clang 20.0.0git
CGOpenMPRuntimeGPU.cpp
Go to the documentation of this file.
1//===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides a generalized class for OpenMP runtime code generation
10// specialized by GPU targets NVPTX and AMDGCN.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGOpenMPRuntimeGPU.h"
15#include "CodeGenFunction.h"
16#include "clang/AST/Attr.h"
21#include "clang/Basic/Cuda.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Frontend/OpenMP/OMPDeviceConstants.h"
24#include "llvm/Frontend/OpenMP/OMPGridValues.h"
25
26using namespace clang;
27using namespace CodeGen;
28using namespace llvm::omp;
29
30namespace {
31/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
32class NVPTXActionTy final : public PrePostActionTy {
33 llvm::FunctionCallee EnterCallee = nullptr;
35 llvm::FunctionCallee ExitCallee = nullptr;
37 bool Conditional = false;
38 llvm::BasicBlock *ContBlock = nullptr;
39
40public:
41 NVPTXActionTy(llvm::FunctionCallee EnterCallee,
43 llvm::FunctionCallee ExitCallee,
44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
46 ExitArgs(ExitArgs), Conditional(Conditional) {}
47 void Enter(CodeGenFunction &CGF) override {
48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
49 if (Conditional) {
50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
52 ContBlock = CGF.createBasicBlock("omp_if.end");
53 // Generate the branch (If-stmt)
54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
55 CGF.EmitBlock(ThenBlock);
56 }
57 }
58 void Done(CodeGenFunction &CGF) {
59 // Emit the rest of blocks/branches
60 CGF.EmitBranch(ContBlock);
61 CGF.EmitBlock(ContBlock, true);
62 }
63 void Exit(CodeGenFunction &CGF) override {
64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
65 }
66};
67
68/// A class to track the execution mode when codegening directives within
69/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
70/// to the target region and used by containing directives such as 'parallel'
71/// to emit optimized code.
72class ExecutionRuntimeModesRAII {
73private:
77
78public:
79 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
81 : ExecMode(ExecMode) {
82 SavedExecMode = ExecMode;
83 ExecMode = EntryMode;
84 }
85 ~ExecutionRuntimeModesRAII() { ExecMode = SavedExecMode; }
86};
87
88static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
89 RefExpr = RefExpr->IgnoreParens();
90 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
91 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
92 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
93 Base = TempASE->getBase()->IgnoreParenImpCasts();
94 RefExpr = Base;
95 } else if (auto *OASE = dyn_cast<ArraySectionExpr>(RefExpr)) {
96 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
97 while (const auto *TempOASE = dyn_cast<ArraySectionExpr>(Base))
98 Base = TempOASE->getBase()->IgnoreParenImpCasts();
99 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
100 Base = TempASE->getBase()->IgnoreParenImpCasts();
101 RefExpr = Base;
102 }
103 RefExpr = RefExpr->IgnoreParenImpCasts();
104 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
105 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
106 const auto *ME = cast<MemberExpr>(RefExpr);
107 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
108}
109
110static RecordDecl *buildRecordForGlobalizedVars(
112 ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
113 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
114 &MappedDeclsFields,
115 int BufSize) {
116 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
117 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
118 return nullptr;
119 SmallVector<VarsDataTy, 4> GlobalizedVars;
120 for (const ValueDecl *D : EscapedDecls)
121 GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
122 for (const ValueDecl *D : EscapedDeclsForTeams)
123 GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
124
125 // Build struct _globalized_locals_ty {
126 // /* globalized vars */[WarSize] align (decl_align)
127 // /* globalized vars */ for EscapedDeclsForTeams
128 // };
129 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
130 GlobalizedRD->startDefinition();
132 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
133 for (const auto &Pair : GlobalizedVars) {
134 const ValueDecl *VD = Pair.second;
135 QualType Type = VD->getType();
137 Type = C.getPointerType(Type.getNonReferenceType());
138 else
139 Type = Type.getNonReferenceType();
142 if (SingleEscaped.count(VD)) {
144 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
145 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
146 /*BW=*/nullptr, /*Mutable=*/false,
147 /*InitStyle=*/ICIS_NoInit);
148 Field->setAccess(AS_public);
149 if (VD->hasAttrs()) {
150 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
151 E(VD->getAttrs().end());
152 I != E; ++I)
153 Field->addAttr(*I);
154 }
155 } else {
156 if (BufSize > 1) {
157 llvm::APInt ArraySize(32, BufSize);
158 Type = C.getConstantArrayType(Type, ArraySize, nullptr,
159 ArraySizeModifier::Normal, 0);
160 }
162 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
163 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
164 /*BW=*/nullptr, /*Mutable=*/false,
165 /*InitStyle=*/ICIS_NoInit);
166 Field->setAccess(AS_public);
167 llvm::APInt Align(32, Pair.first.getQuantity());
168 Field->addAttr(AlignedAttr::CreateImplicit(
169 C, /*IsAlignmentExpr=*/true,
171 C.getIntTypeForBitwidth(32, /*Signed=*/0),
173 {}, AlignedAttr::GNU_aligned));
174 }
175 GlobalizedRD->addDecl(Field);
176 MappedDeclsFields.try_emplace(VD, Field);
177 }
178 GlobalizedRD->completeDefinition();
179 return GlobalizedRD;
180}
181
182/// Get the list of variables that can escape their declaration context.
183class CheckVarsEscapingDeclContext final
184 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
185 CodeGenFunction &CGF;
186 llvm::SetVector<const ValueDecl *> EscapedDecls;
187 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
188 llvm::SetVector<const ValueDecl *> DelayedVariableLengthDecls;
189 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
190 RecordDecl *GlobalizedRD = nullptr;
191 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
192 bool AllEscaped = false;
193 bool IsForCombinedParallelRegion = false;
194
195 void markAsEscaped(const ValueDecl *VD) {
196 // Do not globalize declare target variables.
197 if (!isa<VarDecl>(VD) ||
198 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
199 return;
200 VD = cast<ValueDecl>(VD->getCanonicalDecl());
201 // Use user-specified allocation.
202 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
203 return;
204 // Variables captured by value must be globalized.
205 bool IsCaptured = false;
206 if (auto *CSI = CGF.CapturedStmtInfo) {
207 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
208 // Check if need to capture the variable that was already captured by
209 // value in the outer region.
210 IsCaptured = true;
211 if (!IsForCombinedParallelRegion) {
212 if (!FD->hasAttrs())
213 return;
214 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
215 if (!Attr)
216 return;
217 if (((Attr->getCaptureKind() != OMPC_map) &&
218 !isOpenMPPrivate(Attr->getCaptureKind())) ||
219 ((Attr->getCaptureKind() == OMPC_map) &&
220 !FD->getType()->isAnyPointerType()))
221 return;
222 }
223 if (!FD->getType()->isReferenceType()) {
224 assert(!VD->getType()->isVariablyModifiedType() &&
225 "Parameter captured by value with variably modified type");
226 EscapedParameters.insert(VD);
227 } else if (!IsForCombinedParallelRegion) {
228 return;
229 }
230 }
231 }
232 if ((!CGF.CapturedStmtInfo ||
233 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
234 VD->getType()->isReferenceType())
235 // Do not globalize variables with reference type.
236 return;
237 if (VD->getType()->isVariablyModifiedType()) {
238 // If not captured at the target region level then mark the escaped
239 // variable as delayed.
240 if (IsCaptured)
241 EscapedVariableLengthDecls.insert(VD);
242 else
243 DelayedVariableLengthDecls.insert(VD);
244 } else
245 EscapedDecls.insert(VD);
246 }
247
248 void VisitValueDecl(const ValueDecl *VD) {
249 if (VD->getType()->isLValueReferenceType())
250 markAsEscaped(VD);
251 if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
252 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
253 const bool SavedAllEscaped = AllEscaped;
254 AllEscaped = VD->getType()->isLValueReferenceType();
255 Visit(VarD->getInit());
256 AllEscaped = SavedAllEscaped;
257 }
258 }
259 }
260 void VisitOpenMPCapturedStmt(const CapturedStmt *S,
261 ArrayRef<OMPClause *> Clauses,
262 bool IsCombinedParallelRegion) {
263 if (!S)
264 return;
265 for (const CapturedStmt::Capture &C : S->captures()) {
266 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
267 const ValueDecl *VD = C.getCapturedVar();
268 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
269 if (IsCombinedParallelRegion) {
270 // Check if the variable is privatized in the combined construct and
271 // those private copies must be shared in the inner parallel
272 // directive.
273 IsForCombinedParallelRegion = false;
274 for (const OMPClause *C : Clauses) {
275 if (!isOpenMPPrivate(C->getClauseKind()) ||
276 C->getClauseKind() == OMPC_reduction ||
277 C->getClauseKind() == OMPC_linear ||
278 C->getClauseKind() == OMPC_private)
279 continue;
281 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
282 Vars = PC->getVarRefs();
283 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
284 Vars = PC->getVarRefs();
285 else
286 llvm_unreachable("Unexpected clause.");
287 for (const auto *E : Vars) {
288 const Decl *D =
289 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
290 if (D == VD->getCanonicalDecl()) {
291 IsForCombinedParallelRegion = true;
292 break;
293 }
294 }
295 if (IsForCombinedParallelRegion)
296 break;
297 }
298 }
299 markAsEscaped(VD);
300 if (isa<OMPCapturedExprDecl>(VD))
301 VisitValueDecl(VD);
302 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
303 }
304 }
305 }
306
307 void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
308 assert(!GlobalizedRD &&
309 "Record for globalized variables is built already.");
310 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
311 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
312 if (IsInTTDRegion)
313 EscapedDeclsForTeams = EscapedDecls.getArrayRef();
314 else
315 EscapedDeclsForParallel = EscapedDecls.getArrayRef();
316 GlobalizedRD = ::buildRecordForGlobalizedVars(
317 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
318 MappedDeclsFields, WarpSize);
319 }
320
321public:
322 CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
323 ArrayRef<const ValueDecl *> TeamsReductions)
324 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
325 }
326 virtual ~CheckVarsEscapingDeclContext() = default;
327 void VisitDeclStmt(const DeclStmt *S) {
328 if (!S)
329 return;
330 for (const Decl *D : S->decls())
331 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
332 VisitValueDecl(VD);
333 }
334 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
335 if (!D)
336 return;
337 if (!D->hasAssociatedStmt())
338 return;
339 if (const auto *S =
340 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
341 // Do not analyze directives that do not actually require capturing,
342 // like `omp for` or `omp simd` directives.
344 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
345 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
346 VisitStmt(S->getCapturedStmt());
347 return;
348 }
349 VisitOpenMPCapturedStmt(
350 S, D->clauses(),
351 CaptureRegions.back() == OMPD_parallel &&
352 isOpenMPDistributeDirective(D->getDirectiveKind()));
353 }
354 }
355 void VisitCapturedStmt(const CapturedStmt *S) {
356 if (!S)
357 return;
358 for (const CapturedStmt::Capture &C : S->captures()) {
359 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
360 const ValueDecl *VD = C.getCapturedVar();
361 markAsEscaped(VD);
362 if (isa<OMPCapturedExprDecl>(VD))
363 VisitValueDecl(VD);
364 }
365 }
366 }
367 void VisitLambdaExpr(const LambdaExpr *E) {
368 if (!E)
369 return;
370 for (const LambdaCapture &C : E->captures()) {
371 if (C.capturesVariable()) {
372 if (C.getCaptureKind() == LCK_ByRef) {
373 const ValueDecl *VD = C.getCapturedVar();
374 markAsEscaped(VD);
375 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
376 VisitValueDecl(VD);
377 }
378 }
379 }
380 }
381 void VisitBlockExpr(const BlockExpr *E) {
382 if (!E)
383 return;
384 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
385 if (C.isByRef()) {
386 const VarDecl *VD = C.getVariable();
387 markAsEscaped(VD);
388 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
389 VisitValueDecl(VD);
390 }
391 }
392 }
393 void VisitCallExpr(const CallExpr *E) {
394 if (!E)
395 return;
396 for (const Expr *Arg : E->arguments()) {
397 if (!Arg)
398 continue;
399 if (Arg->isLValue()) {
400 const bool SavedAllEscaped = AllEscaped;
401 AllEscaped = true;
402 Visit(Arg);
403 AllEscaped = SavedAllEscaped;
404 } else {
405 Visit(Arg);
406 }
407 }
408 Visit(E->getCallee());
409 }
410 void VisitDeclRefExpr(const DeclRefExpr *E) {
411 if (!E)
412 return;
413 const ValueDecl *VD = E->getDecl();
414 if (AllEscaped)
415 markAsEscaped(VD);
416 if (isa<OMPCapturedExprDecl>(VD))
417 VisitValueDecl(VD);
418 else if (VD->isInitCapture())
419 VisitValueDecl(VD);
420 }
421 void VisitUnaryOperator(const UnaryOperator *E) {
422 if (!E)
423 return;
424 if (E->getOpcode() == UO_AddrOf) {
425 const bool SavedAllEscaped = AllEscaped;
426 AllEscaped = true;
427 Visit(E->getSubExpr());
428 AllEscaped = SavedAllEscaped;
429 } else {
430 Visit(E->getSubExpr());
431 }
432 }
433 void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
434 if (!E)
435 return;
436 if (E->getCastKind() == CK_ArrayToPointerDecay) {
437 const bool SavedAllEscaped = AllEscaped;
438 AllEscaped = true;
439 Visit(E->getSubExpr());
440 AllEscaped = SavedAllEscaped;
441 } else {
442 Visit(E->getSubExpr());
443 }
444 }
445 void VisitExpr(const Expr *E) {
446 if (!E)
447 return;
448 bool SavedAllEscaped = AllEscaped;
449 if (!E->isLValue())
450 AllEscaped = false;
451 for (const Stmt *Child : E->children())
452 if (Child)
453 Visit(Child);
454 AllEscaped = SavedAllEscaped;
455 }
456 void VisitStmt(const Stmt *S) {
457 if (!S)
458 return;
459 for (const Stmt *Child : S->children())
460 if (Child)
461 Visit(Child);
462 }
463
464 /// Returns the record that handles all the escaped local variables and used
465 /// instead of their original storage.
466 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
467 if (!GlobalizedRD)
468 buildRecordForGlobalizedVars(IsInTTDRegion);
469 return GlobalizedRD;
470 }
471
472 /// Returns the field in the globalized record for the escaped variable.
473 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
474 assert(GlobalizedRD &&
475 "Record for globalized variables must be generated already.");
476 return MappedDeclsFields.lookup(VD);
477 }
478
479 /// Returns the list of the escaped local variables/parameters.
480 ArrayRef<const ValueDecl *> getEscapedDecls() const {
481 return EscapedDecls.getArrayRef();
482 }
483
484 /// Checks if the escaped local variable is actually a parameter passed by
485 /// value.
486 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
487 return EscapedParameters;
488 }
489
490 /// Returns the list of the escaped variables with the variably modified
491 /// types.
492 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
493 return EscapedVariableLengthDecls.getArrayRef();
494 }
495
496 /// Returns the list of the delayed variables with the variably modified
497 /// types.
498 ArrayRef<const ValueDecl *> getDelayedVariableLengthDecls() const {
499 return DelayedVariableLengthDecls.getArrayRef();
500 }
501};
502} // anonymous namespace
503
505CGOpenMPRuntimeGPU::getExecutionMode() const {
506 return CurrentExecutionMode;
507}
508
510CGOpenMPRuntimeGPU::getDataSharingMode() const {
511 return CurrentDataSharingMode;
512}
513
514/// Check for inner (nested) SPMD construct, if any
516 const OMPExecutableDirective &D) {
517 const auto *CS = D.getInnermostCapturedStmt();
518 const auto *Body =
519 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
520 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
521
522 if (const auto *NestedDir =
523 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
524 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
525 switch (D.getDirectiveKind()) {
526 case OMPD_target:
527 if (isOpenMPParallelDirective(DKind))
528 return true;
529 if (DKind == OMPD_teams) {
530 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
531 /*IgnoreCaptured=*/true);
532 if (!Body)
533 return false;
534 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
535 if (const auto *NND =
536 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
537 DKind = NND->getDirectiveKind();
538 if (isOpenMPParallelDirective(DKind))
539 return true;
540 }
541 }
542 return false;
543 case OMPD_target_teams:
544 return isOpenMPParallelDirective(DKind);
545 case OMPD_target_simd:
546 case OMPD_target_parallel:
547 case OMPD_target_parallel_for:
548 case OMPD_target_parallel_for_simd:
549 case OMPD_target_teams_distribute:
550 case OMPD_target_teams_distribute_simd:
551 case OMPD_target_teams_distribute_parallel_for:
552 case OMPD_target_teams_distribute_parallel_for_simd:
553 case OMPD_parallel:
554 case OMPD_for:
555 case OMPD_parallel_for:
556 case OMPD_parallel_master:
557 case OMPD_parallel_sections:
558 case OMPD_for_simd:
559 case OMPD_parallel_for_simd:
560 case OMPD_cancel:
561 case OMPD_cancellation_point:
562 case OMPD_ordered:
563 case OMPD_threadprivate:
564 case OMPD_allocate:
565 case OMPD_task:
566 case OMPD_simd:
567 case OMPD_sections:
568 case OMPD_section:
569 case OMPD_single:
570 case OMPD_master:
571 case OMPD_critical:
572 case OMPD_taskyield:
573 case OMPD_barrier:
574 case OMPD_taskwait:
575 case OMPD_taskgroup:
576 case OMPD_atomic:
577 case OMPD_flush:
578 case OMPD_depobj:
579 case OMPD_scan:
580 case OMPD_teams:
581 case OMPD_target_data:
582 case OMPD_target_exit_data:
583 case OMPD_target_enter_data:
584 case OMPD_distribute:
585 case OMPD_distribute_simd:
586 case OMPD_distribute_parallel_for:
587 case OMPD_distribute_parallel_for_simd:
588 case OMPD_teams_distribute:
589 case OMPD_teams_distribute_simd:
590 case OMPD_teams_distribute_parallel_for:
591 case OMPD_teams_distribute_parallel_for_simd:
592 case OMPD_target_update:
593 case OMPD_declare_simd:
594 case OMPD_declare_variant:
595 case OMPD_begin_declare_variant:
596 case OMPD_end_declare_variant:
597 case OMPD_declare_target:
598 case OMPD_end_declare_target:
599 case OMPD_declare_reduction:
600 case OMPD_declare_mapper:
601 case OMPD_taskloop:
602 case OMPD_taskloop_simd:
603 case OMPD_master_taskloop:
604 case OMPD_master_taskloop_simd:
605 case OMPD_parallel_master_taskloop:
606 case OMPD_parallel_master_taskloop_simd:
607 case OMPD_requires:
608 case OMPD_unknown:
609 default:
610 llvm_unreachable("Unexpected directive.");
611 }
612 }
613
614 return false;
615}
616
618 const OMPExecutableDirective &D) {
619 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
620 switch (DirectiveKind) {
621 case OMPD_target:
622 case OMPD_target_teams:
623 return hasNestedSPMDDirective(Ctx, D);
624 case OMPD_target_parallel_loop:
625 case OMPD_target_parallel:
626 case OMPD_target_parallel_for:
627 case OMPD_target_parallel_for_simd:
628 case OMPD_target_teams_distribute_parallel_for:
629 case OMPD_target_teams_distribute_parallel_for_simd:
630 case OMPD_target_simd:
631 case OMPD_target_teams_distribute_simd:
632 return true;
633 case OMPD_target_teams_distribute:
634 return false;
635 case OMPD_target_teams_loop:
636 // Whether this is true or not depends on how the directive will
637 // eventually be emitted.
638 if (auto *TTLD = dyn_cast<OMPTargetTeamsGenericLoopDirective>(&D))
639 return TTLD->canBeParallelFor();
640 return false;
641 case OMPD_parallel:
642 case OMPD_for:
643 case OMPD_parallel_for:
644 case OMPD_parallel_master:
645 case OMPD_parallel_sections:
646 case OMPD_for_simd:
647 case OMPD_parallel_for_simd:
648 case OMPD_cancel:
649 case OMPD_cancellation_point:
650 case OMPD_ordered:
651 case OMPD_threadprivate:
652 case OMPD_allocate:
653 case OMPD_task:
654 case OMPD_simd:
655 case OMPD_sections:
656 case OMPD_section:
657 case OMPD_single:
658 case OMPD_master:
659 case OMPD_critical:
660 case OMPD_taskyield:
661 case OMPD_barrier:
662 case OMPD_taskwait:
663 case OMPD_taskgroup:
664 case OMPD_atomic:
665 case OMPD_flush:
666 case OMPD_depobj:
667 case OMPD_scan:
668 case OMPD_teams:
669 case OMPD_target_data:
670 case OMPD_target_exit_data:
671 case OMPD_target_enter_data:
672 case OMPD_distribute:
673 case OMPD_distribute_simd:
674 case OMPD_distribute_parallel_for:
675 case OMPD_distribute_parallel_for_simd:
676 case OMPD_teams_distribute:
677 case OMPD_teams_distribute_simd:
678 case OMPD_teams_distribute_parallel_for:
679 case OMPD_teams_distribute_parallel_for_simd:
680 case OMPD_target_update:
681 case OMPD_declare_simd:
682 case OMPD_declare_variant:
683 case OMPD_begin_declare_variant:
684 case OMPD_end_declare_variant:
685 case OMPD_declare_target:
686 case OMPD_end_declare_target:
687 case OMPD_declare_reduction:
688 case OMPD_declare_mapper:
689 case OMPD_taskloop:
690 case OMPD_taskloop_simd:
691 case OMPD_master_taskloop:
692 case OMPD_master_taskloop_simd:
693 case OMPD_parallel_master_taskloop:
694 case OMPD_parallel_master_taskloop_simd:
695 case OMPD_requires:
696 case OMPD_unknown:
697 default:
698 break;
699 }
700 llvm_unreachable(
701 "Unknown programming model for OpenMP directive on NVPTX target.");
702}
703
704void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
705 StringRef ParentName,
706 llvm::Function *&OutlinedFn,
707 llvm::Constant *&OutlinedFnID,
708 bool IsOffloadEntry,
709 const RegionCodeGenTy &CodeGen) {
710 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_NonSPMD);
711 EntryFunctionState EST;
712 WrapperFunctionsMap.clear();
713
714 [[maybe_unused]] bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
715 assert(!IsBareKernel && "bare kernel should not be at generic mode");
716
717 // Emit target region as a standalone region.
718 class NVPTXPrePostActionTy : public PrePostActionTy {
719 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
721
722 public:
723 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST,
725 : EST(EST), D(D) {}
726 void Enter(CodeGenFunction &CGF) override {
727 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
728 RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ false);
729 // Skip target region initialization.
730 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
731 }
732 void Exit(CodeGenFunction &CGF) override {
733 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
735 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
736 }
737 } Action(EST, D);
738 CodeGen.setAction(Action);
739 IsInTTDRegion = true;
740 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
741 IsOffloadEntry, CodeGen);
742 IsInTTDRegion = false;
743}
744
745void CGOpenMPRuntimeGPU::emitKernelInit(const OMPExecutableDirective &D,
746 CodeGenFunction &CGF,
747 EntryFunctionState &EST, bool IsSPMD) {
748 llvm::OpenMPIRBuilder::TargetKernelDefaultAttrs Attrs;
749 Attrs.ExecFlags =
750 IsSPMD ? llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD
751 : llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC;
753
754 CGBuilderTy &Bld = CGF.Builder;
755 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, Attrs));
756 if (!IsSPMD)
757 emitGenericVarsProlog(CGF, EST.Loc);
758}
759
760void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
761 EntryFunctionState &EST,
762 bool IsSPMD) {
763 if (!IsSPMD)
764 emitGenericVarsEpilog(CGF);
765
766 // This is temporary until we remove the fixed sized buffer.
768 RecordDecl *StaticRD = C.buildImplicitRecord(
769 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::Union);
770 StaticRD->startDefinition();
771 for (const RecordDecl *TeamReductionRec : TeamsReductions) {
772 QualType RecTy = C.getRecordType(TeamReductionRec);
773 auto *Field = FieldDecl::Create(
774 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
775 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
776 /*BW=*/nullptr, /*Mutable=*/false,
777 /*InitStyle=*/ICIS_NoInit);
778 Field->setAccess(AS_public);
779 StaticRD->addDecl(Field);
780 }
781 StaticRD->completeDefinition();
782 QualType StaticTy = C.getRecordType(StaticRD);
783 llvm::Type *LLVMReductionsBufferTy =
784 CGM.getTypes().ConvertTypeForMem(StaticTy);
785 const auto &DL = CGM.getModule().getDataLayout();
786 uint64_t ReductionDataSize =
787 TeamsReductions.empty()
788 ? 0
789 : DL.getTypeAllocSize(LLVMReductionsBufferTy).getFixedValue();
790 CGBuilderTy &Bld = CGF.Builder;
791 OMPBuilder.createTargetDeinit(Bld, ReductionDataSize,
792 C.getLangOpts().OpenMPCUDAReductionBufNum);
793 TeamsReductions.clear();
794}
795
796void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
797 StringRef ParentName,
798 llvm::Function *&OutlinedFn,
799 llvm::Constant *&OutlinedFnID,
800 bool IsOffloadEntry,
801 const RegionCodeGenTy &CodeGen) {
802 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_SPMD);
803 EntryFunctionState EST;
804
805 bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
806
807 // Emit target region as a standalone region.
808 class NVPTXPrePostActionTy : public PrePostActionTy {
810 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
811 bool IsBareKernel;
812 DataSharingMode Mode;
814
815 public:
816 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
817 CGOpenMPRuntimeGPU::EntryFunctionState &EST,
818 bool IsBareKernel, const OMPExecutableDirective &D)
819 : RT(RT), EST(EST), IsBareKernel(IsBareKernel),
820 Mode(RT.CurrentDataSharingMode), D(D) {}
821 void Enter(CodeGenFunction &CGF) override {
822 if (IsBareKernel) {
823 RT.CurrentDataSharingMode = DataSharingMode::DS_CUDA;
824 return;
825 }
826 RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ true);
827 // Skip target region initialization.
828 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
829 }
830 void Exit(CodeGenFunction &CGF) override {
831 if (IsBareKernel) {
832 RT.CurrentDataSharingMode = Mode;
833 return;
834 }
835 RT.clearLocThreadIdInsertPt(CGF);
836 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
837 }
838 } Action(*this, EST, IsBareKernel, D);
839 CodeGen.setAction(Action);
840 IsInTTDRegion = true;
841 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
842 IsOffloadEntry, CodeGen);
843 IsInTTDRegion = false;
844}
845
846void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
847 const OMPExecutableDirective &D, StringRef ParentName,
848 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
849 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
850 if (!IsOffloadEntry) // Nothing to do.
851 return;
852
853 assert(!ParentName.empty() && "Invalid target region parent name!");
854
856 bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
857 if (Mode || IsBareKernel)
858 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
859 CodeGen);
860 else
861 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
862 CodeGen);
863}
864
866 : CGOpenMPRuntime(CGM) {
867 llvm::OpenMPIRBuilderConfig Config(
868 CGM.getLangOpts().OpenMPIsTargetDevice, isGPU(),
869 CGM.getLangOpts().OpenMPOffloadMandatory,
870 /*HasRequiresReverseOffload*/ false, /*HasRequiresUnifiedAddress*/ false,
871 hasRequiresUnifiedSharedMemory(), /*HasRequiresDynamicAllocators*/ false);
872 OMPBuilder.setConfig(Config);
873
874 if (!CGM.getLangOpts().OpenMPIsTargetDevice)
875 llvm_unreachable("OpenMP can only handle device code.");
876
877 if (CGM.getLangOpts().OpenMPCUDAMode)
878 CurrentDataSharingMode = CGOpenMPRuntimeGPU::DS_CUDA;
879
880 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
881 if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty())
882 return;
883
884 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
885 "__omp_rtl_debug_kind");
886 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
887 "__omp_rtl_assume_teams_oversubscription");
888 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
889 "__omp_rtl_assume_threads_oversubscription");
890 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
891 "__omp_rtl_assume_no_thread_state");
892 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoNestedParallelism,
893 "__omp_rtl_assume_no_nested_parallelism");
894}
895
897 ProcBindKind ProcBind,
899 // Nothing to do.
900}
901
903 llvm::Value *NumThreads,
905 // Nothing to do.
906}
907
909 const Expr *NumTeams,
910 const Expr *ThreadLimit,
912
915 const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
916 const RegionCodeGenTy &CodeGen) {
917 // Emit target region as a standalone region.
918 bool PrevIsInTTDRegion = IsInTTDRegion;
919 IsInTTDRegion = false;
920 auto *OutlinedFun =
922 CGF, D, ThreadIDVar, InnermostKind, CodeGen));
923 IsInTTDRegion = PrevIsInTTDRegion;
924 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) {
925 llvm::Function *WrapperFun =
926 createParallelDataSharingWrapper(OutlinedFun, D);
927 WrapperFunctionsMap[OutlinedFun] = WrapperFun;
928 }
929
930 return OutlinedFun;
931}
932
933/// Get list of lastprivate variables from the teams distribute ... or
934/// teams {distribute ...} directives.
935static void
938 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
939 "expected teams directive.");
940 const OMPExecutableDirective *Dir = &D;
941 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
943 Ctx,
944 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
945 /*IgnoreCaptured=*/true))) {
946 Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
948 Dir = nullptr;
949 }
950 }
951 if (!Dir)
952 return;
953 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
954 for (const Expr *E : C->getVarRefs())
955 Vars.push_back(getPrivateItem(E));
956 }
957}
958
959/// Get list of reduction variables from the teams ... directives.
960static void
963 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
964 "expected teams directive.");
965 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
966 for (const Expr *E : C->privates())
967 Vars.push_back(getPrivateItem(E));
968 }
969}
970
973 const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
974 const RegionCodeGenTy &CodeGen) {
976
977 const RecordDecl *GlobalizedRD = nullptr;
978 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
979 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
980 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
981 // Globalize team reductions variable unconditionally in all modes.
982 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
983 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
984 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
985 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
986 if (!LastPrivatesReductions.empty()) {
987 GlobalizedRD = ::buildRecordForGlobalizedVars(
988 CGM.getContext(), {}, LastPrivatesReductions, MappedDeclsFields,
989 WarpSize);
990 }
991 } else if (!LastPrivatesReductions.empty()) {
992 assert(!TeamAndReductions.first &&
993 "Previous team declaration is not expected.");
994 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
995 std::swap(TeamAndReductions.second, LastPrivatesReductions);
996 }
997
998 // Emit target region as a standalone region.
999 class NVPTXPrePostActionTy : public PrePostActionTy {
1001 const RecordDecl *GlobalizedRD;
1002 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1003 &MappedDeclsFields;
1004
1005 public:
1006 NVPTXPrePostActionTy(
1007 SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1008 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1009 &MappedDeclsFields)
1010 : Loc(Loc), GlobalizedRD(GlobalizedRD),
1011 MappedDeclsFields(MappedDeclsFields) {}
1012 void Enter(CodeGenFunction &CGF) override {
1013 auto &Rt =
1014 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1015 if (GlobalizedRD) {
1016 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1017 I->getSecond().MappedParams =
1018 std::make_unique<CodeGenFunction::OMPMapVars>();
1019 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1020 for (const auto &Pair : MappedDeclsFields) {
1021 assert(Pair.getFirst()->isCanonicalDecl() &&
1022 "Expected canonical declaration");
1023 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1024 }
1025 }
1026 Rt.emitGenericVarsProlog(CGF, Loc);
1027 }
1028 void Exit(CodeGenFunction &CGF) override {
1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1030 .emitGenericVarsEpilog(CGF);
1031 }
1032 } Action(Loc, GlobalizedRD, MappedDeclsFields);
1033 CodeGen.setAction(Action);
1034 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1035 CGF, D, ThreadIDVar, InnermostKind, CodeGen);
1036
1037 return OutlinedFun;
1038}
1039
1040void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1042 if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
1043 return;
1044
1045 CGBuilderTy &Bld = CGF.Builder;
1046
1047 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1048 if (I == FunctionGlobalizedDecls.end())
1049 return;
1050
1051 for (auto &Rec : I->getSecond().LocalVarData) {
1052 const auto *VD = cast<VarDecl>(Rec.first);
1053 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1054 QualType VarTy = VD->getType();
1055
1056 // Get the local allocation of a firstprivate variable before sharing
1057 llvm::Value *ParValue;
1058 if (EscapedParam) {
1059 LValue ParLVal =
1060 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1061 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1062 }
1063
1064 // Allocate space for the variable to be globalized
1065 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1066 llvm::CallBase *VoidPtr =
1067 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1068 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1069 AllocArgs, VD->getName());
1070 // FIXME: We should use the variables actual alignment as an argument.
1071 VoidPtr->addRetAttr(llvm::Attribute::get(
1072 CGM.getLLVMContext(), llvm::Attribute::Alignment,
1074
1075 // Cast the void pointer and get the address of the globalized variable.
1076 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1077 VoidPtr, Bld.getPtrTy(0), VD->getName() + "_on_stack");
1078 LValue VarAddr =
1079 CGF.MakeNaturalAlignPointeeRawAddrLValue(CastedVoidPtr, VarTy);
1080 Rec.second.PrivateAddr = VarAddr.getAddress();
1081 Rec.second.GlobalizedVal = VoidPtr;
1082
1083 // Assign the local allocation to the newly globalized location.
1084 if (EscapedParam) {
1085 CGF.EmitStoreOfScalar(ParValue, VarAddr);
1086 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress());
1087 }
1088 if (auto *DI = CGF.getDebugInfo())
1089 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1090 }
1091
1092 for (const auto *ValueD : I->getSecond().EscapedVariableLengthDecls) {
1093 const auto *VD = cast<VarDecl>(ValueD);
1094 std::pair<llvm::Value *, llvm::Value *> AddrSizePair =
1095 getKmpcAllocShared(CGF, VD);
1096 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(AddrSizePair);
1097 LValue Base = CGF.MakeAddrLValue(AddrSizePair.first, VD->getType(),
1100 I->getSecond().MappedParams->setVarAddr(CGF, VD, Base.getAddress());
1101 }
1102 I->getSecond().MappedParams->apply(CGF);
1103}
1104
1106 const VarDecl *VD) const {
1107 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1108 if (I == FunctionGlobalizedDecls.end())
1109 return false;
1110
1111 // Check variable declaration is delayed:
1112 return llvm::is_contained(I->getSecond().DelayedVariableLengthDecls, VD);
1113}
1114
1115std::pair<llvm::Value *, llvm::Value *>
1117 const VarDecl *VD) {
1118 CGBuilderTy &Bld = CGF.Builder;
1119
1120 // Compute size and alignment.
1121 llvm::Value *Size = CGF.getTypeSize(VD->getType());
1122 CharUnits Align = CGM.getContext().getDeclAlign(VD);
1123 Size = Bld.CreateNUWAdd(
1124 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1125 llvm::Value *AlignVal =
1126 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1127 Size = Bld.CreateUDiv(Size, AlignVal);
1128 Size = Bld.CreateNUWMul(Size, AlignVal);
1129
1130 // Allocate space for this VLA object to be globalized.
1131 llvm::Value *AllocArgs[] = {Size};
1132 llvm::CallBase *VoidPtr =
1133 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1134 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1135 AllocArgs, VD->getName());
1136 VoidPtr->addRetAttr(llvm::Attribute::get(
1137 CGM.getLLVMContext(), llvm::Attribute::Alignment, Align.getQuantity()));
1138
1139 return std::make_pair(VoidPtr, Size);
1140}
1141
1143 CodeGenFunction &CGF,
1144 const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair) {
1145 // Deallocate the memory for each globalized VLA object
1146 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1147 CGM.getModule(), OMPRTL___kmpc_free_shared),
1148 {AddrSizePair.first, AddrSizePair.second});
1149}
1150
1151void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF) {
1152 if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
1153 return;
1154
1155 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1156 if (I != FunctionGlobalizedDecls.end()) {
1157 // Deallocate the memory for each globalized VLA object that was
1158 // globalized in the prolog (i.e. emitGenericVarsProlog).
1159 for (const auto &AddrSizePair :
1160 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1161 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1162 CGM.getModule(), OMPRTL___kmpc_free_shared),
1163 {AddrSizePair.first, AddrSizePair.second});
1164 }
1165 // Deallocate the memory for each globalized value
1166 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1167 const auto *VD = cast<VarDecl>(Rec.first);
1168 I->getSecond().MappedParams->restore(CGF);
1169
1170 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1171 CGF.getTypeSize(VD->getType())};
1172 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1173 CGM.getModule(), OMPRTL___kmpc_free_shared),
1174 FreeArgs);
1175 }
1176 }
1177}
1178
1182 llvm::Function *OutlinedFn,
1183 ArrayRef<llvm::Value *> CapturedVars) {
1184 if (!CGF.HaveInsertPoint())
1185 return;
1186
1187 bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
1188
1190 /*Name=*/".zero.addr");
1191 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1193 // We don't emit any thread id function call in bare kernel, but because the
1194 // outlined function has a pointer argument, we emit a nullptr here.
1195 if (IsBareKernel)
1196 OutlinedFnArgs.push_back(llvm::ConstantPointerNull::get(CGM.VoidPtrTy));
1197 else
1198 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).emitRawPointer(CGF));
1199 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1200 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1201 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1202}
1203
1206 llvm::Function *OutlinedFn,
1207 ArrayRef<llvm::Value *> CapturedVars,
1208 const Expr *IfCond,
1209 llvm::Value *NumThreads) {
1210 if (!CGF.HaveInsertPoint())
1211 return;
1212
1213 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1214 NumThreads](CodeGenFunction &CGF,
1215 PrePostActionTy &Action) {
1216 CGBuilderTy &Bld = CGF.Builder;
1217 llvm::Value *NumThreadsVal = NumThreads;
1218 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1219 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1220 if (WFn)
1221 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1222 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1223
1224 // Create a private scope that will globalize the arguments
1225 // passed from the outside of the target region.
1226 // TODO: Is that needed?
1227 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1228
1229 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1230 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1231 "captured_vars_addrs");
1232 // There's something to share.
1233 if (!CapturedVars.empty()) {
1234 // Prepare for parallel region. Indicate the outlined function.
1235 ASTContext &Ctx = CGF.getContext();
1236 unsigned Idx = 0;
1237 for (llvm::Value *V : CapturedVars) {
1238 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1239 llvm::Value *PtrV;
1240 if (V->getType()->isIntegerTy())
1241 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1242 else
1244 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1245 Ctx.getPointerType(Ctx.VoidPtrTy));
1246 ++Idx;
1247 }
1248 }
1249
1250 llvm::Value *IfCondVal = nullptr;
1251 if (IfCond)
1252 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1253 /* isSigned */ false);
1254 else
1255 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1256
1257 if (!NumThreadsVal)
1258 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1259 else
1260 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1261
1262 assert(IfCondVal && "Expected a value");
1263 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1264 llvm::Value *Args[] = {
1265 RTLoc,
1266 getThreadID(CGF, Loc),
1267 IfCondVal,
1268 NumThreadsVal,
1269 llvm::ConstantInt::get(CGF.Int32Ty, -1),
1270 FnPtr,
1271 ID,
1272 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.emitRawPointer(CGF),
1273 CGF.VoidPtrPtrTy),
1274 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1275 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1276 CGM.getModule(), OMPRTL___kmpc_parallel_51),
1277 Args);
1278 };
1279
1280 RegionCodeGenTy RCG(ParallelGen);
1281 RCG(CGF);
1282}
1283
1284void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1285 // Always emit simple barriers!
1286 if (!CGF.HaveInsertPoint())
1287 return;
1288 // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1289 // This function does not use parameters, so we can emit just default values.
1290 llvm::Value *Args[] = {
1291 llvm::ConstantPointerNull::get(
1292 cast<llvm::PointerType>(getIdentTyPointerTy())),
1293 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1294 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1295 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1296 Args);
1297}
1298
1301 OpenMPDirectiveKind Kind, bool,
1302 bool) {
1303 // Always emit simple barriers!
1304 if (!CGF.HaveInsertPoint())
1305 return;
1306 // Build call __kmpc_cancel_barrier(loc, thread_id);
1307 unsigned Flags = getDefaultFlagsForBarriers(Kind);
1308 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1309 getThreadID(CGF, Loc)};
1310
1311 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1312 CGM.getModule(), OMPRTL___kmpc_barrier),
1313 Args);
1314}
1315
1317 CodeGenFunction &CGF, StringRef CriticalName,
1318 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1319 const Expr *Hint) {
1320 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1321 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1322 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1323 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1324 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1325
1326 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1327
1328 // Get the mask of active threads in the warp.
1329 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1330 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1331 // Fetch team-local id of the thread.
1332 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1333
1334 // Get the width of the team.
1335 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1336
1337 // Initialize the counter variable for the loop.
1338 QualType Int32Ty =
1339 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1340 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1341 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1342 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1343 /*isInit=*/true);
1344
1345 // Block checks if loop counter exceeds upper bound.
1346 CGF.EmitBlock(LoopBB);
1347 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1348 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1349 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1350
1351 // Block tests which single thread should execute region, and which threads
1352 // should go straight to synchronisation point.
1353 CGF.EmitBlock(TestBB);
1354 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1355 llvm::Value *CmpThreadToCounter =
1356 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1357 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1358
1359 // Block emits the body of the critical region.
1360 CGF.EmitBlock(BodyBB);
1361
1362 // Output the critical statement.
1363 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1364 Hint);
1365
1366 // After the body surrounded by the critical region, the single executing
1367 // thread will jump to the synchronisation point.
1368 // Block waits for all threads in current team to finish then increments the
1369 // counter variable and returns to the loop.
1370 CGF.EmitBlock(SyncBB);
1371 // Reconverge active threads in the warp.
1372 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1373 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1374 Mask);
1375
1376 llvm::Value *IncCounterVal =
1377 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1378 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1379 CGF.EmitBranch(LoopBB);
1380
1381 // Block that is reached when all threads in the team complete the region.
1382 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1383}
1384
1385/// Cast value to the specified type.
1386static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1387 QualType ValTy, QualType CastTy,
1389 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1390 "Cast type must sized.");
1391 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1392 "Val type must sized.");
1393 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1394 if (ValTy == CastTy)
1395 return Val;
1396 if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1397 CGF.getContext().getTypeSizeInChars(CastTy))
1398 return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1399 if (CastTy->isIntegerType() && ValTy->isIntegerType())
1400 return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1402 Address CastItem = CGF.CreateMemTemp(CastTy);
1403 Address ValCastItem = CastItem.withElementType(Val->getType());
1404 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1406 TBAAAccessInfo());
1407 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1409 TBAAAccessInfo());
1410}
1411
1412///
1413/// Design of OpenMP reductions on the GPU
1414///
1415/// Consider a typical OpenMP program with one or more reduction
1416/// clauses:
1417///
1418/// float foo;
1419/// double bar;
1420/// #pragma omp target teams distribute parallel for \
1421/// reduction(+:foo) reduction(*:bar)
1422/// for (int i = 0; i < N; i++) {
1423/// foo += A[i]; bar *= B[i];
1424/// }
1425///
1426/// where 'foo' and 'bar' are reduced across all OpenMP threads in
1427/// all teams. In our OpenMP implementation on the NVPTX device an
1428/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
1429/// within a team are mapped to CUDA threads within a threadblock.
1430/// Our goal is to efficiently aggregate values across all OpenMP
1431/// threads such that:
1432///
1433/// - the compiler and runtime are logically concise, and
1434/// - the reduction is performed efficiently in a hierarchical
1435/// manner as follows: within OpenMP threads in the same warp,
1436/// across warps in a threadblock, and finally across teams on
1437/// the NVPTX device.
1438///
1439/// Introduction to Decoupling
1440///
1441/// We would like to decouple the compiler and the runtime so that the
1442/// latter is ignorant of the reduction variables (number, data types)
1443/// and the reduction operators. This allows a simpler interface
1444/// and implementation while still attaining good performance.
1445///
1446/// Pseudocode for the aforementioned OpenMP program generated by the
1447/// compiler is as follows:
1448///
1449/// 1. Create private copies of reduction variables on each OpenMP
1450/// thread: 'foo_private', 'bar_private'
1451/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
1452/// to it and writes the result in 'foo_private' and 'bar_private'
1453/// respectively.
1454/// 3. Call the OpenMP runtime on the GPU to reduce within a team
1455/// and store the result on the team master:
1456///
1457/// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
1458/// reduceData, shuffleReduceFn, interWarpCpyFn)
1459///
1460/// where:
1461/// struct ReduceData {
1462/// double *foo;
1463/// double *bar;
1464/// } reduceData
1465/// reduceData.foo = &foo_private
1466/// reduceData.bar = &bar_private
1467///
1468/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
1469/// auxiliary functions generated by the compiler that operate on
1470/// variables of type 'ReduceData'. They aid the runtime perform
1471/// algorithmic steps in a data agnostic manner.
1472///
1473/// 'shuffleReduceFn' is a pointer to a function that reduces data
1474/// of type 'ReduceData' across two OpenMP threads (lanes) in the
1475/// same warp. It takes the following arguments as input:
1476///
1477/// a. variable of type 'ReduceData' on the calling lane,
1478/// b. its lane_id,
1479/// c. an offset relative to the current lane_id to generate a
1480/// remote_lane_id. The remote lane contains the second
1481/// variable of type 'ReduceData' that is to be reduced.
1482/// d. an algorithm version parameter determining which reduction
1483/// algorithm to use.
1484///
1485/// 'shuffleReduceFn' retrieves data from the remote lane using
1486/// efficient GPU shuffle intrinsics and reduces, using the
1487/// algorithm specified by the 4th parameter, the two operands
1488/// element-wise. The result is written to the first operand.
1489///
1490/// Different reduction algorithms are implemented in different
1491/// runtime functions, all calling 'shuffleReduceFn' to perform
1492/// the essential reduction step. Therefore, based on the 4th
1493/// parameter, this function behaves slightly differently to
1494/// cooperate with the runtime to ensure correctness under
1495/// different circumstances.
1496///
1497/// 'InterWarpCpyFn' is a pointer to a function that transfers
1498/// reduced variables across warps. It tunnels, through CUDA
1499/// shared memory, the thread-private data of type 'ReduceData'
1500/// from lane 0 of each warp to a lane in the first warp.
1501/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
1502/// The last team writes the global reduced value to memory.
1503///
1504/// ret = __kmpc_nvptx_teams_reduce_nowait(...,
1505/// reduceData, shuffleReduceFn, interWarpCpyFn,
1506/// scratchpadCopyFn, loadAndReduceFn)
1507///
1508/// 'scratchpadCopyFn' is a helper that stores reduced
1509/// data from the team master to a scratchpad array in
1510/// global memory.
1511///
1512/// 'loadAndReduceFn' is a helper that loads data from
1513/// the scratchpad array and reduces it with the input
1514/// operand.
1515///
1516/// These compiler generated functions hide address
1517/// calculation and alignment information from the runtime.
1518/// 5. if ret == 1:
1519/// The team master of the last team stores the reduced
1520/// result to the globals in memory.
1521/// foo += reduceData.foo; bar *= reduceData.bar
1522///
1523///
1524/// Warp Reduction Algorithms
1525///
1526/// On the warp level, we have three algorithms implemented in the
1527/// OpenMP runtime depending on the number of active lanes:
1528///
1529/// Full Warp Reduction
1530///
1531/// The reduce algorithm within a warp where all lanes are active
1532/// is implemented in the runtime as follows:
1533///
1534/// full_warp_reduce(void *reduce_data,
1535/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
1536/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
1537/// ShuffleReduceFn(reduce_data, 0, offset, 0);
1538/// }
1539///
1540/// The algorithm completes in log(2, WARPSIZE) steps.
1541///
1542/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
1543/// not used therefore we save instructions by not retrieving lane_id
1544/// from the corresponding special registers. The 4th parameter, which
1545/// represents the version of the algorithm being used, is set to 0 to
1546/// signify full warp reduction.
1547///
1548/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
1549///
1550/// #reduce_elem refers to an element in the local lane's data structure
1551/// #remote_elem is retrieved from a remote lane
1552/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
1553/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
1554///
1555/// Contiguous Partial Warp Reduction
1556///
1557/// This reduce algorithm is used within a warp where only the first
1558/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
1559/// number of OpenMP threads in a parallel region is not a multiple of
1560/// WARPSIZE. The algorithm is implemented in the runtime as follows:
1561///
1562/// void
1563/// contiguous_partial_reduce(void *reduce_data,
1564/// kmp_ShuffleReductFctPtr ShuffleReduceFn,
1565/// int size, int lane_id) {
1566/// int curr_size;
1567/// int offset;
1568/// curr_size = size;
1569/// mask = curr_size/2;
1570/// while (offset>0) {
1571/// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
1572/// curr_size = (curr_size+1)/2;
1573/// offset = curr_size/2;
1574/// }
1575/// }
1576///
1577/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
1578///
1579/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
1580/// if (lane_id < offset)
1581/// reduce_elem = reduce_elem REDUCE_OP remote_elem
1582/// else
1583/// reduce_elem = remote_elem
1584///
1585/// This algorithm assumes that the data to be reduced are located in a
1586/// contiguous subset of lanes starting from the first. When there is
1587/// an odd number of active lanes, the data in the last lane is not
1588/// aggregated with any other lane's dat but is instead copied over.
1589///
1590/// Dispersed Partial Warp Reduction
1591///
1592/// This algorithm is used within a warp when any discontiguous subset of
1593/// lanes are active. It is used to implement the reduction operation
1594/// across lanes in an OpenMP simd region or in a nested parallel region.
1595///
1596/// void
1597/// dispersed_partial_reduce(void *reduce_data,
1598/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
1599/// int size, remote_id;
1600/// int logical_lane_id = number_of_active_lanes_before_me() * 2;
1601/// do {
1602/// remote_id = next_active_lane_id_right_after_me();
1603/// # the above function returns 0 of no active lane
1604/// # is present right after the current lane.
1605/// size = number_of_active_lanes_in_this_warp();
1606/// logical_lane_id /= 2;
1607/// ShuffleReduceFn(reduce_data, logical_lane_id,
1608/// remote_id-1-threadIdx.x, 2);
1609/// } while (logical_lane_id % 2 == 0 && size > 1);
1610/// }
1611///
1612/// There is no assumption made about the initial state of the reduction.
1613/// Any number of lanes (>=1) could be active at any position. The reduction
1614/// result is returned in the first active lane.
1615///
1616/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
1617///
1618/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
1619/// if (lane_id % 2 == 0 && offset > 0)
1620/// reduce_elem = reduce_elem REDUCE_OP remote_elem
1621/// else
1622/// reduce_elem = remote_elem
1623///
1624///
1625/// Intra-Team Reduction
1626///
1627/// This function, as implemented in the runtime call
1628/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
1629/// threads in a team. It first reduces within a warp using the
1630/// aforementioned algorithms. We then proceed to gather all such
1631/// reduced values at the first warp.
1632///
1633/// The runtime makes use of the function 'InterWarpCpyFn', which copies
1634/// data from each of the "warp master" (zeroth lane of each warp, where
1635/// warp-reduced data is held) to the zeroth warp. This step reduces (in
1636/// a mathematical sense) the problem of reduction across warp masters in
1637/// a block to the problem of warp reduction.
1638///
1639///
1640/// Inter-Team Reduction
1641///
1642/// Once a team has reduced its data to a single value, it is stored in
1643/// a global scratchpad array. Since each team has a distinct slot, this
1644/// can be done without locking.
1645///
1646/// The last team to write to the scratchpad array proceeds to reduce the
1647/// scratchpad array. One or more workers in the last team use the helper
1648/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
1649/// the k'th worker reduces every k'th element.
1650///
1651/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
1652/// reduce across workers and compute a globally reduced value.
1653///
1657 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
1658 if (!CGF.HaveInsertPoint())
1659 return;
1660
1661 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
1662 bool DistributeReduction = isOpenMPDistributeDirective(Options.ReductionKind);
1663 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
1664
1666
1667 if (Options.SimpleReduction) {
1668 assert(!TeamsReduction && !ParallelReduction &&
1669 "Invalid reduction selection in emitReduction.");
1670 (void)ParallelReduction;
1671 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
1672 ReductionOps, Options);
1673 return;
1674 }
1675
1676 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
1677 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
1678 int Cnt = 0;
1679 for (const Expr *DRE : Privates) {
1680 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
1681 ++Cnt;
1682 }
1683 const RecordDecl *ReductionRec = ::buildRecordForGlobalizedVars(
1684 CGM.getContext(), PrivatesReductions, {}, VarFieldMap, 1);
1685
1686 if (TeamsReduction)
1687 TeamsReductions.push_back(ReductionRec);
1688
1689 // Source location for the ident struct
1690 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1691
1692 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1693 InsertPointTy AllocaIP(CGF.AllocaInsertPt->getParent(),
1694 CGF.AllocaInsertPt->getIterator());
1695 InsertPointTy CodeGenIP(CGF.Builder.GetInsertBlock(),
1696 CGF.Builder.GetInsertPoint());
1697 llvm::OpenMPIRBuilder::LocationDescription OmpLoc(
1698 CodeGenIP, CGF.SourceLocToDebugLoc(Loc));
1700
1702 unsigned Idx = 0;
1703 for (const Expr *Private : Privates) {
1704 llvm::Type *ElementType;
1705 llvm::Value *Variable;
1706 llvm::Value *PrivateVariable;
1707 llvm::OpenMPIRBuilder::ReductionGenAtomicCBTy AtomicReductionGen = nullptr;
1708 ElementType = CGF.ConvertTypeForMem(Private->getType());
1709 const auto *RHSVar =
1710 cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[Idx])->getDecl());
1711 PrivateVariable = CGF.GetAddrOfLocalVar(RHSVar).emitRawPointer(CGF);
1712 const auto *LHSVar =
1713 cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[Idx])->getDecl());
1714 Variable = CGF.GetAddrOfLocalVar(LHSVar).emitRawPointer(CGF);
1715 llvm::OpenMPIRBuilder::EvalKind EvalKind;
1716 switch (CGF.getEvaluationKind(Private->getType())) {
1717 case TEK_Scalar:
1718 EvalKind = llvm::OpenMPIRBuilder::EvalKind::Scalar;
1719 break;
1720 case TEK_Complex:
1721 EvalKind = llvm::OpenMPIRBuilder::EvalKind::Complex;
1722 break;
1723 case TEK_Aggregate:
1724 EvalKind = llvm::OpenMPIRBuilder::EvalKind::Aggregate;
1725 break;
1726 }
1727 auto ReductionGen = [&](InsertPointTy CodeGenIP, unsigned I,
1728 llvm::Value **LHSPtr, llvm::Value **RHSPtr,
1729 llvm::Function *NewFunc) {
1730 CGF.Builder.restoreIP(CodeGenIP);
1731 auto *CurFn = CGF.CurFn;
1732 CGF.CurFn = NewFunc;
1733
1734 *LHSPtr = CGF.GetAddrOfLocalVar(
1735 cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl()))
1736 .emitRawPointer(CGF);
1737 *RHSPtr = CGF.GetAddrOfLocalVar(
1738 cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl()))
1739 .emitRawPointer(CGF);
1740
1741 emitSingleReductionCombiner(CGF, ReductionOps[I], Privates[I],
1742 cast<DeclRefExpr>(LHSExprs[I]),
1743 cast<DeclRefExpr>(RHSExprs[I]));
1744
1745 CGF.CurFn = CurFn;
1746
1747 return InsertPointTy(CGF.Builder.GetInsertBlock(),
1748 CGF.Builder.GetInsertPoint());
1749 };
1750 ReductionInfos.emplace_back(llvm::OpenMPIRBuilder::ReductionInfo(
1751 ElementType, Variable, PrivateVariable, EvalKind,
1752 /*ReductionGen=*/nullptr, ReductionGen, AtomicReductionGen));
1753 Idx++;
1754 }
1755
1756 llvm::OpenMPIRBuilder::InsertPointTy AfterIP =
1757 cantFail(OMPBuilder.createReductionsGPU(
1758 OmpLoc, AllocaIP, CodeGenIP, ReductionInfos, false, TeamsReduction,
1759 DistributeReduction, llvm::OpenMPIRBuilder::ReductionGenCBKind::Clang,
1760 CGF.getTarget().getGridValue(),
1761 C.getLangOpts().OpenMPCUDAReductionBufNum, RTLoc));
1762 CGF.Builder.restoreIP(AfterIP);
1763 return;
1764}
1765
1766const VarDecl *
1768 const VarDecl *NativeParam) const {
1769 if (!NativeParam->getType()->isReferenceType())
1770 return NativeParam;
1771 QualType ArgType = NativeParam->getType();
1773 const Type *NonQualTy = QC.strip(ArgType);
1774 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
1775 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
1776 if (Attr->getCaptureKind() == OMPC_map) {
1777 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
1779 }
1780 }
1781 ArgType = CGM.getContext().getPointerType(PointeeTy);
1782 QC.addRestrict();
1783 enum { NVPTX_local_addr = 5 };
1784 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
1785 ArgType = QC.apply(CGM.getContext(), ArgType);
1786 if (isa<ImplicitParamDecl>(NativeParam))
1788 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
1789 NativeParam->getIdentifier(), ArgType, ImplicitParamKind::Other);
1790 return ParmVarDecl::Create(
1791 CGM.getContext(),
1792 const_cast<DeclContext *>(NativeParam->getDeclContext()),
1793 NativeParam->getBeginLoc(), NativeParam->getLocation(),
1794 NativeParam->getIdentifier(), ArgType,
1795 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
1796}
1797
1798Address
1800 const VarDecl *NativeParam,
1801 const VarDecl *TargetParam) const {
1802 assert(NativeParam != TargetParam &&
1803 NativeParam->getType()->isReferenceType() &&
1804 "Native arg must not be the same as target arg.");
1805 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
1806 QualType NativeParamType = NativeParam->getType();
1808 const Type *NonQualTy = QC.strip(NativeParamType);
1809 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
1810 unsigned NativePointeeAddrSpace =
1811 CGF.getTypes().getTargetAddressSpace(NativePointeeTy);
1812 QualType TargetTy = TargetParam->getType();
1813 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(LocalAddr, /*Volatile=*/false,
1814 TargetTy, SourceLocation());
1815 // Cast to native address space.
1817 TargetAddr,
1818 llvm::PointerType::get(CGF.getLLVMContext(), NativePointeeAddrSpace));
1819 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
1820 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
1821 NativeParamType);
1822 return NativeParamAddr;
1823}
1824
1826 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
1827 ArrayRef<llvm::Value *> Args) const {
1829 TargetArgs.reserve(Args.size());
1830 auto *FnType = OutlinedFn.getFunctionType();
1831 for (unsigned I = 0, E = Args.size(); I < E; ++I) {
1832 if (FnType->isVarArg() && FnType->getNumParams() <= I) {
1833 TargetArgs.append(std::next(Args.begin(), I), Args.end());
1834 break;
1835 }
1836 llvm::Type *TargetType = FnType->getParamType(I);
1837 llvm::Value *NativeArg = Args[I];
1838 if (!TargetType->isPointerTy()) {
1839 TargetArgs.emplace_back(NativeArg);
1840 continue;
1841 }
1842 TargetArgs.emplace_back(
1843 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(NativeArg, TargetType));
1844 }
1845 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
1846}
1847
1848/// Emit function which wraps the outline parallel region
1849/// and controls the arguments which are passed to this function.
1850/// The wrapper ensures that the outlined function is called
1851/// with the correct arguments when data is shared.
1852llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
1853 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
1854 ASTContext &Ctx = CGM.getContext();
1855 const auto &CS = *D.getCapturedStmt(OMPD_parallel);
1856
1857 // Create a function that takes as argument the source thread.
1858 FunctionArgList WrapperArgs;
1859 QualType Int16QTy =
1860 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
1861 QualType Int32QTy =
1862 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
1863 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
1864 /*Id=*/nullptr, Int16QTy,
1866 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
1867 /*Id=*/nullptr, Int32QTy,
1869 WrapperArgs.emplace_back(&ParallelLevelArg);
1870 WrapperArgs.emplace_back(&WrapperArg);
1871
1872 const CGFunctionInfo &CGFI =
1874
1875 auto *Fn = llvm::Function::Create(
1876 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
1877 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
1878
1879 // Ensure we do not inline the function. This is trivially true for the ones
1880 // passed to __kmpc_fork_call but the ones calles in serialized regions
1881 // could be inlined. This is not a perfect but it is closer to the invariant
1882 // we want, namely, every data environment starts with a new function.
1883 // TODO: We should pass the if condition to the runtime function and do the
1884 // handling there. Much cleaner code.
1885 Fn->addFnAttr(llvm::Attribute::NoInline);
1886
1888 Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
1889 Fn->setDoesNotRecurse();
1890
1891 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
1892 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
1893 D.getBeginLoc(), D.getBeginLoc());
1894
1895 const auto *RD = CS.getCapturedRecordDecl();
1896 auto CurField = RD->field_begin();
1897
1898 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1899 /*Name=*/".zero.addr");
1900 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1901 // Get the array of arguments.
1903
1904 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).emitRawPointer(CGF));
1905 Args.emplace_back(ZeroAddr.emitRawPointer(CGF));
1906
1907 CGBuilderTy &Bld = CGF.Builder;
1908 auto CI = CS.capture_begin();
1909
1910 // Use global memory for data sharing.
1911 // Handle passing of global args to workers.
1912 RawAddress GlobalArgs =
1913 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
1914 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
1915 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
1916 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1917 CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
1918 DataSharingArgs);
1919
1920 // Retrieve the shared variables from the list of references returned
1921 // by the runtime. Pass the variables to the outlined function.
1922 Address SharedArgListAddress = Address::invalid();
1923 if (CS.capture_size() > 0 ||
1924 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
1925 SharedArgListAddress = CGF.EmitLoadOfPointer(
1926 GlobalArgs, CGF.getContext()
1928 .castAs<PointerType>());
1929 }
1930 unsigned Idx = 0;
1931 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
1932 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
1934 Src, Bld.getPtrTy(0), CGF.SizeTy);
1935 llvm::Value *LB = CGF.EmitLoadOfScalar(
1936 TypedAddress,
1937 /*Volatile=*/false,
1939 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
1940 Args.emplace_back(LB);
1941 ++Idx;
1942 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
1943 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(Src, Bld.getPtrTy(0),
1944 CGF.SizeTy);
1945 llvm::Value *UB = CGF.EmitLoadOfScalar(
1946 TypedAddress,
1947 /*Volatile=*/false,
1949 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
1950 Args.emplace_back(UB);
1951 ++Idx;
1952 }
1953 if (CS.capture_size() > 0) {
1954 ASTContext &CGFContext = CGF.getContext();
1955 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
1956 QualType ElemTy = CurField->getType();
1957 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
1959 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
1960 CGF.ConvertTypeForMem(ElemTy));
1961 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
1962 /*Volatile=*/false,
1963 CGFContext.getPointerType(ElemTy),
1964 CI->getLocation());
1965 if (CI->capturesVariableByCopy() &&
1966 !CI->getCapturedVar()->getType()->isAnyPointerType()) {
1967 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
1968 CI->getLocation());
1969 }
1970 Args.emplace_back(Arg);
1971 }
1972 }
1973
1974 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
1975 CGF.FinishFunction();
1976 return Fn;
1977}
1978
1980 const Decl *D) {
1981 if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
1982 return;
1983
1984 assert(D && "Expected function or captured|block decl.");
1985 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
1986 "Function is registered already.");
1987 assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
1988 "Team is set but not processed.");
1989 const Stmt *Body = nullptr;
1990 bool NeedToDelayGlobalization = false;
1991 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1992 Body = FD->getBody();
1993 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
1994 Body = BD->getBody();
1995 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
1996 Body = CD->getBody();
1997 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
1998 if (NeedToDelayGlobalization &&
1999 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
2000 return;
2001 }
2002 if (!Body)
2003 return;
2004 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
2005 VarChecker.Visit(Body);
2006 const RecordDecl *GlobalizedVarsRecord =
2007 VarChecker.getGlobalizedRecord(IsInTTDRegion);
2008 TeamAndReductions.first = nullptr;
2009 TeamAndReductions.second.clear();
2010 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
2011 VarChecker.getEscapedVariableLengthDecls();
2012 ArrayRef<const ValueDecl *> DelayedVariableLengthDecls =
2013 VarChecker.getDelayedVariableLengthDecls();
2014 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty() &&
2015 DelayedVariableLengthDecls.empty())
2016 return;
2017 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
2018 I->getSecond().MappedParams =
2019 std::make_unique<CodeGenFunction::OMPMapVars>();
2020 I->getSecond().EscapedParameters.insert(
2021 VarChecker.getEscapedParameters().begin(),
2022 VarChecker.getEscapedParameters().end());
2023 I->getSecond().EscapedVariableLengthDecls.append(
2024 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
2025 I->getSecond().DelayedVariableLengthDecls.append(
2026 DelayedVariableLengthDecls.begin(), DelayedVariableLengthDecls.end());
2027 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
2028 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
2029 assert(VD->isCanonicalDecl() && "Expected canonical declaration");
2030 Data.insert(std::make_pair(VD, MappedVarData()));
2031 }
2032 if (!NeedToDelayGlobalization) {
2033 emitGenericVarsProlog(CGF, D->getBeginLoc());
2034 struct GlobalizationScope final : EHScopeStack::Cleanup {
2035 GlobalizationScope() = default;
2036
2037 void Emit(CodeGenFunction &CGF, Flags flags) override {
2038 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
2039 .emitGenericVarsEpilog(CGF);
2040 }
2041 };
2042 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
2043 }
2044}
2045
2047 const VarDecl *VD) {
2048 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
2049 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
2050 auto AS = LangAS::Default;
2051 switch (A->getAllocatorType()) {
2052 case OMPAllocateDeclAttr::OMPNullMemAlloc:
2053 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
2054 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
2055 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
2056 break;
2057 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
2058 return Address::invalid();
2059 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
2060 // TODO: implement aupport for user-defined allocators.
2061 return Address::invalid();
2062 case OMPAllocateDeclAttr::OMPConstMemAlloc:
2064 break;
2065 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
2067 break;
2068 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
2069 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
2070 break;
2071 }
2072 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
2073 auto *GV = new llvm::GlobalVariable(
2074 CGM.getModule(), VarTy, /*isConstant=*/false,
2075 llvm::GlobalValue::InternalLinkage, llvm::PoisonValue::get(VarTy),
2076 VD->getName(),
2077 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
2079 CharUnits Align = CGM.getContext().getDeclAlign(VD);
2080 GV->setAlignment(Align.getAsAlign());
2081 return Address(
2083 GV, CGF.Builder.getPtrTy(CGM.getContext().getTargetAddressSpace(
2084 VD->getType().getAddressSpace()))),
2085 VarTy, Align);
2086 }
2087
2088 if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
2089 return Address::invalid();
2090
2091 VD = VD->getCanonicalDecl();
2092 auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
2093 if (I == FunctionGlobalizedDecls.end())
2094 return Address::invalid();
2095 auto VDI = I->getSecond().LocalVarData.find(VD);
2096 if (VDI != I->getSecond().LocalVarData.end())
2097 return VDI->second.PrivateAddr;
2098 if (VD->hasAttrs()) {
2100 E(VD->attr_end());
2101 IT != E; ++IT) {
2102 auto VDI = I->getSecond().LocalVarData.find(
2103 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
2104 ->getCanonicalDecl());
2105 if (VDI != I->getSecond().LocalVarData.end())
2106 return VDI->second.PrivateAddr;
2107 }
2108 }
2109
2110 return Address::invalid();
2111}
2112
2114 FunctionGlobalizedDecls.erase(CGF.CurFn);
2116}
2117
2119 CodeGenFunction &CGF, const OMPLoopDirective &S,
2120 OpenMPDistScheduleClauseKind &ScheduleKind,
2121 llvm::Value *&Chunk) const {
2122 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2123 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
2124 ScheduleKind = OMPC_DIST_SCHEDULE_static;
2125 Chunk = CGF.EmitScalarConversion(
2126 RT.getGPUNumThreads(CGF),
2127 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
2128 S.getIterationVariable()->getType(), S.getBeginLoc());
2129 return;
2130 }
2132 CGF, S, ScheduleKind, Chunk);
2133}
2134
2136 CodeGenFunction &CGF, const OMPLoopDirective &S,
2137 OpenMPScheduleClauseKind &ScheduleKind,
2138 const Expr *&ChunkExpr) const {
2139 ScheduleKind = OMPC_SCHEDULE_static;
2140 // Chunk size is 1 in this case.
2141 llvm::APInt ChunkSize(32, 1);
2142 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
2143 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
2144 SourceLocation());
2145}
2146
2148 CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
2149 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
2150 " Expected target-based directive.");
2151 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
2152 for (const CapturedStmt::Capture &C : CS->captures()) {
2153 // Capture variables captured by reference in lambdas for target-based
2154 // directives.
2155 if (!C.capturesVariable())
2156 continue;
2157 const VarDecl *VD = C.getCapturedVar();
2158 const auto *RD = VD->getType()
2162 if (!RD || !RD->isLambda())
2163 continue;
2164 Address VDAddr = CGF.GetAddrOfLocalVar(VD);
2165 LValue VDLVal;
2167 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
2168 else
2169 VDLVal = CGF.MakeAddrLValue(
2170 VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
2171 llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures;
2172 FieldDecl *ThisCapture = nullptr;
2173 RD->getCaptureFields(Captures, ThisCapture);
2174 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
2175 LValue ThisLVal =
2176 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
2177 llvm::Value *CXXThis = CGF.LoadCXXThis();
2178 CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
2179 }
2180 for (const LambdaCapture &LC : RD->captures()) {
2181 if (LC.getCaptureKind() != LCK_ByRef)
2182 continue;
2183 const ValueDecl *VD = LC.getCapturedVar();
2184 // FIXME: For now VD is always a VarDecl because OpenMP does not support
2185 // capturing structured bindings in lambdas yet.
2186 if (!CS->capturesVariable(cast<VarDecl>(VD)))
2187 continue;
2188 auto It = Captures.find(VD);
2189 assert(It != Captures.end() && "Found lambda capture without field.");
2190 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
2191 Address VDAddr = CGF.GetAddrOfLocalVar(cast<VarDecl>(VD));
2193 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
2194 VD->getType().getCanonicalType())
2195 .getAddress();
2196 CGF.EmitStoreOfScalar(VDAddr.emitRawPointer(CGF), VarLVal);
2197 }
2198 }
2199}
2200
2202 LangAS &AS) {
2203 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
2204 return false;
2205 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
2206 switch(A->getAllocatorType()) {
2207 case OMPAllocateDeclAttr::OMPNullMemAlloc:
2208 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
2209 // Not supported, fallback to the default mem space.
2210 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
2211 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
2212 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
2213 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
2214 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
2215 AS = LangAS::Default;
2216 return true;
2217 case OMPAllocateDeclAttr::OMPConstMemAlloc:
2219 return true;
2220 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
2222 return true;
2223 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
2224 llvm_unreachable("Expected predefined allocator for the variables with the "
2225 "static storage.");
2226 }
2227 return false;
2228}
2229
2230// Get current OffloadArch and ignore any unknown values
2232 if (!CGM.getTarget().hasFeature("ptx"))
2233 return OffloadArch::UNKNOWN;
2234 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
2235 if (Feature.getValue()) {
2236 OffloadArch Arch = StringToOffloadArch(Feature.getKey());
2237 if (Arch != OffloadArch::UNKNOWN)
2238 return Arch;
2239 }
2240 }
2241 return OffloadArch::UNKNOWN;
2242}
2243
2244/// Check to see if target architecture supports unified addressing which is
2245/// a restriction for OpenMP requires clause "unified_shared_memory".
2247 for (const OMPClause *Clause : D->clauselists()) {
2248 if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
2250 switch (Arch) {
2251 case OffloadArch::SM_20:
2252 case OffloadArch::SM_21:
2253 case OffloadArch::SM_30:
2255 case OffloadArch::SM_35:
2256 case OffloadArch::SM_37:
2257 case OffloadArch::SM_50:
2258 case OffloadArch::SM_52:
2259 case OffloadArch::SM_53: {
2260 SmallString<256> Buffer;
2261 llvm::raw_svector_ostream Out(Buffer);
2262 Out << "Target architecture " << OffloadArchToString(Arch)
2263 << " does not support unified addressing";
2264 CGM.Error(Clause->getBeginLoc(), Out.str());
2265 return;
2266 }
2267 case OffloadArch::SM_60:
2268 case OffloadArch::SM_61:
2269 case OffloadArch::SM_62:
2270 case OffloadArch::SM_70:
2271 case OffloadArch::SM_72:
2272 case OffloadArch::SM_75:
2273 case OffloadArch::SM_80:
2274 case OffloadArch::SM_86:
2275 case OffloadArch::SM_87:
2276 case OffloadArch::SM_89:
2277 case OffloadArch::SM_90:
2337 break;
2338 case OffloadArch::LAST:
2339 llvm_unreachable("Unexpected GPU arch.");
2340 }
2341 }
2342 }
2344}
2345
2347 CGBuilderTy &Bld = CGF.Builder;
2348 llvm::Module *M = &CGF.CGM.getModule();
2349 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
2350 llvm::Function *F = M->getFunction(LocSize);
2351 if (!F) {
2352 F = llvm::Function::Create(llvm::FunctionType::get(CGF.Int32Ty, {}, false),
2353 llvm::GlobalVariable::ExternalLinkage, LocSize,
2354 &CGF.CGM.getModule());
2355 }
2356 return Bld.CreateCall(F, {}, "nvptx_num_threads");
2357}
2358
2361 return CGF.EmitRuntimeCall(
2362 OMPBuilder.getOrCreateRuntimeFunction(
2363 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
2364 Args);
2365}
#define V(N, I)
Definition: ASTContext.h:3453
static void getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, llvm::SmallVectorImpl< const ValueDecl * > &Vars)
Get list of reduction variables from the teams ... directives.
static llvm::Value * castValueToType(CodeGenFunction &CGF, llvm::Value *Val, QualType ValTy, QualType CastTy, SourceLocation Loc)
Cast value to the specified type.
static void getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, llvm::SmallVectorImpl< const ValueDecl * > &Vars)
Get list of lastprivate variables from the teams distribute ... or teams {distribute ....
static bool hasNestedSPMDDirective(ASTContext &Ctx, const OMPExecutableDirective &D)
Check for inner (nested) SPMD construct, if any.
static bool supportsSPMDExecutionMode(ASTContext &Ctx, const OMPExecutableDirective &D)
static OffloadArch getOffloadArch(CodeGenModule &CGM)
const Decl * D
Expr * E
This file defines OpenMP nodes for declarative directives.
This file defines OpenMP AST classes for clauses.
VarDecl * Variable
Definition: SemaObjC.cpp:757
SourceLocation Loc
Definition: SemaObjC.cpp:759
static std::pair< ValueDecl *, bool > getPrivateItem(Sema &S, Expr *&RefExpr, SourceLocation &ELoc, SourceRange &ERange, bool AllowArraySection=false, StringRef DiagType="")
const char * Data
This file defines OpenMP AST classes for executable directives and clauses.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
CanQualType VoidPtrTy
Definition: ASTContext.h:1187
QualType getUIntPtrType() const
Return a type compatible with "uintptr_t" (C99 7.18.1.4), as defined by the target.
QualType getIntTypeForBitwidth(unsigned DestWidth, unsigned Signed) const
getIntTypeForBitwidth - sets integer QualTy according to specified details: bitwidth,...
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
CharUnits getDeclAlign(const Decl *D, bool ForAlignof=false) const
Return a conservative estimate of the alignment of the specified decl D.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
CanQualType VoidTy
Definition: ASTContext.h:1160
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const
Return the uniqued reference to the type for an address space qualified type with the specified type ...
unsigned getTargetAddressSpace(LangAS AS) const
Attr - This represents one attribute.
Definition: Attr.h:43
A class which contains all the information about a particular captured value.
Definition: Decl.h:4502
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:6414
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2874
Describes the capture of either a variable, or 'this', or variable-length array type.
Definition: Stmt.h:3797
This captures a statement into a function.
Definition: Stmt.h:3784
bool capturesVariable(const VarDecl *Var) const
True if this variable has been captured.
Definition: Stmt.cpp:1438
capture_range captures()
Definition: Stmt.h:3922
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:122
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:128
static Address invalid()
Definition: Address.h:176
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:251
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition: Address.h:274
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:136
Address CreatePointerBitCastOrAddrSpaceCast(Address Addr, llvm::Type *Ty, llvm::Type *ElementTy, const llvm::Twine &Name="")
Definition: CGBuilder.h:203
Address CreateConstArrayGEP(Address Addr, uint64_t Index, const llvm::Twine &Name="")
Given addr = [n x T]* ... produce name = getelementptr inbounds addr, i64 0, i64 index where i64 is a...
Definition: CGBuilder.h:241
Address CreateConstInBoundsGEP(Address Addr, uint64_t Index, const llvm::Twine &Name="")
Given addr = T* ... produce name = getelementptr inbounds addr, i64 index where i64 is actually the t...
Definition: CGBuilder.h:261
CGFunctionInfo - Class to encapsulate the information about a function definition.
void emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, ArrayRef< llvm::Value * > CapturedVars, const Expr *IfCond, llvm::Value *NumThreads) override
Emits code for parallel or serial call of the OutlinedFn with variables captured in a record which ad...
llvm::Function * emitTeamsOutlinedFunction(CodeGenFunction &CGF, const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) override
Emits inlined function for the specified OpenMP teams.
void emitProcBindClause(CodeGenFunction &CGF, llvm::omp::ProcBindKind ProcBind, SourceLocation Loc) override
Emit call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, int proc_bind) to generat...
void emitReduction(CodeGenFunction &CGF, SourceLocation Loc, ArrayRef< const Expr * > Privates, ArrayRef< const Expr * > LHSExprs, ArrayRef< const Expr * > RHSExprs, ArrayRef< const Expr * > ReductionOps, ReductionOptionsTy Options) override
Emit a code for reduction clause.
DataSharingMode
Target codegen is specialized based on two data-sharing modes: CUDA, in which the local variables are...
@ DS_CUDA
CUDA data sharing mode.
@ DS_Generic
Generic data-sharing mode.
void getDefaultDistScheduleAndChunk(CodeGenFunction &CGF, const OMPLoopDirective &S, OpenMPDistScheduleClauseKind &ScheduleKind, llvm::Value *&Chunk) const override
Choose a default value for the dist_schedule clause.
Address getAddressOfLocalVariable(CodeGenFunction &CGF, const VarDecl *VD) override
Gets the OpenMP-specific address of the local variable.
void emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) override
Emits OpenMP-specific function prolog.
void getDefaultScheduleAndChunk(CodeGenFunction &CGF, const OMPLoopDirective &S, OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const override
Choose a default value for the schedule clause.
void emitNumTeamsClause(CodeGenFunction &CGF, const Expr *NumTeams, const Expr *ThreadLimit, SourceLocation Loc) override
This function ought to emit, in the general case, a call to.
void emitCriticalRegion(CodeGenFunction &CGF, StringRef CriticalName, const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, const Expr *Hint=nullptr) override
Emits a critical region.
void emitTeamsCall(CodeGenFunction &CGF, const OMPExecutableDirective &D, SourceLocation Loc, llvm::Function *OutlinedFn, ArrayRef< llvm::Value * > CapturedVars) override
Emits code for teams call of the OutlinedFn with variables captured in a record which address is stor...
bool hasAllocateAttributeForGlobalVar(const VarDecl *VD, LangAS &AS) override
Checks if the variable has associated OMPAllocateDeclAttr attribute with the predefined allocator and...
void getKmpcFreeShared(CodeGenFunction &CGF, const std::pair< llvm::Value *, llvm::Value * > &AddrSizePair) override
Get call to __kmpc_free_shared.
llvm::Function * emitParallelOutlinedFunction(CodeGenFunction &CGF, const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) override
Emits inlined function for the specified OpenMP parallel.
void functionFinished(CodeGenFunction &CGF) override
Cleans up references to the objects in finished function.
llvm::Value * getGPUThreadID(CodeGenFunction &CGF)
Get the id of the current thread on the GPU.
void processRequiresDirective(const OMPRequiresDecl *D) override
Perform check on requires decl to ensure that target architecture supports unified addressing.
bool isDelayedVariableLengthDecl(CodeGenFunction &CGF, const VarDecl *VD) const override
Declare generalized virtual functions which need to be defined by all specializations of OpenMPGPURun...
void emitOutlinedFunctionCall(CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, ArrayRef< llvm::Value * > Args={}) const override
Emits call of the outlined function with the provided arguments, translating these arguments to corre...
Address getParameterAddress(CodeGenFunction &CGF, const VarDecl *NativeParam, const VarDecl *TargetParam) const override
Gets the address of the native argument basing on the address of the target-specific parameter.
ExecutionMode
Defines the execution mode.
@ EM_NonSPMD
Non-SPMD execution mode (1 master thread, others are workers).
@ EM_Unknown
Unknown execution mode (orphaned directive).
@ EM_SPMD
SPMD execution mode (all threads are worker threads).
void emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind Kind, bool EmitChecks=true, bool ForceSimpleCall=false) override
Emit an implicit/explicit barrier for OpenMP threads.
llvm::Value * getGPUNumThreads(CodeGenFunction &CGF)
Get the maximum number of threads in a block of the GPU.
const VarDecl * translateParameter(const FieldDecl *FD, const VarDecl *NativeParam) const override
Translates the native parameter of outlined function if this is required for target.
std::pair< llvm::Value *, llvm::Value * > getKmpcAllocShared(CodeGenFunction &CGF, const VarDecl *VD) override
Get call to __kmpc_alloc_shared.
bool isGPU() const override
Returns true if the current target is a GPU.
void emitNumThreadsClause(CodeGenFunction &CGF, llvm::Value *NumThreads, SourceLocation Loc) override
Emits call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)...
void adjustTargetSpecificDataForLambdas(CodeGenFunction &CGF, const OMPExecutableDirective &D) const override
Adjust some parameters for the target-based directives, like addresses of the variables captured by r...
virtual Address emitThreadIDAddress(CodeGenFunction &CGF, SourceLocation Loc)
Emits address of the word in a memory where current thread id is stored.
static const Stmt * getSingleCompoundChild(ASTContext &Ctx, const Stmt *Body)
Checks if the Body is the CompoundStmt and returns its child statement iff there is only one that is ...
llvm::Value * emitUpdateLocation(CodeGenFunction &CGF, SourceLocation Loc, unsigned Flags=0, bool EmitLoc=false)
Emits object of ident_t type with info for source location.
virtual void functionFinished(CodeGenFunction &CGF)
Cleans up references to the objects in finished function.
virtual llvm::Function * emitTeamsOutlinedFunction(CodeGenFunction &CGF, const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen)
Emits outlined function for the specified OpenMP teams directive D.
llvm::OpenMPIRBuilder OMPBuilder
An OpenMP-IR-Builder instance.
virtual void emitTargetOutlinedFunctionHelper(const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen)
Helper to emit outlined function for 'target' directive.
bool hasRequiresUnifiedSharedMemory() const
Return whether the unified_shared_memory has been specified.
virtual void processRequiresDirective(const OMPRequiresDecl *D)
Perform check on requires decl to ensure that target architecture supports unified addressing.
llvm::Value * getThreadID(CodeGenFunction &CGF, SourceLocation Loc)
Gets thread id value for the current thread.
void clearLocThreadIdInsertPt(CodeGenFunction &CGF)
void computeMinAndMaxThreadsAndTeams(const OMPExecutableDirective &D, CodeGenFunction &CGF, llvm::OpenMPIRBuilder::TargetKernelDefaultAttrs &Attrs)
Helper to determine the min/max number of threads/teams for D.
static unsigned getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind)
Returns default flags for the barriers depending on the directive, for which this barier is going to ...
virtual llvm::Function * emitParallelOutlinedFunction(CodeGenFunction &CGF, const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen)
Emits outlined function for the specified OpenMP parallel directive D.
virtual void getDefaultDistScheduleAndChunk(CodeGenFunction &CGF, const OMPLoopDirective &S, OpenMPDistScheduleClauseKind &ScheduleKind, llvm::Value *&Chunk) const
Choose default schedule type and chunk value for the dist_schedule clause.
llvm::Type * getIdentTyPointerTy()
Returns pointer to ident_t type.
void emitSingleReductionCombiner(CodeGenFunction &CGF, const Expr *ReductionOp, const Expr *PrivateRef, const DeclRefExpr *LHS, const DeclRefExpr *RHS)
Emits single reduction combiner.
llvm::OpenMPIRBuilder & getOMPBuilder()
virtual void emitCriticalRegion(CodeGenFunction &CGF, StringRef CriticalName, const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, const Expr *Hint=nullptr)
Emits a critical region.
virtual void emitOutlinedFunctionCall(CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, ArrayRef< llvm::Value * > Args={}) const
Emits call of the outlined function with the provided arguments, translating these arguments to corre...
virtual void emitReduction(CodeGenFunction &CGF, SourceLocation Loc, ArrayRef< const Expr * > Privates, ArrayRef< const Expr * > LHSExprs, ArrayRef< const Expr * > RHSExprs, ArrayRef< const Expr * > ReductionOps, ReductionOptionsTy Options)
Emit a code for reduction clause.
The scope used to remap some variables as private in the OpenMP loop body (or other captured region e...
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
CGCapturedStmtInfo * CapturedStmtInfo
LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T)
Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known to be unsigned.
Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr)
Load a pointer with type PtrTy stored at address Ptr.
RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, const Twine &Name="tmp")
CreateDefaultAlignedTempAlloca - This creates an alloca with the default ABI alignment of the given L...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl *Field)
EmitLValueForFieldInitialization - Like EmitLValueForField, except that if the Field is a reference,...
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
llvm::Type * ConvertTypeForMem(QualType T)
llvm::AssertingVH< llvm::Instruction > AllocaInsertPt
AllocaInsertPoint - This is an instruction in the entry block before which we prefer to insert alloca...
RawAddress CreateMemTemp(QualType T, const Twine &Name="tmp", RawAddress *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
const TargetInfo & getTarget() const
llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location)
Converts Location to a DebugLoc, if debug information is enabled.
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
CodeGenTypes & getTypes() const
llvm::Value * EvaluateExprAsBool(const Expr *E)
EvaluateExprAsBool - Perform the usual unary conversions on the specified expression and compare the ...
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of 'this'.
LValue EmitLoadOfReferenceLValue(LValue RefLVal)
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
llvm::Value * EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified type to the specified destination type, both of which are LLVM s...
llvm::LLVMContext & getLLVMContext()
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
This class organizes the cross-function state that is used while generating LLVM code.
void SetInternalFunctionAttributes(GlobalDecl GD, llvm::Function *F, const CGFunctionInfo &FI)
Set the attributes on the LLVM function for the given decl and function info.
llvm::Module & getModule() const
const LangOptions & getLangOpts() const
const TargetInfo & getTarget() const
void Error(SourceLocation loc, StringRef error)
Emit a general error that something can't be done.
CGOpenMPRuntime & getOpenMPRuntime()
Return a reference to the configured OpenMP runtime.
ASTContext & getContext() const
llvm::LLVMContext & getLLVMContext()
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
Definition: CGCall.cpp:1630
const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args)
A builtin function is a freestanding function using the default C conventions.
Definition: CGCall.cpp:679
unsigned getTargetAddressSpace(QualType T) const
llvm::Type * ConvertTypeForMem(QualType T)
ConvertTypeForMem - Convert type T into a llvm::Type.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:141
FunctionArgList - Type for representing both the decl and type of parameters to a function.
Definition: CGCall.h:382
LValue - This represents an lvalue references.
Definition: CGValue.h:182
Address getAddress() const
Definition: CGValue.h:361
A basic class for pre|post-action for advanced codegen sequence for OpenMP region.
An abstract representation of an aligned address.
Definition: Address.h:42
llvm::Value * getPointer() const
Definition: Address.h:66
Class provides a way to call simple version of codegen for OpenMP region, or an advanced with possibl...
void setAction(PrePostActionTy &Action) const
ConstStmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:195
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1435
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1768
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1265
DeclStmt - Adaptor class for mixing declarations with statements and expressions.
Definition: Stmt.h:1519
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
T * getAttr() const
Definition: DeclBase.h:576
bool hasAttrs() const
Definition: DeclBase.h:521
attr_iterator attr_end() const
Definition: DeclBase.h:545
bool isCanonicalDecl() const
Whether this particular Decl is a canonical one.
Definition: DeclBase.h:973
attr_iterator attr_begin() const
Definition: DeclBase.h:542
SourceLocation getLocation() const
Definition: DeclBase.h:442
DeclContext * getDeclContext()
Definition: DeclBase.h:451
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:434
AttrVec & getAttrs()
Definition: DeclBase.h:527
bool hasAttr() const
Definition: DeclBase.h:580
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:967
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:786
This represents one expression.
Definition: Expr.h:110
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition: Expr.cpp:3097
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3093
bool isLValue() const
isLValue - True if this expression is an "l-value" according to the rules of the current language.
Definition: Expr.h:277
Represents a member of a struct/union/class.
Definition: Decl.h:3033
static FieldDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle)
Definition: Decl.cpp:4555
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:56
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3724
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition: Decl.cpp:5406
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value 'V' and type 'type'.
Definition: Expr.cpp:980
Describes the capture of a variable or of this, or of a C++1y init-capture.
Definition: LambdaCapture.h:25
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1954
std::string OMPHostIRFile
Name of the IR file that contains the result of the OpenMP target host code generation.
Definition: LangOptions.h:577
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:274
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:280
This is a basic class for representing single OpenMP clause.
Definition: OpenMPClause.h:55
This is a basic class for representing single OpenMP executable directive.
Definition: StmtOpenMP.h:266
OpenMPDirectiveKind getDirectiveKind() const
Definition: StmtOpenMP.h:556
static llvm::iterator_range< specific_clause_iterator< SpecificClause > > getClausesOfKind(ArrayRef< OMPClause * > Clauses)
Definition: StmtOpenMP.h:446
This represents clause 'lastprivate' in the '#pragma omp ...' directives.
This is a common base class for loop directives ('omp simd', 'omp for', 'omp for simd' etc....
Definition: StmtOpenMP.h:1004
This represents clause 'reduction' in the '#pragma omp ...' directives.
This represents '#pragma omp requires...' directive.
Definition: DeclOpenMP.h:417
This represents 'ompx_bare' clause in the '#pragma omp target teams ...' directive.
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition: Decl.cpp:2922
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3198
A (possibly-)qualified type.
Definition: Type.h:929
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:8062
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:8139
QualType getCanonicalType() const
Definition: Type.h:7988
A qualifier set is used to build a set of qualifiers.
Definition: Type.h:7876
const Type * strip(QualType type)
Collect any qualifiers on the given type and return an unqualified type.
Definition: Type.h:7883
QualType apply(const ASTContext &Context, QualType QT) const
Apply the collected qualifiers to the given type.
Definition: Type.cpp:4420
void addAddressSpace(LangAS space)
Definition: Type.h:590
void addRestrict()
Definition: Type.h:473
Represents a struct/union/class.
Definition: Decl.h:4162
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:5107
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
Encodes a location in the source.
RetTy Visit(PTR(Stmt) S, ParamTys... P)
Definition: StmtVisitor.h:44
Stmt - This represents one statement.
Definition: Stmt.h:84
child_range children()
Definition: Stmt.cpp:294
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:4762
unsigned getNewAlign() const
Return the largest alignment for which a suitably-sized allocation with '::operator new(size_t)' is g...
Definition: TargetInfo.h:752
TargetOptions & getTargetOpts() const
Retrieve the target options.
Definition: TargetInfo.h:311
virtual const llvm::omp::GV & getGridValue() const
Definition: TargetInfo.h:1660
virtual bool hasFeature(StringRef Feature) const
Determine whether the given target has the given feature.
Definition: TargetInfo.h:1493
llvm::StringMap< bool > FeatureMap
The map of which features have been enabled disabled based on the command line.
Definition: TargetOptions.h:62
The base class of the type hierarchy.
Definition: Type.h:1828
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1916
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:8555
bool isReferenceType() const
Definition: Type.h:8209
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isLValueReferenceType() const
Definition: Type.h:8213
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g....
Definition: Type.cpp:2220
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2724
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2232
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:671
QualType getType() const
Definition: Decl.h:682
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition: Decl.cpp:5398
Represents a variable declaration or definition.
Definition: Decl.h:882
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:2246
bool isInitCapture() const
Whether this variable is the implicit variable for a lambda init-capture.
Definition: Decl.h:1522
specific_attr_iterator - Iterates over a subrange of an AttrVec, only providing attributes that are o...
Definition: AttrIterator.h:35
@ Type
The l-value was considered opaque, so the alignment was determined from a type.
@ Decl
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
The JSON file list parser is used to communicate input to InstallAPI.
llvm::omp::Directive OpenMPDirectiveKind
OpenMP directives.
Definition: OpenMPKinds.h:25
@ ICIS_NoInit
No in-class initializer.
Definition: Specifiers.h:272
OffloadArch
Definition: Cuda.h:56
bool isOpenMPDistributeDirective(OpenMPDirectiveKind DKind)
Checks if the specified directive is a distribute directive.
@ LCK_ByRef
Capturing by reference.
Definition: Lambda.h:37
@ Private
'private' clause, allowed on 'parallel', 'serial', 'loop', 'parallel loop', and 'serial loop' constru...
@ CR_OpenMP
Definition: CapturedStmt.h:19
bool isOpenMPParallelDirective(OpenMPDirectiveKind DKind)
Checks if the specified directive is a parallel-kind directive.
bool isOpenMPPrivate(OpenMPClauseKind Kind)
Checks if the specified clause is one of private clauses like 'private', 'firstprivate',...
@ SC_None
Definition: Specifiers.h:250
OpenMPDistScheduleClauseKind
OpenMP attributes for 'dist_schedule' clause.
Definition: OpenMPKinds.h:104
bool isOpenMPTargetExecutionDirective(OpenMPDirectiveKind DKind)
Checks if the specified directive is a target code offload directive.
bool isOpenMPTeamsDirective(OpenMPDirectiveKind DKind)
Checks if the specified directive is a teams-kind directive.
OffloadArch StringToOffloadArch(llvm::StringRef S)
Definition: Cuda.cpp:180
bool isOpenMPLoopBoundSharingDirective(OpenMPDirectiveKind Kind)
Checks if the specified directive kind is one of the composite or combined directives that need loop ...
LangAS
Defines the address space values used by the address space qualifier of QualType.
Definition: AddressSpaces.h:25
const char * OffloadArchToString(OffloadArch A)
Definition: Cuda.cpp:162
void getOpenMPCaptureRegions(llvm::SmallVectorImpl< OpenMPDirectiveKind > &CaptureRegions, OpenMPDirectiveKind DKind)
Return the captured regions of an OpenMP directive.
LangAS getLangASFromTargetAS(unsigned TargetAS)
Definition: AddressSpaces.h:86
@ CXXThis
Parameter for C++ 'this' argument.
@ Other
Other implicit parameter.
OpenMPScheduleClauseKind
OpenMP attributes for 'schedule' clause.
Definition: OpenMPKinds.h:31
@ AS_public
Definition: Specifiers.h:124
unsigned long uint64_t