword,
4528 // and add the keyword to the list of results.
4529 addName(Keyword, nullptr, nullptr, true);
4530}
4531
4532void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4533 NestedNameSpecifier *NNS, bool isKeyword) {
4534 // Use a simple length-based heuristic to determine the minimum possible
4535 // edit distance. If the minimum isn't good enough, bail out early.
4536 StringRef TypoStr = Typo->getName();
4537 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4538 if (MinED && TypoStr.size() / MinED < 3)
4539 return;
4540
4541 // Compute an upper bound on the allowable edit distance, so that the
4542 // edit-distance algorithm can short-circuit.
4543 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4544 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4545 if (ED > UpperBound) return;
4546
4547 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4548 if (isKeyword) TC.makeKeyword();
4549 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4550 addCorrection(TC);
4551}
4552
4553static const unsigned MaxTypoDistanceResultSets = 5;
4554
4556 StringRef TypoStr = Typo->getName();
4557 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4558
4559 // For very short typos, ignore potential corrections that have a different
4560 // base identifier from the typo or which have a normalized edit distance
4561 // longer than the typo itself.
4562 if (TypoStr.size() < 3 &&
4563 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4564 return;
4565
4566 // If the correction is resolved but is not viable, ignore it.
4567 if (Correction.isResolved()) {
4568 checkCorrectionVisibility(SemaRef, Correction);
4569 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4570 return;
4571 }
4572
4573 TypoResultList &CList =
4574 CorrectionResults[Correction.getEditDistance(false)][Name];
4575
4576 if (!CList.empty() && !CList.back().isResolved())
4577 CList.pop_back();
4578 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4579 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4580 return TypoCorr.getCorrectionDecl() == NewND;
4581 });
4582 if (RI != CList.end()) {
4583 // The Correction refers to a decl already in the list. No insertion is
4584 // necessary and all further cases will return.
4585
4586 auto IsDeprecated = [](Decl *D) {
4587 while (D) {
4588 if (D->isDeprecated())
4589 return true;
4590 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4591 }
4592 return false;
4593 };
4594
4595 // Prefer non deprecated Corrections over deprecated and only then
4596 // sort using an alphabetical order.
4597 std::pair<bool, std::string> NewKey = {
4598 IsDeprecated(Correction.getFoundDecl()),
4599 Correction.getAsString(SemaRef.getLangOpts())};
4600
4601 std::pair<bool, std::string> PrevKey = {
4602 IsDeprecated(RI->getFoundDecl()),
4603 RI->getAsString(SemaRef.getLangOpts())};
4604
4605 if (NewKey < PrevKey)
4606 *RI = Correction;
4607 return;
4608 }
4609 }
4610 if (CList.empty() || Correction.isResolved())
4611 CList.push_back(Correction);
4612
4613 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4614 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4615}
4616
4618 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4619 SearchNamespaces = true;
4620
4621 for (auto KNPair : KnownNamespaces)
4622 Namespaces.addNameSpecifier(KNPair.first);
4623
4624 bool SSIsTemplate = false;
4625 if (NestedNameSpecifier *NNS =
4626 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4627 if (const Type *T = NNS->getAsType())
4628 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4629 }
4630 // Do not transform this into an iterator-based loop. The loop body can
4631 // trigger the creation of further types (through lazy deserialization) and
4632 // invalid iterators into this list.
4633 auto &Types = SemaRef.getASTContext().getTypes();
4634 for (unsigned I = 0; I != Types.size(); ++I) {
4635 const auto *TI = Types[I];
4636 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4637 CD = CD->getCanonicalDecl();
4638 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4639 !CD->isUnion() && CD->getIdentifier() &&
4640 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4641 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4642 Namespaces.addNameSpecifier(CD);
4643 }
4644 }
4645}
4646
4648 if (++CurrentTCIndex < ValidatedCorrections.size())
4649 return ValidatedCorrections[CurrentTCIndex];
4650
4651 CurrentTCIndex = ValidatedCorrections.size();
4652 while (!CorrectionResults.empty()) {
4653 auto DI = CorrectionResults.begin();
4654 if (DI->second.empty()) {
4655 CorrectionResults.erase(DI);
4656 continue;
4657 }
4658
4659 auto RI = DI->second.begin();
4660 if (RI->second.empty()) {
4661 DI->second.erase(RI);
4662 performQualifiedLookups();
4663 continue;
4664 }
4665
4666 TypoCorrection TC = RI->second.pop_back_val();
4667 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4668 ValidatedCorrections.push_back(TC);
4669 return ValidatedCorrections[CurrentTCIndex];
4670 }
4671 }
4672 return ValidatedCorrections[0]; // The empty correction.
4673}
4674
4675bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4677 DeclContext *TempMemberContext = MemberContext;
4678 CXXScopeSpec *TempSS = SS.get();
4679retry_lookup:
4680 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4681 EnteringContext,
4682 CorrectionValidator->IsObjCIvarLookup,
4683 Name == Typo && !Candidate.WillReplaceSpecifier());
4684 switch (Result.getResultKind()) {
4688 if (TempSS) {
4689 // Immediately retry the lookup without the given CXXScopeSpec
4690 TempSS = nullptr;
4691 Candidate.WillReplaceSpecifier(true);
4692 goto retry_lookup;
4693 }
4694 if (TempMemberContext) {
4695 if (SS && !TempSS)
4696 TempSS = SS.get();
4697 TempMemberContext = nullptr;
4698 goto retry_lookup;
4699 }
4700 if (SearchNamespaces)
4701 QualifiedResults.push_back(Candidate);
4702 break;
4703
4705 // We don't deal with ambiguities.
4706 break;
4707
4710 // Store all of the Decls for overloaded symbols
4711 for (auto *TRD : Result)
4712 Candidate.addCorrectionDecl(TRD);
4713 checkCorrectionVisibility(SemaRef, Candidate);
4714 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4715 if (SearchNamespaces)
4716 QualifiedResults.push_back(Candidate);
4717 break;
4718 }
4719 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4720 return true;
4721 }
4722 return false;
4723}
4724
4725void TypoCorrectionConsumer::performQualifiedLookups() {
4726 unsigned TypoLen = Typo->getName().size();
4727 for (const TypoCorrection &QR : QualifiedResults) {
4728 for (const auto &NSI : Namespaces) {
4729 DeclContext *Ctx = NSI.DeclCtx;
4730 const Type *NSType = NSI.NameSpecifier->getAsType();
4731
4732 // If the current NestedNameSpecifier refers to a class and the
4733 // current correction candidate is the name of that class, then skip
4734 // it as it is unlikely a qualified version of the class' constructor
4735 // is an appropriate correction.
4736 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4737 nullptr) {
4738 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4739 continue;
4740 }
4741
4742 TypoCorrection TC(QR);
4743 TC.ClearCorrectionDecls();
4744 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4745 TC.setQualifierDistance(NSI.EditDistance);
4746 TC.setCallbackDistance(0); // Reset the callback distance
4747
4748 // If the current correction candidate and namespace combination are
4749 // too far away from the original typo based on the normalized edit
4750 // distance, then skip performing a qualified name lookup.
4751 unsigned TmpED = TC.getEditDistance(true);
4752 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4753 TypoLen / TmpED < 3)
4754 continue;
4755
4756 Result.clear();
4757 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4758 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4759 continue;
4760
4761 // Any corrections added below will be validated in subsequent
4762 // iterations of the main while() loop over the Consumer's contents.
4763 switch (Result.getResultKind()) {
4766 if (SS && SS->isValid()) {
4767 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4768 std::string OldQualified;
4769 llvm::raw_string_ostream OldOStream(OldQualified);
4770 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4771 OldOStream << Typo->getName();
4772 // If correction candidate would be an identical written qualified
4773 // identifier, then the existing CXXScopeSpec probably included a
4774 // typedef that didn't get accounted for properly.
4775 if (OldOStream.str() == NewQualified)
4776 break;
4777 }
4778 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4779 TRD != TRDEnd; ++TRD) {
4780 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4781 NSType ? NSType->getAsCXXRecordDecl()
4782 : nullptr,
4783 TRD.getPair()) == Sema::AR_accessible)
4784 TC.addCorrectionDecl(*TRD);
4785 }
4786 if (TC.isResolved()) {
4787 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4788 addCorrection(TC);
4789 }
4790 break;
4791 }
4796 break;
4797 }
4798 }
4799 }
4800 QualifiedResults.clear();
4801}
4802
4803TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4804 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4805 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4806 if (NestedNameSpecifier *NNS =
4807 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4808 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4809 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4810
4811 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4812 }
4813 // Build the list of identifiers that would be used for an absolute
4814 // (from the global context) NestedNameSpecifier referring to the current
4815 // context.
4816 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4817 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4818 CurContextIdentifiers.push_back(ND->getIdentifier());
4819 }
4820
4821 // Add the global context as a NestedNameSpecifier
4822 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4824 DistanceMap[1].push_back(SI);
4825}
4826
4827auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4828 DeclContext *Start) -> DeclContextList {
4829 assert(Start && "Building a context chain from a null context");
4830 DeclContextList Chain;
4831 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4832 DC = DC->getLookupParent()) {
4833 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4834 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4835 !(ND && ND->isAnonymousNamespace()))
4836 Chain.push_back(DC->getPrimaryContext());
4837 }
4838 return Chain;
4839}
4840
4841unsigned
4842TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4843 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4844 unsigned NumSpecifiers = 0;
4845 for (DeclContext *C : llvm::reverse(DeclChain)) {
4846 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4847 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4848 ++NumSpecifiers;
4849 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4850 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4851 RD->getTypeForDecl());
4852 ++NumSpecifiers;
4853 }
4854 }
4855 return NumSpecifiers;
4856}
4857
4858void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4859 DeclContext *Ctx) {
4860 NestedNameSpecifier *NNS = nullptr;
4861 unsigned NumSpecifiers = 0;
4862 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4863 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4864
4865 // Eliminate common elements from the two DeclContext chains.
4866 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4867 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4868 break;
4869 NamespaceDeclChain.pop_back();
4870 }
4871
4872 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4873 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4874
4875 // Add an explicit leading '::' specifier if needed.
4876 if (NamespaceDeclChain.empty()) {
4877 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4879 NumSpecifiers =
4880 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4881 } else if (NamedDecl *ND =
4882 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4883 IdentifierInfo *Name = ND->getIdentifier();
4884 bool SameNameSpecifier = false;
4885 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4886 std::string NewNameSpecifier;
4887 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4888 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4889 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4890 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4891 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4892 }
4893 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4894 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4896 NumSpecifiers =
4897 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4898 }
4899 }
4900
4901 // If the built NestedNameSpecifier would be replacing an existing
4902 // NestedNameSpecifier, use the number of component identifiers that
4903 // would need to be changed as the edit distance instead of the number
4904 // of components in the built NestedNameSpecifier.
4905 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4906 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4907 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4908 NumSpecifiers =
4909 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4910 llvm::ArrayRef(NewNameSpecifierIdentifiers));
4911 }
4912
4913 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4914 DistanceMap[NumSpecifiers].push_back(SI);
4915}
4916
4917/// Perform name lookup for a possible result for typo correction.
4918static void LookupPotentialTypoResult(Sema &SemaRef,
4919 LookupResult &Res,
4920 IdentifierInfo *Name,
4921 Scope *S, CXXScopeSpec *SS,
4922 DeclContext *MemberContext,
4923 bool EnteringContext,
4924 bool isObjCIvarLookup,
4925 bool FindHidden) {
4926 Res.suppressDiagnostics();
4927 Res.clear();
4928 Res.setLookupName(Name);
4929 Res.setAllowHidden(FindHidden);
4930 if (MemberContext) {
4931 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4932 if (isObjCIvarLookup) {
4933 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4934 Res.addDecl(Ivar);
4935 Res.resolveKind();
4936 return;
4937 }
4938 }
4939
4940 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4942 Res.addDecl(Prop);
4943 Res.resolveKind();
4944 return;
4945 }
4946 }
4947
4948 SemaRef.LookupQualifiedName(Res, MemberContext);
4949 return;
4950 }
4951
4952 SemaRef.LookupParsedName(Res, S, SS,
4953 /*ObjectType=*/QualType(),
4954 /*AllowBuiltinCreation=*/false, EnteringContext);
4955
4956 // Fake ivar lookup; this should really be part of
4957 // LookupParsedName.
4958 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4959 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4960 (Res.empty() ||
4961 (Res.isSingleResult() &&
4963 if (ObjCIvarDecl *IV
4964 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4965 Res.addDecl(IV);
4966 Res.resolveKind();
4967 }
4968 }
4969 }
4970}
4971
4972/// Add keywords to the consumer as possible typo corrections.
4973static void AddKeywordsToConsumer(Sema &SemaRef,
4974 TypoCorrectionConsumer &Consumer,
4976 bool AfterNestedNameSpecifier) {
4977 if (AfterNestedNameSpecifier) {
4978 // For 'X::', we know exactly which keywords can appear next.
4979 Consumer.addKeywordResult("template");
4980 if (CCC.WantExpressionKeywords)
4981 Consumer.addKeywordResult("operator");
4982 return;
4983 }
4984
4985 if (CCC.WantObjCSuper)
4986 Consumer.addKeywordResult("super");
4987
4988 if (CCC.WantTypeSpecifiers) {
4989 // Add type-specifier keywords to the set of results.
4990 static const char *const CTypeSpecs[] = {
4991 "char", "const", "double", "enum", "float", "int", "long", "short",
4992 "signed", "struct", "union", "unsigned", "void", "volatile",
4993 "_Complex",
4994 // storage-specifiers as well
4995 "extern", "inline", "static", "typedef"
4996 };
4997
4998 for (const auto *CTS : CTypeSpecs)
4999 Consumer.addKeywordResult(CTS);
5000
5001 if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y)
5002 Consumer.addKeywordResult("_Imaginary");
5003
5004 if (SemaRef.getLangOpts().C99)
5005 Consumer.addKeywordResult("restrict");
5006 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5007 Consumer.addKeywordResult("bool");
5008 else if (SemaRef.getLangOpts().C99)
5009 Consumer.addKeywordResult("_Bool");
5010
5011 if (SemaRef.getLangOpts().CPlusPlus) {
5012 Consumer.addKeywordResult("class");
5013 Consumer.addKeywordResult("typename");
5014 Consumer.addKeywordResult("wchar_t");
5015
5016 if (SemaRef.getLangOpts().CPlusPlus11) {
5017 Consumer.addKeywordResult("char16_t");
5018 Consumer.addKeywordResult("char32_t");
5019 Consumer.addKeywordResult("constexpr");
5020 Consumer.addKeywordResult("decltype");
5021 Consumer.addKeywordResult("thread_local");
5022 }
5023 }
5024
5025 if (SemaRef.getLangOpts().GNUKeywords)
5026 Consumer.addKeywordResult("typeof");
5027 } else if (CCC.WantFunctionLikeCasts) {
5028 static const char *const CastableTypeSpecs[] = {
5029 "char", "double", "float", "int", "long", "short",
5030 "signed", "unsigned", "void"
5031 };
5032 for (auto *kw : CastableTypeSpecs)
5033 Consumer.addKeywordResult(kw);
5034 }
5035
5036 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5037 Consumer.addKeywordResult("const_cast");
5038 Consumer.addKeywordResult("dynamic_cast");
5039 Consumer.addKeywordResult("reinterpret_cast");
5040 Consumer.addKeywordResult("static_cast");
5041 }
5042
5043 if (CCC.WantExpressionKeywords) {
5044 Consumer.addKeywordResult("sizeof");
5045 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5046 Consumer.addKeywordResult("false");
5047 Consumer.addKeywordResult("true");
5048 }
5049
5050 if (SemaRef.getLangOpts().CPlusPlus) {
5051 static const char *const CXXExprs[] = {
5052 "delete", "new", "operator", "throw", "typeid"
5053 };
5054 for (const auto *CE : CXXExprs)
5055 Consumer.addKeywordResult(CE);
5056
5057 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5058 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5059 Consumer.addKeywordResult("this");
5060
5061 if (SemaRef.getLangOpts().CPlusPlus11) {
5062 Consumer.addKeywordResult("alignof");
5063 Consumer.addKeywordResult("nullptr");
5064 }
5065 }
5066
5067 if (SemaRef.getLangOpts().C11) {
5068 // FIXME: We should not suggest _Alignof if the alignof macro
5069 // is present.
5070 Consumer.addKeywordResult("_Alignof");
5071 }
5072 }
5073
5074 if (CCC.WantRemainingKeywords) {
5075 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5076 // Statements.
5077 static const char *const CStmts[] = {
5078 "do", "else", "for", "goto", "if", "return", "switch", "while" };
5079 for (const auto *CS : CStmts)
5080 Consumer.addKeywordResult(CS);
5081
5082 if (SemaRef.getLangOpts().CPlusPlus) {
5083 Consumer.addKeywordResult("catch");
5084 Consumer.addKeywordResult("try");
5085 }
5086
5087 if (S && S->getBreakParent())
5088 Consumer.addKeywordResult("break");
5089
5090 if (S && S->getContinueParent())
5091 Consumer.addKeywordResult("continue");
5092
5093 if (SemaRef.getCurFunction() &&
5094 !SemaRef.getCurFunction()->SwitchStack.empty()) {
5095 Consumer.addKeywordResult("case");
5096 Consumer.addKeywordResult("default");
5097 }
5098 } else {
5099 if (SemaRef.getLangOpts().CPlusPlus) {
5100 Consumer.addKeywordResult("namespace");
5101 Consumer.addKeywordResult("template");
5102 }
5103
5104 if (S && S->isClassScope()) {
5105 Consumer.addKeywordResult("explicit");
5106 Consumer.addKeywordResult("friend");
5107 Consumer.addKeywordResult("mutable");
5108 Consumer.addKeywordResult("private");
5109 Consumer.addKeywordResult("protected");
5110 Consumer.addKeywordResult("public");
5111 Consumer.addKeywordResult("virtual");
5112 }
5113 }
5114
5115 if (SemaRef.getLangOpts().CPlusPlus) {
5116 Consumer.addKeywordResult("using");
5117
5118 if (SemaRef.getLangOpts().CPlusPlus11)
5119 Consumer.addKeywordResult("static_assert");
5120 }
5121 }
5122}
5123
5124std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5125 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5127 DeclContext *MemberContext, bool EnteringContext,
5128 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5129
5130 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5132 return nullptr;
5133
5134 // In Microsoft mode, don't perform typo correction in a template member
5135 // function dependent context because it interferes with the "lookup into
5136 // dependent bases of class templates" feature.
5137 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5138 isa<CXXMethodDecl>(CurContext))
5139 return nullptr;
5140
5141 // We only attempt to correct typos for identifiers.
5142 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5143 if (!Typo)
5144 return nullptr;
5145
5146 // If the scope specifier itself was invalid, don't try to correct
5147 // typos.
5148 if (SS && SS->isInvalid())
5149 return nullptr;
5150
5151 // Never try to correct typos during any kind of code synthesis.
5152 if (!CodeSynthesisContexts.empty())
5153 return nullptr;
5154
5155 // Don't try to correct 'super'.
5156 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5157 return nullptr;
5158
5159 // Abort if typo correction already failed for this specific typo.
5160 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5161 if (locs != TypoCorrectionFailures.end() &&
5162 locs->second.count(TypoName.getLoc()))
5163 return nullptr;
5164
5165 // Don't try to correct the identifier "vector" when in AltiVec mode.
5166 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5167 // remove this workaround.
5168 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5169 return nullptr;
5170
5171 // Provide a stop gap for files that are just seriously broken. Trying
5172 // to correct all typos can turn into a HUGE performance penalty, causing
5173 // some files to take minutes to get rejected by the parser.
5174 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5175 if (Limit && TyposCorrected >= Limit)
5176 return nullptr;
5178
5179 // If we're handling a missing symbol error, using modules, and the
5180 // special search all modules option is used, look for a missing import.
5181 if (ErrorRecovery && getLangOpts().Modules &&
5182 getLangOpts().ModulesSearchAll) {
5183 // The following has the side effect of loading the missing module.
5184 getModuleLoader().lookupMissingImports(Typo->getName(),
5185 TypoName.getBeginLoc());
5186 }
5187
5188 // Extend the lifetime of the callback. We delayed this until here
5189 // to avoid allocations in the hot path (which is where no typo correction
5190 // occurs). Note that CorrectionCandidateCallback is polymorphic and
5191 // initially stack-allocated.
5192 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5193 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5194 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5195 EnteringContext);
5196
5197 // Perform name lookup to find visible, similarly-named entities.
5198 bool IsUnqualifiedLookup = false;
5199 DeclContext *QualifiedDC = MemberContext;
5200 if (MemberContext) {
5201 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5202
5203 // Look in qualified interfaces.
5204 if (OPT) {
5205 for (auto *I : OPT->quals())
5206 LookupVisibleDecls(I, LookupKind, *Consumer);
5207 }
5208 } else if (SS && SS->isSet()) {
5209 QualifiedDC = computeDeclContext(*SS, EnteringContext);
5210 if (!QualifiedDC)
5211 return nullptr;
5212
5213 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5214 } else {
5215 IsUnqualifiedLookup = true;
5216 }
5217
5218 // Determine whether we are going to search in the various namespaces for
5219 // corrections.
5220 bool SearchNamespaces
5221 = getLangOpts().CPlusPlus &&
5222 (IsUnqualifiedLookup || (SS && SS->isSet()));
5223
5224 if (IsUnqualifiedLookup || SearchNamespaces) {
5225 // For unqualified lookup, look through all of the names that we have
5226 // seen in this translation unit.
5227 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5228 for (const auto &I : Context.Idents)
5229 Consumer->FoundName(I.getKey());
5230
5231 // Walk through identifiers in external identifier sources.
5232 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5235 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5236 do {
5237 StringRef Name = Iter->Next();
5238 if (Name.empty())
5239 break;
5240
5241 Consumer->FoundName(Name);
5242 } while (true);
5243 }
5244 }
5245
5247 *Consumer->getCorrectionValidator(),
5248 SS && SS->isNotEmpty());
5249
5250 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5251 // to search those namespaces.
5252 if (SearchNamespaces) {
5253 // Load any externally-known namespaces.
5254 if (ExternalSource && !LoadedExternalKnownNamespaces) {
5255 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5256 LoadedExternalKnownNamespaces = true;
5257 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5258 for (auto *N : ExternalKnownNamespaces)
5259 KnownNamespaces[N] = true;
5260 }
5261
5262 Consumer->addNamespaces(KnownNamespaces);
5263 }
5264
5265 return Consumer;
5266}
5267
5269 Sema::LookupNameKind LookupKind,
5270 Scope *S, CXXScopeSpec *SS,
5272 CorrectTypoKind Mode,
5273 DeclContext *MemberContext,
5274 bool EnteringContext,
5275 const ObjCObjectPointerType *OPT,
5276 bool RecordFailure) {
5277 // Always let the ExternalSource have the first chance at correction, even
5278 // if we would otherwise have given up.
5279 if (ExternalSource) {
5280 if (TypoCorrection Correction =
5281 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5282 MemberContext, EnteringContext, OPT))
5283 return Correction;
5284 }
5285
5286 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5287 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5288 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5289 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5290 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5291
5292 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5293 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5294 MemberContext, EnteringContext,
5295 OPT, Mode == CTK_ErrorRecovery);
5296
5297 if (!Consumer)
5298 return TypoCorrection();
5299
5300 // If we haven't found anything, we're done.
5301 if (Consumer->empty())
5302 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5303
5304 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5305 // is not more that about a third of the length of the typo's identifier.
5306 unsigned ED = Consumer->getBestEditDistance(true);
5307 unsigned TypoLen = Typo->getName().size();
5308 if (ED > 0 && TypoLen / ED < 3)
5309 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5310
5311 TypoCorrection BestTC = Consumer->getNextCorrection();
5312 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5313 if (!BestTC)
5314 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5315
5316 ED = BestTC.getEditDistance();
5317
5318 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5319 // If this was an unqualified lookup and we believe the callback
5320 // object wouldn't have filtered out possible corrections, note
5321 // that no correction was found.
5322 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5323 }
5324
5325 // If only a single name remains, return that result.
5326 if (!SecondBestTC ||
5327 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5328 const TypoCorrection &Result = BestTC;
5329
5330 // Don't correct to a keyword that's the same as the typo; the keyword
5331 // wasn't actually in scope.
5332 if (ED == 0 && Result.isKeyword())
5333 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5334
5336 TC.setCorrectionRange(SS, TypoName);
5337 checkCorrectionVisibility(*this, TC);
5338 return TC;
5339 } else if (SecondBestTC && ObjCMessageReceiver) {
5340 // Prefer 'super' when we're completing in a message-receiver
5341 // context.
5342
5343 if (BestTC.getCorrection().getAsString() != "super") {
5344 if (SecondBestTC.getCorrection().getAsString() == "super")
5345 BestTC = SecondBestTC;
5346 else if ((*Consumer)["super"].front().isKeyword())
5347 BestTC = (*Consumer)["super"].front();
5348 }
5349 // Don't correct to a keyword that's the same as the typo; the keyword
5350 // wasn't actually in scope.
5351 if (BestTC.getEditDistance() == 0 ||
5352 BestTC.getCorrection().getAsString() != "super")
5353 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5354
5355 BestTC.setCorrectionRange(SS, TypoName);
5356 return BestTC;
5357 }
5358
5359 // Record the failure's location if needed and return an empty correction. If
5360 // this was an unqualified lookup and we believe the callback object did not
5361 // filter out possible corrections, also cache the failure for the typo.
5362 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5363}
5364
5366 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5369 DeclContext *MemberContext, bool EnteringContext,
5370 const ObjCObjectPointerType *OPT) {
5371 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5372 MemberContext, EnteringContext,
5373 OPT, Mode == CTK_ErrorRecovery);
5374
5375 // Give the external sema source a chance to correct the typo.
5376 TypoCorrection ExternalTypo;
5377 if (ExternalSource && Consumer) {
5378 ExternalTypo = ExternalSource->CorrectTypo(
5379 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5380 MemberContext, EnteringContext, OPT);
5381 if (ExternalTypo)
5382 Consumer->addCorrection(ExternalTypo);
5383 }
5384
5385 if (!Consumer || Consumer->empty())
5386 return nullptr;
5387
5388 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5389 // is not more that about a third of the length of the typo's identifier.
5390 unsigned ED = Consumer->getBestEditDistance(true);
5391 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5392 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5393 return nullptr;
5394 ExprEvalContexts.back().NumTypos++;
5395 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5396 TypoName.getLoc());
5397}
5398
5400 if (!CDecl) return;
5401
5402 if (isKeyword())
5403 CorrectionDecls.clear();
5404
5405 CorrectionDecls.push_back(CDecl);
5406
5407 if (!CorrectionName)
5408 CorrectionName = CDecl->getDeclName();
5409}
5410
5411std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5412 if (CorrectionNameSpec) {
5413 std::string tmpBuffer;
5414 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5415 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5416 PrefixOStream << CorrectionName;
5417 return PrefixOStream.str();
5418 }
5419
5420 return CorrectionName.getAsString();
5421}
5422
5424 const TypoCorrection &candidate) {
5425 if (!candidate.isResolved())
5426 return true;
5427
5428 if (candidate.isKeyword())
5431
5432 bool HasNonType = false;
5433 bool HasStaticMethod = false;
5434 bool HasNonStaticMethod = false;
5435 for (Decl *D : candidate) {
5436 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5437 D = FTD->getTemplatedDecl();
5438 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5439 if (Method->isStatic())
5440 HasStaticMethod = true;
5441 else
5442 HasNonStaticMethod = true;
5443 }
5444 if (!isa<TypeDecl>(D))
5445 HasNonType = true;
5446 }
5447
5448 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5449 !candidate.getCorrectionSpecifier())
5450 return false;
5451
5452 return WantTypeSpecifiers || HasNonType;
5453}
5454
5456 bool HasExplicitTemplateArgs,
5457 MemberExpr *ME)
5458 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5459 CurContext(SemaRef.CurContext), MemberFn(ME) {
5460 WantTypeSpecifiers = false;
5461 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5462 !HasExplicitTemplateArgs && NumArgs == 1;
5463 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5464 WantRemainingKeywords = false;
5465}
5466
5468 if (!candidate.getCorrectionDecl())
5469 return candidate.isKeyword();
5470
5471 for (auto *C : candidate) {
5472 FunctionDecl *FD = nullptr;
5473 NamedDecl *ND = C->getUnderlyingDecl();
5474 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5475 FD = FTD->getTemplatedDecl();
5476 if (!HasExplicitTemplateArgs && !FD) {
5477 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5478 // If the Decl is neither a function nor a template function,
5479 // determine if it is a pointer or reference to a function. If so,
5480 // check against the number of arguments expected for the pointee.
5481 QualType ValType = cast<ValueDecl>(ND)->getType();
5482 if (ValType.isNull())
5483 continue;
5484 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5485 ValType = ValType->getPointeeType();
5486 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5487 if (FPT->getNumParams() == NumArgs)
5488 return true;
5489 }
5490 }
5491
5492 // A typo for a function-style cast can look like a function call in C++.
5493 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5494 : isa<TypeDecl>(ND)) &&
5495 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5496 // Only a class or class template can take two or more arguments.
5497 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5498
5499 // Skip the current candidate if it is not a FunctionDecl or does not accept
5500 // the current number of arguments.
5501 if (!FD || !(FD->getNumParams() >= NumArgs &&
5502 FD->getMinRequiredArguments() <= NumArgs))
5503 continue;
5504
5505 // If the current candidate is a non-static C++ method, skip the candidate
5506 // unless the method being corrected--or the current DeclContext, if the
5507 // function being corrected is not a method--is a method in the same class
5508 // or a descendent class of the candidate's parent class.
5509 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5510 if (MemberFn || !MD->isStatic()) {
5511 const auto *CurMD =
5512 MemberFn
5513 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl())
5514 : dyn_cast_if_present<CXXMethodDecl>(CurContext);
5515 const CXXRecordDecl *CurRD =
5516 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5517 const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5518 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5519 continue;
5520 }
5521 }
5522 return true;
5523 }
5524 return false;
5525}
5526
5527void Sema::diagnoseTypo(const TypoCorrection &Correction,
5528 const PartialDiagnostic &TypoDiag,
5529 bool ErrorRecovery) {
5530 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5531 ErrorRecovery);
5532}
5533
5534/// Find which declaration we should import to provide the definition of
5535/// the given declaration.
5537 if (const auto *VD = dyn_cast<VarDecl>(D))
5538 return VD->getDefinition();
5539 if (const auto *FD = dyn_cast<FunctionDecl>(D))
5540 return FD->getDefinition();
5541 if (const auto *TD = dyn_cast<TagDecl>(D))
5542 return TD->getDefinition();
5543 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
5544 return ID->getDefinition();
5545 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
5546 return PD->getDefinition();
5547 if (const auto *TD = dyn_cast<TemplateDecl>(D))
5548 if (const NamedDecl *TTD = TD->getTemplatedDecl())
5549 return getDefinitionToImport(TTD);
5550 return nullptr;
5551}
5552
5554 MissingImportKind MIK, bool Recover) {
5555 // Suggest importing a module providing the definition of this entity, if
5556 // possible.
5557 const NamedDecl *Def = getDefinitionToImport(Decl);
5558 if (!Def)
5559 Def = Decl;
5560
5561 Module *Owner = getOwningModule(Def);
5562 assert(Owner && "definition of hidden declaration is not in a module");
5563
5564 llvm::SmallVector<Module*, 8> OwningModules;
5565 OwningModules.push_back(Owner);
5566 auto Merged = Context.getModulesWithMergedDefinition(Def);
5567 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5568
5569 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5570 Recover);
5571}
5572
5573/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5574/// suggesting the addition of a #include of the specified file.
5576 llvm::StringRef IncludingFile) {
5577 bool IsAngled = false;
5579 E, IncludingFile, &IsAngled);
5580 return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"');
5581}
5582
5584 SourceLocation DeclLoc,
5585 ArrayRef<Module *> Modules,
5586 MissingImportKind MIK, bool Recover) {
5587 assert(!Modules.empty());
5588
5589 // See https://github.com/llvm/llvm-project/issues/73893. It is generally
5590 // confusing than helpful to show the namespace is not visible.
5591 if (isa<NamespaceDecl>(Decl))
5592 return;
5593
5594 auto NotePrevious = [&] {
5595 // FIXME: Suppress the note backtrace even under
5596 // -fdiagnostics-show-note-include-stack. We don't care how this
5597 // declaration was previously reached.
5598 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5599 };
5600
5601 // Weed out duplicates from module list.
5602 llvm::SmallVector<Module*, 8> UniqueModules;
5603 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5604 for (auto *M : Modules) {
5605 if (M->isExplicitGlobalModule() || M->isPrivateModule())
5606 continue;
5607 if (UniqueModuleSet.insert(M).second)
5608 UniqueModules.push_back(M);
5609 }
5610
5611 // Try to find a suitable header-name to #include.
5612 std::string HeaderName;
5613 if (OptionalFileEntryRef Header =
5614 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5615 if (const FileEntry *FE =
5617 HeaderName =
5618 getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName());
5619 }
5620
5621 // If we have a #include we should suggest, or if all definition locations
5622 // were in global module fragments, don't suggest an import.
5623 if (!HeaderName.empty() || UniqueModules.empty()) {
5624 // FIXME: Find a smart place to suggest inserting a #include, and add
5625 // a FixItHint there.
5626 Diag(UseLoc, diag::err_module_unimported_use_header)
5627 << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5628 // Produce a note showing where the entity was declared.
5629 NotePrevious();
5630 if (Recover)
5632 return;
5633 }
5634
5635 Modules = UniqueModules;
5636
5637 auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string {
5638 if (M->isModuleMapModule())
5639 return M->getFullModuleName();
5640
5641 if (M->isImplicitGlobalModule())
5642 M = M->getTopLevelModule();
5643
5644 // If the current module unit is in the same module with M, it is OK to show
5645 // the partition name. Otherwise, it'll be sufficient to show the primary
5646 // module name.
5648 return M->getTopLevelModuleName().str();
5649 else
5650 return M->getPrimaryModuleInterfaceName().str();
5651 };
5652
5653 if (Modules.size() > 1) {
5654 std::string ModuleList;
5655 unsigned N = 0;
5656 for (const auto *M : Modules) {
5657 ModuleList += "\n ";
5658 if (++N == 5 && N != Modules.size()) {
5659 ModuleList += "[...]";
5660 break;
5661 }
5662 ModuleList += GetModuleNameForDiagnostic(M);
5663 }
5664
5665 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5666 << (int)MIK << Decl << ModuleList;
5667 } else {
5668 // FIXME: Add a FixItHint that imports the corresponding module.
5669 Diag(UseLoc, diag::err_module_unimported_use)
5670 << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]);
5671 }
5672
5673 NotePrevious();
5674
5675 // Try to recover by implicitly importing this module.
5676 if (Recover)
5678}
5679
5680void Sema::diagnoseTypo(const TypoCorrection &Correction,
5681 const PartialDiagnostic &TypoDiag,
5682 const PartialDiagnostic &PrevNote,
5683 bool ErrorRecovery) {
5684 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5685 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5687 Correction.getCorrectionRange(), CorrectedStr);
5688
5689 // Maybe we're just missing a module import.
5690 if (Correction.requiresImport()) {
5691 NamedDecl *Decl = Correction.getFoundDecl();
5692 assert(Decl && "import required but no declaration to import");
5693
5695 MissingImportKind::Declaration, ErrorRecovery);
5696 return;
5697 }
5698
5699 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5700 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5701
5702 NamedDecl *ChosenDecl =
5703 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5704
5705 // For builtin functions which aren't declared anywhere in source,
5706 // don't emit the "declared here" note.
5707 if (const auto *FD = dyn_cast_if_present<FunctionDecl>(ChosenDecl);
5708 FD && FD->getBuiltinID() &&
5709 PrevNote.getDiagID() == diag::note_previous_decl &&
5710 Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) {
5711 ChosenDecl = nullptr;
5712 }
5713
5714 if (PrevNote.getDiagID() && ChosenDecl)
5715 Diag(ChosenDecl->getLocation(), PrevNote)
5716 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5717
5718 // Add any extra diagnostics.
5719 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5720 Diag(Correction.getCorrectionRange().getBegin(), PD);
5721}
5722
5723TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5724 TypoDiagnosticGenerator TDG,
5725 TypoRecoveryCallback TRC,
5726 SourceLocation TypoLoc) {
5727 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5728 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5729 auto &State = DelayedTypos[TE];
5730 State.Consumer = std::move(TCC);
5731 State.DiagHandler = std::move(TDG);
5732 State.RecoveryHandler = std::move(TRC);
5733 if (TE)
5734 TypoExprs.push_back(TE);
5735 return TE;
5736}
5737
5739 auto Entry = DelayedTypos.find(TE);
5740 assert(Entry != DelayedTypos.end() &&
5741 "Failed to get the state for a TypoExpr!");
5742 return Entry->second;
5743}
5744
5746 DelayedTypos.erase(TE);
5747}
5748
5750 DeclarationNameInfo Name(II, IILoc);
5751 LookupResult R(*this, Name, LookupAnyName,
5752 RedeclarationKind::NotForRedeclaration);
5754 R.setHideTags(false);
5755 LookupName(R, S);
5756 R.dump();
5757}
5758
5760 E->dump();
5761}
5762
5764 // A declaration with an owning module for linkage can never link against
5765 // anything that is not visible. We don't need to check linkage here; if
5766 // the context has internal linkage, redeclaration lookup won't find things
5767 // from other TUs, and we can't safely compute linkage yet in general.
5768 if (cast<Decl>(CurContext)->getOwningModuleForLinkage())
5769 return RedeclarationKind::ForVisibleRedeclaration;
5770 return RedeclarationKind::ForExternalRedeclaration;
5771}
Defines the clang::ASTContext interface.
NodeId Parent
Definition: ASTDiff.cpp:191
StringRef P
#define SM(sm)
Definition: Cuda.cpp:84
Defines enum values for all the target-independent builtin functions.
const Decl * D
IndirectLocalPath & Path
Expr * E
enum clang::sema::@1718::IndirectLocalPathEntry::EntryKind Kind
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the C++ template declaration subclasses.
Defines the clang::Expr interface and subclasses for C++ expressions.
int Category
Definition: Format.cpp:3035
llvm::DenseSet< const void * > Visited
Definition: HTMLLogger.cpp:145
unsigned Iter
Definition: HTMLLogger.cpp:153
Defines the clang::LangOptions interface.
llvm::MachO::Record Record
Definition: MachO.h:31
Defines the clang::Preprocessor interface.
RedeclarationKind
Specifies whether (or how) name lookup is being performed for a redeclaration (vs.
Definition: Redeclaration.h:18
uint32_t Id
Definition: SemaARM.cpp:1134
static Module * getDefiningModule(Sema &S, Decl *Entity)
Find the module in which the given declaration was defined.
static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, const NamedDecl *D, const NamedDecl *Existing)
Determine whether D is a better lookup result than Existing, given that they declare the same entity.
Definition: SemaLookup.cpp:370
static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class)
Determine whether we can declare a special member function within the class at this point.
static bool canHideTag(const NamedDecl *D)
Determine whether D can hide a tag declaration.
Definition: SemaLookup.cpp:464
static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E, llvm::StringRef IncludingFile)
Get a "quoted.h" or <angled.h> include path to use in a diagnostic suggesting the addition of a #incl...
static void addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T)
static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name)
Lookup an OpenCL typedef type.
Definition: SemaLookup.cpp:719
static DeclContext * findOuterContext(Scope *S)
Find the outer declaration context from this scope.
static void LookupPotentialTypoResult(Sema &SemaRef, LookupResult &Res, IdentifierInfo *Name, Scope *S, CXXScopeSpec *SS, DeclContext *MemberContext, bool EnteringContext, bool isObjCIvarLookup, bool FindHidden)
Perform name lookup for a possible result for typo correction.
static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC)
Check whether the declarations found for a typo correction are visible.
static bool isNamespaceOrTranslationUnitScope(Scope *S)
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, DeclContext *StartDC)
Perform qualified name lookup in the namespaces nominated by using directives by the given context.
static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC)
static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name)
Lookup an OpenCL enum type.
Definition: SemaLookup.cpp:706
static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, DeclContext *Ctx)
static bool hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, llvm::SmallVectorImpl< Module * > *Modules, Sema::AcceptableKind Kind)
static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)
Determine whether this is the name of an implicitly-declared special member function.
static void DeclareImplicitMemberFunctionsWithName(Sema &S, DeclarationName Name, SourceLocation Loc, const DeclContext *DC)
If there are any implicit member functions with the given name that need to be declared in the given ...
static void AddKeywordsToConsumer(Sema &SemaRef, TypoCorrectionConsumer &Consumer, Scope *S, CorrectionCandidateCallback &CCC, bool AfterNestedNameSpecifier)
Add keywords to the consumer as possible typo corrections.
static void GetQualTypesForOpenCLBuiltin(Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, SmallVector< QualType, 1 > &RetTypes, SmallVector< SmallVector< QualType, 1 >, 5 > &ArgTypes)
Get the QualType instances of the return type and arguments for an OpenCL builtin function signature.
Definition: SemaLookup.cpp:742
static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, llvm::StringRef Name)
Diagnose a missing builtin type.
Definition: SemaLookup.cpp:698
static bool hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules, Sema::AcceptableKind Kind)
static bool hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules, Filter F, Sema::AcceptableKind Kind)
static bool isCandidateViable(CorrectionCandidateCallback &CCC, TypoCorrection &Candidate)
static const DeclContext * getContextForScopeMatching(const Decl *D)
Get a representative context for a declaration such that two declarations will have the same context ...
Definition: SemaLookup.cpp:355
static NamedDecl * findAcceptableDecl(Sema &SemaRef, NamedDecl *D, unsigned IDNS)
Retrieve the visible declaration corresponding to D, if any.
static void GetOpenCLBuiltinFctOverloads(ASTContext &Context, unsigned GenTypeMaxCnt, std::vector< QualType > &FunctionList, SmallVector< QualType, 1 > &RetTypes, SmallVector< SmallVector< QualType, 1 >, 5 > &ArgTypes)
Create a list of the candidate function overloads for an OpenCL builtin function.
Definition: SemaLookup.cpp:771
static const unsigned MaxTypoDistanceResultSets
static const NamedDecl * getDefinitionToImport(const NamedDecl *D)
Find which declaration we should import to provide the definition of the given declaration.
static void getNestedNameSpecifierIdentifiers(NestedNameSpecifier *NNS, SmallVectorImpl< const IdentifierInfo * > &Identifiers)
static bool hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules, Sema::AcceptableKind Kind)
static unsigned getIDNS(Sema::LookupNameKind NameKind, bool CPlusPlus, bool Redeclaration)
Definition: SemaLookup.cpp:213
static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, IdentifierInfo *II, const unsigned FctIndex, const unsigned Len)
When trying to resolve a function name, if isOpenCLBuiltin() returns a non-null <Index,...
Definition: SemaLookup.cpp:816
static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S)
Looks up the declaration of "struct objc_super" and saves it for later use in building builtin declar...
Definition: SemaLookup.cpp:985
static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, const DeclContext *NS, UnqualUsingDirectiveSet &UDirs)
SourceLocation Loc
Definition: SemaObjC.cpp:759
This file declares semantic analysis functions specific to RISC-V.
const NestedNameSpecifier * Specifier
__DEVICE__ long long abs(long long __n)
__device__ int
A class for storing results from argument-dependent lookup.
Definition: Lookup.h:869
void insert(NamedDecl *D)
Adds a new ADL candidate to this map.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1141
const SmallVectorImpl< Type * > & getTypes() const
Definition: ASTContext.h:1292
QualType getTagDeclType(const TagDecl *Decl) const
Return the unique reference to the type for the specified TagDecl (struct/union/class/enum) decl.
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:684
QualType getRecordType(const RecordDecl *Decl) const
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2716
CallingConv getDefaultCallingConvention(bool IsVariadic, bool IsCXXMethod, bool IsBuiltin=false) const
Retrieves the default calling convention for the current target.
QualType getEnumType(const EnumDecl *Decl) const
CanQualType DependentTy
Definition: ASTContext.h:1188
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1703
IdentifierTable & Idents
Definition: ASTContext.h:680
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:682
const LangOptions & getLangOpts() const
Definition: ASTContext.h:834
void setObjCSuperType(QualType ST)
Definition: ASTContext.h:1962
CanQualType OverloadTy
Definition: ASTContext.h:1188
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:733
ArrayRef< Module * > getModulesWithMergedDefinition(const NamedDecl *Def)
Get the additional modules in which the definition Def has been merged.
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2763
CanQualType VoidTy
Definition: ASTContext.h:1160
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1681
void mergeDefinitionIntoModule(NamedDecl *ND, Module *M, bool NotifyListeners=true)
Note that the definition ND has been merged into module M, and should be visible whenever M is visibl...
QualType getTypedefType(const TypedefNameDecl *Decl, QualType Underlying=QualType()) const
Return the unique reference to the type for the specified typedef-name decl.
bool isInSameModule(const Module *M1, const Module *M2)
If the two module M1 and M2 are in the same module.
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc",...
Definition: Builtins.h:158
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
std::list< CXXBasePath >::iterator paths_iterator
std::list< CXXBasePath >::const_iterator const_paths_iterator
void swap(CXXBasePaths &Other)
Swap this data structure's contents with another CXXBasePaths object.
Represents a base class of a C++ class.
Definition: DeclCXX.h:146
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:249
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2553
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2817
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2078
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
base_class_iterator bases_end()
Definition: DeclCXX.h:629
bool hasAnyDependentBases() const
Determine whether this class has any dependent base classes which are not the current instantiation.
Definition: DeclCXX.cpp:607
bool needsImplicitDefaultConstructor() const
Determine if we need to declare a default constructor for this class.
Definition: DeclCXX.h:778
bool needsImplicitMoveConstructor() const
Determine whether this class should get an implicit move constructor or if any existing special membe...
Definition: DeclCXX.h:904
CXXRecordDecl * getDefinition() const
Definition: DeclCXX.h:565
static AccessSpecifier MergeAccess(AccessSpecifier PathAccess, AccessSpecifier DeclAccess)
Calculates the access of a decl that is reached along a path.
Definition: DeclCXX.h:1738
const CXXRecordDecl * getTemplateInstantiationPattern() const
Retrieve the record declaration from which this record could be instantiated.
Definition: DeclCXX.cpp:2024
bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths, bool LookupInDependent=false) const
Look for entities within the base classes of this C++ class, transitively searching all base class su...
base_class_iterator bases_begin()
Definition: DeclCXX.h:627
bool needsImplicitCopyConstructor() const
Determine whether this class needs an implicit copy constructor to be lazily declared.
Definition: DeclCXX.h:811
bool needsImplicitDestructor() const
Determine whether this class needs an implicit destructor to be lazily declared.
Definition: DeclCXX.h:1019
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:2069
bool needsImplicitMoveAssignment() const
Determine whether this class should get an implicit move assignment operator or if any existing speci...
Definition: DeclCXX.h:995
bool needsImplicitCopyAssignment() const
Determine whether this class needs an implicit copy assignment operator to be lazily declared.
Definition: DeclCXX.h:937
bool isDerivedFrom(const CXXRecordDecl *Base) const
Determine whether this class is derived from the class Base.
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:74
bool isNotEmpty() const
A scope specifier is present, but may be valid or invalid.
Definition: DeclSpec.h:210
SourceRange getRange() const
Definition: DeclSpec.h:80
bool isSet() const
Deprecated.
Definition: DeclSpec.h:228
NestedNameSpecifier * getScopeRep() const
Retrieve the representation of the nested-name-specifier.
Definition: DeclSpec.h:95
bool isInvalid() const
An error occurred during parsing of the scope specifier.
Definition: DeclSpec.h:213
bool isEmpty() const
No scope specifier.
Definition: DeclSpec.h:208
Declaration of a class template.
Represents a class template specialization, which refers to a class template with a given set of temp...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
virtual unsigned RankCandidate(const TypoCorrection &candidate)
Method used by Sema::CorrectTypo to assign an "edit distance" rank to a candidate (where a lower valu...
virtual bool ValidateCandidate(const TypoCorrection &candidate)
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
virtual std::unique_ptr< CorrectionCandidateCallback > clone()=0
Clone this CorrectionCandidateCallback.
A POD class for pairing a NamedDecl* with an access specifier.
static DeclAccessPair make(NamedDecl *D, AccessSpecifier AS)
NamedDecl * getDecl() const
The results of name lookup within a DeclContext.
Definition: DeclBase.h:1368
DeclListNode::iterator iterator
Definition: DeclBase.h:1378
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1435
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:2089
udir_range using_directives() const
Returns iterator range [First, Last) of UsingDirectiveDecls stored within this context.
Definition: DeclBase.cpp:2142
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC.
Definition: DeclBase.h:2218
bool isFileContext() const
Definition: DeclBase.h:2160
bool isTransparentContext() const
isTransparentContext - Determines whether this context is a "transparent" context,...
Definition: DeclBase.cpp:1368
ASTContext & getParentASTContext() const
Definition: DeclBase.h:2118
lookups_range noload_lookups(bool PreserveInternalState) const
Definition: DeclLookups.h:89
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1334
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:2105
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1854
bool isTranslationUnit() const
Definition: DeclBase.h:2165
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1990
lookups_range lookups() const
Definition: DeclLookups.h:75
bool shouldUseQualifiedLookup() const
Definition: DeclBase.h:2699
void setUseQualifiedLookup(bool use=true) const
Definition: DeclBase.h:2695
DeclContext * getPrimaryContext()
getPrimaryContext - There may be many different declarations of the same entity (including forward de...
Definition: DeclBase.cpp:1424
bool isInlineNamespace() const
Definition: DeclBase.cpp:1313
bool isFunctionOrMethod() const
Definition: DeclBase.h:2141
DeclContext * getLookupParent()
Find the parent context of this context that will be used for unqualified name lookup.
Definition: DeclBase.cpp:1285
bool Encloses(const DeclContext *DC) const
Determine whether this declaration context encloses the declaration context DC.
Definition: DeclBase.cpp:1404
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
Decl * getPreviousDecl()
Retrieve the previous declaration that declares the same entity as this declaration,...
Definition: DeclBase.h:1050
Decl * getMostRecentDecl()
Retrieve the most recent declaration that declares the same entity as this declaration (which may be ...
Definition: DeclBase.h:1065
bool isModulePrivate() const
Whether this declaration was marked as being private to the module in which it was defined.
Definition: DeclBase.h:645
bool isTemplateDecl() const
returns true if this declaration is a template
Definition: DeclBase.cpp:254
FriendObjectKind getFriendObjectKind() const
Determines whether this declaration is the object of a friend declaration and, if so,...
Definition: DeclBase.h:1215
bool isFunctionOrFunctionTemplate() const
Whether this declaration is a function or function template.
Definition: DeclBase.h:1108
void addAttr(Attr *A)
Definition: DeclBase.cpp:1010
bool isUnconditionallyVisible() const
Determine whether this declaration is definitely visible to name lookup, independent of whether the o...
Definition: DeclBase.h:848
bool isInIdentifierNamespace(unsigned NS) const
Definition: DeclBase.h:882
bool isInvisibleOutsideTheOwningModule() const
Definition: DeclBase.h:663
bool isInExportDeclContext() const
Whether this declaration was exported in a lexical context.
Definition: DeclBase.cpp:1109
bool isInAnotherModuleUnit() const
Whether this declaration comes from another module unit.
Definition: DeclBase.cpp:1118
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:835
FunctionDecl * getAsFunction() LLVM_READONLY
Returns the function itself, or the templated function if this is a function template.
Definition: DeclBase.cpp:246
void dump() const
Definition: ASTDumper.cpp:218
bool isTemplateParameter() const
isTemplateParameter - Determines whether this declaration is a template parameter.
Definition: DeclBase.h:2766
bool isInvalidDecl() const
Definition: DeclBase.h:591
unsigned getIdentifierNamespace() const
Definition: DeclBase.h:878
SourceLocation getLocation() const
Definition: DeclBase.h:442
@ IDNS_NonMemberOperator
This declaration is a C++ operator declared in a non-class context.
Definition: DeclBase.h:168
@ IDNS_TagFriend
This declaration is a friend class.
Definition: DeclBase.h:157
@ IDNS_Ordinary
Ordinary names.
Definition: DeclBase.h:144
@ IDNS_Type
Types, declared with 'struct foo', typedefs, etc.
Definition: DeclBase.h:130
@ IDNS_OMPReduction
This declaration is an OpenMP user defined reduction construction.
Definition: DeclBase.h:178
@ IDNS_Label
Labels, declared with 'x:' and referenced with 'goto x'.
Definition: DeclBase.h:117
@ IDNS_Member
Members, declared with object declarations within tag definitions.
Definition: DeclBase.h:136
@ IDNS_OMPMapper
This declaration is an OpenMP user defined mapper.
Definition: DeclBase.h:181
@ IDNS_ObjCProtocol
Objective C @protocol.
Definition: DeclBase.h:147
@ IDNS_Namespace
Namespaces, declared with 'namespace foo {}'.
Definition: DeclBase.h:140
@ IDNS_OrdinaryFriend
This declaration is a friend function.
Definition: DeclBase.h:152
@ IDNS_Using
This declaration is a using declaration.
Definition: DeclBase.h:163
@ IDNS_LocalExtern
This declaration is a function-local extern declaration of a variable or function.
Definition: DeclBase.h:175
@ IDNS_Tag
Tags, declared with 'struct foo;' and referenced with 'struct foo'.
Definition: DeclBase.h:125
bool isDeprecated(std::string *Message=nullptr) const
Determine whether this declaration is marked 'deprecated'.
Definition: DeclBase.h:755
bool isTemplateParameterPack() const
isTemplateParameter - Determines whether this declaration is a template parameter pack.
Definition: DeclBase.cpp:229
void setImplicit(bool I=true)
Definition: DeclBase.h:597
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition: DeclBase.h:1038
bool isDefinedOutsideFunctionOrMethod() const
isDefinedOutsideFunctionOrMethod - This predicate returns true if this scoped decl is defined outside...
Definition: DeclBase.h:938
DeclContext * getDeclContext()
Definition: DeclBase.h:451
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:505
bool hasTagIdentifierNamespace() const
Definition: DeclBase.h:888
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC).
Definition: DeclBase.h:907
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:967
const LangOptions & getLangOpts() const LLVM_READONLY
Helper to get the language options from the ASTContext.
Definition: DeclBase.cpp:526
void setVisibleDespiteOwningModule()
Set that this declaration is globally visible, even if it came from a module that is not visible.
Definition: DeclBase.h:859
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
DeclarationName getCXXConstructorName(CanQualType Ty)
Returns the name of a C++ constructor for the given Type.
The name of a declaration.
IdentifierInfo * getAsIdentifierInfo() const
Retrieve the IdentifierInfo * stored in this declaration name, or null if this declaration name isn't...
TemplateDecl * getCXXDeductionGuideTemplate() const
If this name is the name of a C++ deduction guide, return the template associated with that name.
std::string getAsString() const
Retrieve the human-readable string for this name.
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
QualType getCXXNameType() const
If this name is one of the C++ names (of a constructor, destructor, or conversion function),...
NameKind getNameKind() const
Determine what kind of name this is.
DiagnosticOptions & getDiagnosticOptions() const
Retrieve the diagnostic options.
Definition: Diagnostic.h:585
bool hasFatalErrorOccurred() const
Definition: Diagnostic.h:873
Represents an enum.
Definition: Decl.h:3847
The return type of classify().
Definition: Expr.h:330
This represents one expression.
Definition: Expr.h:110
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:405
QualType getType() const
Definition: Expr.h:142
bool isFPConstrained() const
Definition: LangOptions.h:906
A reference to a FileEntry that includes the name of the file as it was accessed by the FileManager's...
Definition: FileEntry.h:57
Cached information about one file (either on disk or in the virtual file system).
Definition: FileEntry.h:305
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition: Diagnostic.h:75
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string.
Definition: Diagnostic.h:138
bool ValidateCandidate(const TypoCorrection &candidate) override
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs, MemberExpr *ME=nullptr)
Represents a function declaration or definition.
Definition: Decl.h:1935
unsigned getMinRequiredArguments() const
Returns the minimum number of arguments needed to call this function.
Definition: Decl.cpp:3723
FunctionDecl * getTemplateInstantiationPattern(bool ForDefinition=true) const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition: Decl.cpp:4123
bool isDeleted() const
Whether this function has been deleted.
Definition: Decl.h:2468
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin=false, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=ConstexprSpecKind::Unspecified, Expr *TrailingRequiresClause=nullptr)
Definition: Decl.h:2124
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3702
Represents a prototype with parameter type info, e.g.
Definition: Type.h:5102
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:5366
ArrayRef< QualType > param_types() const
Definition: Type.h:5511
Declaration of a template function.
Definition: DeclTemplate.h:959
FunctionDecl * getTemplatedDecl() const
Get the underlying function declaration of the template.
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:4547
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:4321
QualType getReturnType() const
Definition: Type.h:4643
std::string suggestPathToFileForDiagnostics(FileEntryRef File, llvm::StringRef MainFile, bool *IsAngled=nullptr) const
Suggest a path by which the specified file could be found, for use in diagnostics to suggest a #inclu...
Provides lookups to, and iteration over, IdentiferInfo objects.
One of these records is kept for each identifier that is lexed.
unsigned getBuiltinID() const
Return a value indicating whether this is a builtin function.
StringRef getName() const
Return the actual identifier string.
iterator - Iterate over the decls of a specified declaration name.
iterator begin(DeclarationName Name)
Returns an iterator over decls with the name 'Name'.
iterator end()
Returns the end iterator.
bool isDeclInScope(Decl *D, DeclContext *Ctx, Scope *S=nullptr, bool AllowInlineNamespace=false) const
isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true if 'D' is in Scope 'S',...
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
IdentifierInfoLookup * getExternalIdentifierLookup() const
Retrieve the external identifier lookup object, if any.
Represents the declaration of a label.
Definition: Decl.h:503
static LabelDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II)
Definition: Decl.cpp:5362
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:499
A class for iterating through a result set and possibly filtering out results.
Definition: Lookup.h:675
void restart()
Restart the iteration.
Definition: Lookup.h:716
void erase()
Erase the last element returned from this iterator.
Definition: Lookup.h:721
bool hasNext() const
Definition: Lookup.h:706
NamedDecl * next()
Definition: Lookup.h:710
Represents the results of name lookup.
Definition: Lookup.h:46
void addAllDecls(const LookupResult &Other)
Add all the declarations from another set of lookup results.
Definition: Lookup.h:488
@ FoundOverloaded
Name lookup found a set of overloaded functions that met the criteria.
Definition: Lookup.h:63
@ FoundUnresolvedValue
Name lookup found an unresolvable value declaration and cannot yet complete.
Definition: Lookup.h:68
@ Ambiguous
Name lookup results in an ambiguity; use getAmbiguityKind to figure out what kind of ambiguity we hav...
Definition: Lookup.h:73
@ NotFound
No entity found met the criteria.
Definition: Lookup.h:50
@ NotFoundInCurrentInstantiation
No entity found met the criteria within the current instantiation,, but there were dependent base cla...
Definition: Lookup.h:55
@ Found
Name lookup found a single declaration that met the criteria.
Definition: Lookup.h:59
void setShadowed()
Note that we found and ignored a declaration while performing lookup.
Definition: Lookup.h:514
static bool isAvailableForLookup(Sema &SemaRef, NamedDecl *ND)
Determine whether this lookup is permitted to see the declaration.
LLVM_ATTRIBUTE_REINITIALIZES void clear()
Clears out any current state.
Definition: Lookup.h:605
void setFindLocalExtern(bool FindLocalExtern)
Definition: Lookup.h:753
void setAllowHidden(bool AH)
Specify whether hidden declarations are visible, e.g., for recovery reasons.
Definition: Lookup.h:298
DeclClass * getAsSingle() const
Definition: Lookup.h:558
void setContextRange(SourceRange SR)
Sets a 'context' source range.
Definition: Lookup.h:651
static bool isAcceptable(Sema &SemaRef, NamedDecl *D, Sema::AcceptableKind Kind)
Definition: Lookup.h:376
void setAmbiguousQualifiedTagHiding()
Make these results show that the name was found in different contexts and a tag decl was hidden by an...
Definition: Lookup.h:600
void addDecl(NamedDecl *D)
Add a declaration to these results with its natural access.
Definition: Lookup.h:475
bool isTemplateNameLookup() const
Definition: Lookup.h:322
void setAmbiguousBaseSubobjects(CXXBasePaths &P)
Make these results show that the name was found in distinct base classes of the same type.
Definition: SemaLookup.cpp:663
bool isSingleTagDecl() const
Asks if the result is a single tag decl.
Definition: Lookup.h:581
void setLookupName(DeclarationName Name)
Sets the name to look up.
Definition: Lookup.h:270
bool empty() const
Return true if no decls were found.
Definition: Lookup.h:362
void resolveKind()
Resolves the result kind of the lookup, possibly hiding decls.
Definition: SemaLookup.cpp:484
SourceLocation getNameLoc() const
Gets the location of the identifier.
Definition: Lookup.h:664
void setAmbiguousBaseSubobjectTypes(CXXBasePaths &P)
Make these results show that the name was found in base classes of different types.
Definition: SemaLookup.cpp:671
Filter makeFilter()
Create a filter for this result set.
Definition: Lookup.h:749
NamedDecl * getFoundDecl() const
Fetch the unique decl found by this lookup.
Definition: Lookup.h:568
void setHideTags(bool Hide)
Sets whether tag declarations should be hidden by non-tag declarations during resolution.
Definition: Lookup.h:311
bool isAmbiguous() const
Definition: Lookup.h:324
NamedDecl * getAcceptableDecl(NamedDecl *D) const
Retrieve the accepted (re)declaration of the given declaration, if there is one.
Definition: Lookup.h:408
bool isSingleResult() const
Determines if this names a single result which is not an unresolved value using decl.
Definition: Lookup.h:331
unsigned getIdentifierNamespace() const
Returns the identifier namespace mask for this lookup.
Definition: Lookup.h:426
Sema::LookupNameKind getLookupKind() const
Gets the kind of lookup to perform.
Definition: Lookup.h:275
Sema & getSema() const
Get the Sema object that this lookup result is searching with.
Definition: Lookup.h:670
void setNamingClass(CXXRecordDecl *Record)
Sets the 'naming class' for this lookup.
Definition: Lookup.h:457
LookupResultKind getResultKind() const
Definition: Lookup.h:344
void print(raw_ostream &)
Definition: SemaLookup.cpp:679
static bool isReachable(Sema &SemaRef, NamedDecl *D)
void suppressDiagnostics()
Suppress the diagnostics that would normally fire because of this lookup.
Definition: Lookup.h:634
bool isForRedeclaration() const
True if this lookup is just looking for an existing declaration.
Definition: Lookup.h:280
DeclarationName getLookupName() const
Gets the name to look up.
Definition: Lookup.h:265
iterator end() const
Definition: Lookup.h:359
@ AmbiguousTagHiding
Name lookup results in an ambiguity because an entity with a tag name was hidden by an entity with an...
Definition: Lookup.h:146
@ AmbiguousBaseSubobjectTypes
Name lookup results in an ambiguity because multiple entities that meet the lookup criteria were foun...
Definition: Lookup.h:89
@ AmbiguousReferenceToPlaceholderVariable
Name lookup results in an ambiguity because multiple placeholder variables were found in the same sco...
Definition: Lookup.h:129
@ AmbiguousReference
Name lookup results in an ambiguity because multiple definitions of entity that meet the lookup crite...
Definition: Lookup.h:118
@ AmbiguousBaseSubobjects
Name lookup results in an ambiguity because multiple nonstatic entities that meet the lookup criteria...
Definition: Lookup.h:103
void setNotFoundInCurrentInstantiation()
Note that while no result was found in the current instantiation, there were dependent base classes t...
Definition: Lookup.h:501
static bool isVisible(Sema &SemaRef, NamedDecl *D)
Determine whether the given declaration is visible to the program.
iterator begin() const
Definition: Lookup.h:358
const DeclarationNameInfo & getLookupNameInfo() const
Gets the name info to look up.
Definition: Lookup.h:255
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:3236
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:3319
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:3519
QualType getPointeeType() const
Definition: Type.h:3535
const Type * getClass() const
Definition: Type.h:3549
virtual bool lookupMissingImports(StringRef Name, SourceLocation TriggerLoc)=0
Check global module index for missing imports.
Describes a module or submodule.
Definition: Module.h:115
StringRef getTopLevelModuleName() const
Retrieve the name of the top-level module.
Definition: Module.h:703
bool isPrivateModule() const
Definition: Module.h:220
bool isModuleVisible(const Module *M) const
Determine whether the specified module would be visible to a lookup at the end of this module.
Definition: Module.h:798
bool isModuleInterfaceUnit() const
Definition: Module.h:651
bool isModuleMapModule() const
Definition: Module.h:222
bool isHeaderLikeModule() const
Is this module have similar semantics as headers.
Definition: Module.h:619
StringRef getPrimaryModuleInterfaceName() const
Get the primary module interface name from a partition.
Definition: Module.h:658
bool isExplicitGlobalModule() const
Definition: Module.h:213
bool isGlobalModule() const
Does this Module scope describe a fragment of the global module within some C++ module.
Definition: Module.h:210
bool isImplicitGlobalModule() const
Definition: Module.h:216
std::string getFullModuleName(bool AllowStringLiterals=false) const
Retrieve the full name of this module, including the path from its top-level module.
Definition: Module.cpp:240
bool isNamedModule() const
Does this Module is a named module of a standard named module?
Definition: Module.h:195
Module * getTopLevelModule()
Retrieve the top-level module for this (sub)module, which may be this module.
Definition: Module.h:693
This represents a decl that may have a name.
Definition: Decl.h:253
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:466
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:274
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:319
bool isExternallyDeclarable() const
Determine whether this declaration can be redeclared in a different translation unit.
Definition: Decl.h:418
Represent a C++ namespace.
Definition: Decl.h:551
bool isAnonymousNamespace() const
Returns true if this is an anonymous namespace declaration.
Definition: Decl.h:602
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
static NestedNameSpecifier * Create(const ASTContext &Context, NestedNameSpecifier *Prefix, const IdentifierInfo *II)
Builds a specifier combining a prefix and an identifier.
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
static NestedNameSpecifier * GlobalSpecifier(const ASTContext &Context)
Returns the nested name specifier representing the global scope.
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
@ NamespaceAlias
A namespace alias, stored as a NamespaceAliasDecl*.
@ TypeSpec
A type, stored as a Type*.
@ TypeSpecWithTemplate
A type that was preceded by the 'template' keyword, stored as a Type*.
@ Super
Microsoft's '__super' specifier, stored as a CXXRecordDecl* of the class it appeared in.
@ Identifier
An identifier, stored as an IdentifierInfo*.
@ Global
The global specifier '::'. There is no stored value.
@ Namespace
A namespace, stored as a NamespaceDecl*.
NamespaceDecl * getAsNamespace() const
Retrieve the namespace stored in this nested name specifier.
void print(raw_ostream &OS, const PrintingPolicy &Policy, bool ResolveTemplateArguments=false) const
Print this nested name specifier to the given output stream.
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2328
Represents an ObjC class declaration.
Definition: DeclObjC.h:1153
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1951
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:140
Represents a pointer to an Objective C object.
Definition: Type.h:7580
qual_range quals() const
Definition: Type.h:7699
Represents one property declaration in an Objective-C interface.
Definition: DeclObjC.h:730
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2083
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class.
Definition: Expr.h:1173
OverloadCandidateSet - A set of overload candidates, used in C++ overload resolution (C++ 13....
Definition: Overload.h:1008
@ CSK_Normal
Normal lookup.
Definition: Overload.h:1012
SmallVectorImpl< OverloadCandidate >::iterator iterator
Definition: Overload.h:1185
OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc, OverloadCandidateSet::iterator &Best)
Find the best viable function on this overload set, if it exists.
A reference to an overloaded function set, either an UnresolvedLookupExpr or an UnresolvedMemberExpr.
Definition: ExprCXX.h:2983
static FindResult find(Expr *E)
Finds the overloaded expression in the given expression E of OverloadTy.
Definition: ExprCXX.h:3044
llvm::iterator_range< decls_iterator > decls() const
Definition: ExprCXX.h:3082
Represents a parameter to a function.
Definition: Decl.h:1725
void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex)
Definition: Decl.h:1758
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2922
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3198
Engages in a tight little dance with the lexer to efficiently preprocess tokens.
Definition: Preprocessor.h:138
bool isMacroDefined(StringRef Id)
HeaderSearch & getHeaderSearchInfo() const
OptionalFileEntryRef getHeaderToIncludeForDiagnostics(SourceLocation IncLoc, SourceLocation MLoc)
We want to produce a diagnostic at location IncLoc concerning an unreachable effect at location MLoc ...
A (possibly-)qualified type.
Definition: Type.h:929
const IdentifierInfo * getBaseTypeIdentifier() const
Retrieves a pointer to the name of the base type.
Definition: Type.cpp:102
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:1151
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:996
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:7931
void addVolatile()
Add the volatile type qualifier to this QualType.
Definition: Type.h:1159
Represents a struct/union/class.
Definition: Decl.h:4148
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:6072
RecordDecl * getDecl() const
Definition: Type.h:6082
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:275
bool isDeclScope(const Decl *D) const
isDeclScope - Return true if this is the scope that the specified decl is declared in.
Definition: Scope.h:382
DeclContext * getEntity() const
Get the entity corresponding to this scope.
Definition: Scope.h:385
const Scope * getParent() const
getParent - Return the scope that this is nested in.
Definition: Scope.h:271
@ DeclScope
This is a scope that can contain a declaration.
Definition: Scope.h:63
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition: SemaBase.cpp:60
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaBase.cpp:32
std::unique_ptr< sema::RISCVIntrinsicManager > IntrinsicManager
Definition: SemaRISCV.h:54
RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...
Definition: Sema.h:12079
bool hasErrorOccurred() const
Determine whether any SFINAE errors have been trapped.
Definition: Sema.h:12109
SpecialMemberOverloadResult - The overloading result for a special member function.
Definition: Sema.h:8935
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:463
void DeclareGlobalNewDelete()
DeclareGlobalNewDelete - Declare the global forms of operator new and delete.
bool hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete=false)
Determine if D has a reachable definition.
Definition: SemaType.cpp:9207
CXXConstructorDecl * DeclareImplicitDefaultConstructor(CXXRecordDecl *ClassDecl)
Declare the implicit default constructor for the given class.
llvm::DenseSet< Module * > LookupModulesCache
Cache of additional modules that should be used for name lookup within the current template instantia...
Definition: Sema.h:13143
SmallVector< CodeSynthesisContext, 16 > CodeSynthesisContexts
List of active code synthesis contexts.
Definition: Sema.h:13127
llvm::DenseSet< Module * > & getLookupModules()
Get the set of additional modules that should be checked during name lookup.
LookupNameKind
Describes the kind of name lookup to perform.
Definition: Sema.h:8979
@ LookupLabel
Label name lookup.
Definition: Sema.h:8988
@ LookupOrdinaryName
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc....
Definition: Sema.h:8983
@ LookupUsingDeclName
Look up all declarations in a scope with the given name, including resolved using declarations.
Definition: Sema.h:9010
@ LookupNestedNameSpecifierName
Look up of a name that precedes the '::' scope resolution operator in C++.
Definition: Sema.h:9002
@ LookupOMPReductionName
Look up the name of an OpenMP user-defined reduction operation.
Definition: Sema.h:9024
@ LookupLocalFriendName
Look up a friend of a local class.
Definition: Sema.h:9018
@ LookupObjCProtocolName
Look up the name of an Objective-C protocol.
Definition: Sema.h:9020
@ LookupRedeclarationWithLinkage
Look up an ordinary name that is going to be redeclared as a name with linkage.
Definition: Sema.h:9015
@ LookupOperatorName
Look up of an operator name (e.g., operator+) for use with operator overloading.
Definition: Sema.h:8995
@ LookupObjCImplicitSelfParam
Look up implicit 'self' parameter of an objective-c method.
Definition: Sema.h:9022
@ LookupNamespaceName
Look up a namespace name within a C++ using directive or namespace alias definition,...
Definition: Sema.h:9006
@ LookupMemberName
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:8991
@ LookupDestructorName
Look up a name following ~ in a destructor name.
Definition: Sema.h:8998
@ LookupTagName
Tag name lookup, which finds the names of enums, classes, structs, and unions.
Definition: Sema.h:8986
@ LookupOMPMapperName
Look up the name of an OpenMP user-defined mapper.
Definition: Sema.h:9026
@ LookupAnyName
Look up any declaration with any name.
Definition: Sema.h:9028
bool hasReachableDeclarationSlow(const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules=nullptr)
MissingImportKind
Kinds of missing import.
Definition: Sema.h:9467
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class)
Force the declaration of any implicitly-declared members of this class.
bool hasVisibleDeclarationSlow(const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules)
void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID)
Definition: SemaLookup.cpp:995
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class)
Perform qualified name lookup into all base classes of the given class.
bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC)
Require that the context specified by SS be complete.
@ AR_accessible
Definition: Sema.h:1261
Preprocessor & getPreprocessor() const
Definition: Sema.h:530
CXXConstructorDecl * DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl)
Declare the implicit move constructor for the given class.
static NamedDecl * getAsTemplateNameDecl(NamedDecl *D, bool AllowFunctionTemplates=true, bool AllowDependent=true)
Try to interpret the lookup result D as a template-name.
LiteralOperatorLookupResult LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef< QualType > ArgTys, bool AllowRaw, bool AllowTemplate, bool AllowStringTemplate, bool DiagnoseMissing, StringLiteral *StringLit=nullptr)
LookupLiteralOperator - Determine which literal operator should be used for a user-defined literal,...
bool hasVisibleExplicitSpecialization(const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules=nullptr)
Determine if there is a visible declaration of D that is an explicit specialization declaration for a...
NamedDecl * LookupSingleName(Scope *S, DeclarationName Name, SourceLocation Loc, LookupNameKind NameKind, RedeclarationKind Redecl=RedeclarationKind::NotForRedeclaration)
Look up a name, looking for a single declaration.
IdentifierInfo * getSuperIdentifier() const
Definition: Sema.cpp:2713
@ CTAK_Specified
The template argument was specified in the code or was instantiated with some deduced template argume...
Definition: Sema.h:11631
bool DisableTypoCorrection
Tracks whether we are in a context where typo correction is disabled.
Definition: Sema.h:8917
llvm::DenseMap< NamedDecl *, NamedDecl * > VisibleNamespaceCache
Map from the most recent declaration of a namespace to the most recent visible declaration of that na...
Definition: Sema.h:13147
bool hasMergedDefinitionInCurrentModule(const NamedDecl *Def)
ASTContext & Context
Definition: Sema.h:908
IdentifierSourceLocations TypoCorrectionFailures
A cache containing identifiers for which typo correction failed and their locations,...
Definition: Sema.h:8928
DiagnosticsEngine & getDiagnostics() const
Definition: Sema.h:528
bool LookupBuiltin(LookupResult &R)
Lookup a builtin function, when name lookup would otherwise fail.
Definition: SemaLookup.cpp:916
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext=true)
Add this decl to the scope shadowed decl chains.
Definition: SemaDecl.cpp:1497
void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, UnresolvedSetImpl &Functions)
bool hasVisibleDefaultArgument(const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules=nullptr)
Determine if the template parameter D has a visible default argument.
NamedDecl * LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc)
LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
Definition: SemaDecl.cpp:2331
ASTContext & getASTContext() const
Definition: Sema.h:531
CXXDestructorDecl * LookupDestructor(CXXRecordDecl *Class)
Look for the destructor of the given class.
std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths)
Builds a string representing ambiguous paths from a specific derived class to different subobjects of...
unsigned TyposCorrected
The number of typos corrected by CorrectTypo.
Definition: Sema.h:8920
PrintingPolicy getPrintingPolicy() const
Retrieve a suitable printing policy for diagnostics.
Definition: Sema.h:816
Module * getOwningModule(const Decl *Entity)
Get the module owning an entity.
Definition: Sema.h:3108
ObjCMethodDecl * getCurMethodDecl()
getCurMethodDecl - If inside of a method body, this returns a pointer to the method decl for the meth...
Definition: Sema.cpp:1573
void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc, ArrayRef< Expr * > Args, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses)
Find the associated classes and namespaces for argument-dependent lookup for a call with the given se...
void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef< Expr * > Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions=false, bool PartialOverloading=false, OverloadCandidateParamOrder PO={})
Add a C++ member function template as a candidate to the candidate set, using template argument deduc...
void AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef< Expr * > Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions=false, bool PartialOverloading=false, bool AllowExplicit=true, ADLCallKind IsADLCandidate=ADLCallKind::NotADL, OverloadCandidateParamOrder PO={}, bool AggregateCandidateDeduction=false)
Add a C++ function template specialization as a candidate in the candidate set, using template argume...
FPOptions & getCurFPFeatures()
Definition: Sema.h:526
CXXConstructorDecl * LookupDefaultConstructor(CXXRecordDecl *Class)
Look up the default constructor for the given class.
const LangOptions & getLangOpts() const
Definition: Sema.h:524
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, CorrectTypoKind Mode, DeclContext *MemberContext=nullptr, bool EnteringContext=false, const ObjCObjectPointerType *OPT=nullptr, bool RecordFailure=true)
Try to "correct" a typo in the source code by finding visible declarations whose names are similar to...
TypoExpr * CorrectTypoDelayed(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, DeclContext *MemberContext=nullptr, bool EnteringContext=false, const ObjCObjectPointerType *OPT=nullptr)
Try to "correct" a typo in the source code by finding visible declarations whose names are similar to...
void LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope=true, bool LoadExternal=true)
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, QualType ObjectType, bool AllowBuiltinCreation=false, bool EnteringContext=false)
Performs name lookup for a name that was parsed in the source code, and may contain a C++ scope speci...
Preprocessor & PP
Definition: Sema.h:907
bool hasVisibleMemberSpecialization(const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules=nullptr)
Determine if there is a visible declaration of D that is a member specialization declaration (as oppo...
bool isReachable(const NamedDecl *D)
Determine whether a declaration is reachable.
Definition: Sema.h:14989
CXXMethodDecl * DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl)
Declare the implicit move assignment operator for the given class.
SemaRISCV & RISCV()
Definition: Sema.h:1140
AcceptableKind
Definition: Sema.h:8971
NamedDecl * getCurFunctionOrMethodDecl() const
getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method or C function we're in,...
Definition: Sema.cpp:1580
sema::FunctionScopeInfo * getCurFunction() const
Definition: Sema.h:939
bool isVisible(const NamedDecl *D)
Determine whether a declaration is visible to name lookup.
Definition: Sema.h:14983
Module * getCurrentModule() const
Get the module unit whose scope we are currently within.
Definition: Sema.h:9581
void NoteOverloadCandidate(const NamedDecl *Found, const FunctionDecl *Fn, OverloadCandidateRewriteKind RewriteKind=OverloadCandidateRewriteKind(), QualType DestType=QualType(), bool TakingAddress=false)
bool hasReachableDefaultArgument(const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules=nullptr)
Determine if the template parameter D has a reachable default argument.
sema::BlockScopeInfo * getCurBlock()
Retrieve the current block, if any.
Definition: Sema.cpp:2359
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, ArrayRef< Expr * > Args, ADLResult &Functions)
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:1043
std::function< void(const TypoCorrection &)> TypoDiagnosticGenerator
Definition: Sema.h:9058
SemaOpenCL & OpenCL()
Definition: Sema.h:1120
CXXMethodDecl * LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the moving assignment operator for the given class.
llvm::SmallVector< TypoExpr *, 2 > TypoExprs
Holds TypoExprs that are created from createDelayedTypo.
Definition: Sema.h:8969
CXXMethodDecl * DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl)
Declare the implicit copy assignment operator for the given class.
CXXConstructorDecl * LookupMovingConstructor(CXXRecordDecl *Class, unsigned Quals)
Look up the moving constructor for the given class.
bool isAcceptable(const NamedDecl *D, AcceptableKind Kind)
Determine whether a declaration is acceptable (visible/reachable).
Definition: Sema.h:14996
CXXMethodDecl * LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the copying assignment operator for the given class.
bool isModuleVisible(const Module *M, bool ModulePrivate=false)
void AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef< Expr * > Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversion=false, OverloadCandidateParamOrder PO={})
AddMethodCandidate - Adds a named decl (which is some kind of method) as a method candidate to the gi...
bool hasVisibleMergedDefinition(const NamedDecl *Def)
void DeclareImplicitDeductionGuides(TemplateDecl *Template, SourceLocation Loc)
Declare implicit deduction guides for a class template if we've not already done so.
void diagnoseEquivalentInternalLinkageDeclarations(SourceLocation Loc, const NamedDecl *D, ArrayRef< const NamedDecl * > Equiv)
llvm::FoldingSet< SpecialMemberOverloadResultEntry > SpecialMemberCache
A cache of special member function overload resolution results for C++ records.
Definition: Sema.h:8963
DeclContext * computeDeclContext(QualType T)
Compute the DeclContext that is associated with the given type.
LabelDecl * LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, SourceLocation GnuLabelLoc=SourceLocation())
LookupOrCreateLabel - Do a name lookup of a label with the specified name.
void diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, MissingImportKind MIK, bool Recover=true)
Diagnose that the specified declaration needs to be visible but isn't, and suggest a module import th...
bool hasReachableMemberSpecialization(const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules=nullptr)
Determine if there is a reachable declaration of D that is a member specialization declaration (as op...
CorrectTypoKind
Definition: Sema.h:9375
@ CTK_ErrorRecovery
Definition: Sema.h:9377
RedeclarationKind forRedeclarationInCurContext() const
CXXConstructorDecl * LookupCopyingConstructor(CXXRecordDecl *Class, unsigned Quals)
Look up the copying constructor for the given class.
ASTConsumer & Consumer
Definition: Sema.h:909
ModuleLoader & getModuleLoader() const
Retrieve the module loader associated with the preprocessor.
Definition: Sema.cpp:85
void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, bool ErrorRecovery=true)
bool CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, unsigned ArgumentPackIndex, SmallVectorImpl< TemplateArgument > &SugaredConverted, SmallVectorImpl< TemplateArgument > &CanonicalConverted, CheckTemplateArgumentKind CTAK)
Check that the given template argument corresponds to the given template parameter.
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:871
void DiagnoseAmbiguousLookup(LookupResult &Result)
Produce a diagnostic describing the ambiguity that resulted from name lookup.
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup=false)
Perform qualified name lookup into a given context.
SmallVector< ExpressionEvaluationContextRecord, 8 > ExprEvalContexts
A stack of expression evaluation contexts.
Definition: Sema.h:7910
void makeMergedDefinitionVisible(NamedDecl *ND)
Make a merged definition of an existing hidden definition ND visible at the specified location.
bool isDependentScopeSpecifier(const CXXScopeSpec &SS)
SourceManager & SourceMgr
Definition: Sema.h:911
bool hasReachableExplicitSpecialization(const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules=nullptr)
Determine if there is a reachable declaration of D that is an explicit specialization declaration for...
std::function< ExprResult(Sema &, TypoExpr *, TypoCorrection)> TypoRecoveryCallback
Definition: Sema.h:9060
DiagnosticsEngine & Diags
Definition: Sema.h:910
CXXConstructorDecl * DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl)
Declare the implicit copy constructor for the given class.
SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D, CXXSpecialMemberKind SM, bool ConstArg, bool VolatileArg, bool RValueThis, bool ConstThis, bool VolatileThis)
bool hasAcceptableDefaultArgument(const NamedDecl *D, llvm::SmallVectorImpl< Module * > *Modules, Sema::AcceptableKind Kind)
Determine if the template parameter D has a reachable default argument.
AccessResult CheckMemberAccess(SourceLocation UseLoc, CXXRecordDecl *NamingClass, DeclAccessPair Found)
Checks access to a member.
SmallVector< Module *, 16 > CodeSynthesisContextLookupModules
Extra modules inspected when performing a lookup during a template instantiation.
Definition: Sema.h:13138
llvm::BumpPtrAllocator BumpAlloc
Definition: Sema.h:857
TemplateDeductionResult DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, ArrayRef< TemplateArgument > TemplateArgs, sema::TemplateDeductionInfo &Info)
void runWithSufficientStackSpace(SourceLocation Loc, llvm::function_ref< void()> Fn)
Run some code with "sufficient" stack space.
Definition: Sema.cpp:562
bool hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested, AcceptableKind Kind, bool OnlyNeedComplete=false)
Definition: SemaType.cpp:9097
void clearDelayedTypo(TypoExpr *TE)
Clears the state of the given TypoExpr.
LiteralOperatorLookupResult
The possible outcomes of name lookup for a literal operator.
Definition: Sema.h:9032
@ LOLR_ErrorNoDiagnostic
The lookup found no match but no diagnostic was issued.
Definition: Sema.h:9036
@ LOLR_Raw
The lookup found a single 'raw' literal operator, which expects a string literal containing the spell...
Definition: Sema.h:9042
@ LOLR_Error
The lookup resulted in an error.
Definition: Sema.h:9034
@ LOLR_Cooked
The lookup found a single 'cooked' literal operator, which expects a normal literal to be built and p...
Definition: Sema.h:9039
@ LOLR_StringTemplatePack
The lookup found an overload set of literal operator templates, which expect the character type and c...
Definition: Sema.h:9050
@ LOLR_Template
The lookup found an overload set of literal operator templates, which expect the characters of the sp...
Definition: Sema.h:9046
void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II)
Called on #pragma clang __debug dump II.
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false, bool ForceNoCPlusPlus=false)
Perform unqualified name lookup starting from a given scope.
IdentifierResolver IdResolver
Definition: Sema.h:2996
const TypoExprState & getTypoExprState(TypoExpr *TE) const
DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class)
Look up the constructors for the given class.
CXXDestructorDecl * DeclareImplicitDestructor(CXXRecordDecl *ClassDecl)
Declare the implicit destructor for the given class.
void createImplicitModuleImportForErrorRecovery(SourceLocation Loc, Module *Mod)
Create an implicit import of the given module at the given source location, for error recovery,...
Definition: SemaModule.cpp:832
void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef< Expr * > Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions=false, bool PartialOverloading=false, bool AllowExplicit=true, bool AllowExplicitConversion=false, ADLCallKind IsADLCandidate=ADLCallKind::NotADL, ConversionSequenceList EarlyConversions={}, OverloadCandidateParamOrder PO={}, bool AggregateCandidateDeduction=false)
AddOverloadCandidate - Adds the given function to the set of candidate functions, using the given fun...
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
FileID getFileID(SourceLocation SpellingLoc) const
Return the FileID for a SourceLocation.
const FileEntry * getFileEntryForID(FileID FID) const
Returns the FileEntry record for the provided FileID.
A trivial tuple used to represent a source range.
SourceLocation getBegin() const
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Definition: ASTDumper.cpp:288
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1778
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3564
bool isBeingDefined() const
Determines whether this type is in the process of being defined.
Definition: Type.cpp:4126
A template argument list.
Definition: DeclTemplate.h:250
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:286
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:524
Represents a template argument.
Definition: TemplateBase.h:61
QualType getAsType() const
Retrieve the type for a type template argument.
Definition: TemplateBase.h:319
ArrayRef< TemplateArgument > pack_elements() const
Iterator range referencing all of the elements of a template argument pack.
Definition: TemplateBase.h:432
@ Declaration
The template argument is a declaration that was provided for a pointer, reference,...
Definition: TemplateBase.h:74
@ Template
The template argument is a template name that was provided for a template template parameter.
Definition: TemplateBase.h:93
@ StructuralValue
The template argument is a non-type template argument that can't be represented by the special-case D...
Definition: TemplateBase.h:89
@ Pack
The template argument is actually a parameter pack.
Definition: TemplateBase.h:107
@ TemplateExpansion
The template argument is a pack expansion of a template name that was provided for a template templat...
Definition: TemplateBase.h:97
@ NullPtr
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:78
@ Type
The template argument is a type.
Definition: TemplateBase.h:70
@ Null
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:67
@ Integral
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:82
@ Expression
The template argument is an expression, and we've not resolved it to one of the other forms yet,...
Definition: TemplateBase.h:103
ArgKind getKind() const
Return the kind of stored template argument.
Definition: TemplateBase.h:295
TemplateName getAsTemplateOrTemplatePattern() const
Retrieve the template argument as a template name; if the argument is a pack expansion,...
Definition: TemplateBase.h:350
Represents a C++ template name within the type system.
Definition: TemplateName.h:220
TemplateDecl * getAsTemplateDecl(bool IgnoreDeduced=false) const
Retrieve the underlying template declaration that this template name refers to, if known.
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:73
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:147
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:6661
Represents a declaration of a type.
Definition: Decl.h:3370
const Type * getTypeForDecl() const
Definition: Decl.h:3395
The base class of the type hierarchy.
Definition: Type.h:1828
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1916
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8800
bool isReferenceType() const
Definition: Type.h:8204
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2706
DeducedType * getContainedDeducedType() const
Get the DeducedType whose type will be deduced for a variable with an initializer of this type.
Definition: Type.cpp:2045
QualType getCanonicalTypeInternal() const
Definition: Type.h:2989
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types,...
Definition: Type.cpp:2396
bool isAnyPointerType() const
Definition: Type.h:8194
TypeClass getTypeClass() const
Definition: Type.h:2341
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8731
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:3413
void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass) override
Invoked each time Sema::LookupVisibleDecls() finds a declaration visible from the current scope or co...
void addKeywordResult(StringRef Keyword)
void addCorrection(TypoCorrection Correction)
const TypoCorrection & getNextCorrection()
Return the next typo correction that passes all internal filters and is deemed valid by the consumer'...
void FoundName(StringRef Name)
void addNamespaces(const llvm::MapVector< NamespaceDecl *, bool > &KnownNamespaces)
Set-up method to add to the consumer the set of namespaces to use in performing corrections to nested...
Simple class containing the result of Sema::CorrectTypo.
IdentifierInfo * getCorrectionAsIdentifierInfo() const
ArrayRef< PartialDiagnostic > getExtraDiagnostics() const
static const unsigned InvalidDistance
void addCorrectionDecl(NamedDecl *CDecl)
Add the given NamedDecl to the list of NamedDecls that are the declarations associated with the Decla...
void setCorrectionDecls(ArrayRef< NamedDecl * > Decls)
Clears the list of NamedDecls and adds the given set.
std::string getAsString(const LangOptions &LO) const
bool requiresImport() const
Returns whether this typo correction is correcting to a declaration that was declared in a module tha...
void setCorrectionRange(CXXScopeSpec *SS, const DeclarationNameInfo &TypoName)
NamedDecl * getCorrectionDecl() const
Gets the pointer to the declaration of the typo correction.
SourceRange getCorrectionRange() const
void WillReplaceSpecifier(bool ForceReplacement)
decl_iterator end()
void setCallbackDistance(unsigned ED)
decl_iterator begin()
DeclarationName getCorrection() const
Gets the DeclarationName of the typo correction.
unsigned getEditDistance(bool Normalized=true) const
Gets the "edit distance" of the typo correction from the typo.
NestedNameSpecifier * getCorrectionSpecifier() const
Gets the NestedNameSpecifier needed to use the typo correction.
SmallVectorImpl< NamedDecl * >::iterator decl_iterator
void setRequiresImport(bool Req)
std::string getQuoted(const LangOptions &LO) const
NamedDecl * getFoundDecl() const
Get the correction declaration found by name lookup (before we looked through using shadow declaratio...
TypoExpr - Internal placeholder for expressions where typo correction still needs to be performed and...
Definition: Expr.h:6837
A set of unresolved declarations.
Definition: UnresolvedSet.h:62
unsigned size() const
void append(iterator I, iterator E)
void truncate(unsigned N)
The iterator over UnresolvedSets.
Definition: UnresolvedSet.h:35
Represents C++ using-directive.
Definition: DeclCXX.h:3033
NamespaceDecl * getNominatedNamespace()
Returns the namespace nominated by this using-directive.
Definition: DeclCXX.cpp:3050
Represents a shadow declaration implicitly introduced into a scope by a (resolved) using-declaration ...
Definition: DeclCXX.h:3338
QualType getType() const
Definition: Decl.h:682
Represents a variable declaration or definition.
Definition: Decl.h:882
VarDecl * getTemplateInstantiationPattern() const
Retrieve the variable declaration from which this variable could be instantiated, if it is an instant...
Definition: Decl.cpp:2690
Consumes visible declarations found when searching for all visible names within a given scope or cont...
Definition: Lookup.h:836
virtual bool includeHiddenDecls() const
Determine whether hidden declarations (from unimported modules) should be given to this consumer.
virtual ~VisibleDeclConsumer()
Destroys the visible declaration consumer.
bool isVisible(const Module *M) const
Determine whether a module is visible.
Definition: Module.h:861
SmallVector< SwitchInfo, 8 > SwitchStack
SwitchStack - This is the current set of active switch statements in the block.
Definition: ScopeInfo.h:209
Provides information about an attempted template argument deduction, whose success or failure was des...
bool Load(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1748
The JSON file list parser is used to communicate input to InstallAPI.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
@ CPlusPlus
Definition: LangStandard.h:55
@ CPlusPlus11
Definition: LangStandard.h:56
if(T->getSizeExpr()) TRY_TO(TraverseStmt(const_cast< Expr * >(T -> getSizeExpr())))
@ OR_Deleted
Succeeded, but refers to a deleted function.
Definition: Overload.h:61
@ OR_Success
Overload resolution succeeded.
Definition: Overload.h:52
@ OR_Ambiguous
Ambiguous candidates found.
Definition: Overload.h:58
@ OR_No_Viable_Function
No viable function found.
Definition: Overload.h:55
@ Specialization
We are substituting template parameters for template arguments in order to form a template specializa...
std::unique_ptr< sema::RISCVIntrinsicManager > CreateRISCVIntrinsicManager(Sema &S)
Definition: SemaRISCV.cpp:498
@ SC_Extern
Definition: Specifiers.h:251
@ SC_None
Definition: Specifiers.h:250
@ External
External linkage, which indicates that the entity can be referred to from other translation units.
TemplateDecl * getAsTypeTemplateDecl(Decl *D)
@ Result
The result type of a method or function.
std::pair< unsigned, unsigned > getDepthAndIndex(const NamedDecl *ND)
Retrieve the depth and index of a template parameter.
Definition: SemaInternal.h:61
CXXSpecialMemberKind
Kinds of C++ special members.
Definition: Sema.h:422
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:132
@ VK_PRValue
A pr-value expression (in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:135
@ VK_LValue
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:139
const FunctionProtoType * T
@ Success
Template argument deduction was successful.
@ TSK_ExplicitSpecialization
This template specialization was declared or defined by an explicit specialization (C++ [temp....
Definition: Specifiers.h:198
@ CC_C
Definition: Specifiers.h:279
ConstructorInfo getConstructorInfo(NamedDecl *ND)
Definition: Overload.h:1272
@ Class
The "class" keyword introduces the elaborated-type-specifier.
@ Enum
The "enum" keyword introduces the elaborated-type-specifier.
@ EST_None
no exception specification
AccessSpecifier
A C++ access specifier (public, private, protected), plus the special value "none" which means differ...
Definition: Specifiers.h:123
@ AS_public
Definition: Specifiers.h:124
@ AS_none
Definition: Specifiers.h:127
Represents an element in a path from a derived class to a base class.
int SubobjectNumber
Identifies which base class subobject (of type Base->getType()) this base path element refers to.
const CXXBaseSpecifier * Base
The base specifier that states the link from a derived class to a base class, which will be followed ...
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspon...
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
DeclarationName getName() const
getName - Returns the embedded declaration name.
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
Extra information about a function prototype.
Definition: Type.h:5187
ExceptionSpecInfo ExceptionSpec
Definition: Type.h:5194
FunctionType::ExtInfo ExtInfo
Definition: Type.h:5188
Describes how types, statements, expressions, and declarations should be printed.
Definition: PrettyPrinter.h:57