clang 20.0.0git
CGObjCGNU.cpp
Go to the documentation of this file.
1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides Objective-C code generation targeting the GNU runtime. The
10// class in this file generates structures used by the GNU Objective-C runtime
11// library. These structures are defined in objc/objc.h and objc/objc-api.h in
12// the GNU runtime distribution.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CGCXXABI.h"
17#include "CGCleanup.h"
18#include "CGObjCRuntime.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "CodeGenTypes.h"
22#include "SanitizerMetadata.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/DeclObjC.h"
28#include "clang/AST/StmtObjC.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringMap.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Module.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/ConvertUTF.h"
39#include <cctype>
40
41using namespace clang;
42using namespace CodeGen;
43
44namespace {
45
46/// Class that lazily initialises the runtime function. Avoids inserting the
47/// types and the function declaration into a module if they're not used, and
48/// avoids constructing the type more than once if it's used more than once.
49class LazyRuntimeFunction {
50 CodeGenModule *CGM = nullptr;
51 llvm::FunctionType *FTy = nullptr;
52 const char *FunctionName = nullptr;
53 llvm::FunctionCallee Function = nullptr;
54
55public:
56 LazyRuntimeFunction() = default;
57
58 /// Initialises the lazy function with the name, return type, and the types
59 /// of the arguments.
60 template <typename... Tys>
61 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
62 Tys *... Types) {
63 CGM = Mod;
64 FunctionName = name;
65 Function = nullptr;
66 if(sizeof...(Tys)) {
67 SmallVector<llvm::Type *, 8> ArgTys({Types...});
68 FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
69 }
70 else {
71 FTy = llvm::FunctionType::get(RetTy, {}, false);
72 }
73 }
74
75 llvm::FunctionType *getType() { return FTy; }
76
77 /// Overloaded cast operator, allows the class to be implicitly cast to an
78 /// LLVM constant.
79 operator llvm::FunctionCallee() {
80 if (!Function) {
81 if (!FunctionName)
82 return nullptr;
83 Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
84 }
85 return Function;
86 }
87};
88
89
90/// GNU Objective-C runtime code generation. This class implements the parts of
91/// Objective-C support that are specific to the GNU family of runtimes (GCC,
92/// GNUstep and ObjFW).
93class CGObjCGNU : public CGObjCRuntime {
94protected:
95 /// The LLVM module into which output is inserted
96 llvm::Module &TheModule;
97 /// strut objc_super. Used for sending messages to super. This structure
98 /// contains the receiver (object) and the expected class.
99 llvm::StructType *ObjCSuperTy;
100 /// struct objc_super*. The type of the argument to the superclass message
101 /// lookup functions.
102 llvm::PointerType *PtrToObjCSuperTy;
103 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
104 /// SEL is included in a header somewhere, in which case it will be whatever
105 /// type is declared in that header, most likely {i8*, i8*}.
106 llvm::PointerType *SelectorTy;
107 /// Element type of SelectorTy.
108 llvm::Type *SelectorElemTy;
109 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
110 /// places where it's used
111 llvm::IntegerType *Int8Ty;
112 /// Pointer to i8 - LLVM type of char*, for all of the places where the
113 /// runtime needs to deal with C strings.
114 llvm::PointerType *PtrToInt8Ty;
115 /// struct objc_protocol type
116 llvm::StructType *ProtocolTy;
117 /// Protocol * type.
118 llvm::PointerType *ProtocolPtrTy;
119 /// Instance Method Pointer type. This is a pointer to a function that takes,
120 /// at a minimum, an object and a selector, and is the generic type for
121 /// Objective-C methods. Due to differences between variadic / non-variadic
122 /// calling conventions, it must always be cast to the correct type before
123 /// actually being used.
124 llvm::PointerType *IMPTy;
125 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
126 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
127 /// but if the runtime header declaring it is included then it may be a
128 /// pointer to a structure.
129 llvm::PointerType *IdTy;
130 /// Element type of IdTy.
131 llvm::Type *IdElemTy;
132 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
133 /// message lookup function and some GC-related functions.
134 llvm::PointerType *PtrToIdTy;
135 /// The clang type of id. Used when using the clang CGCall infrastructure to
136 /// call Objective-C methods.
137 CanQualType ASTIdTy;
138 /// LLVM type for C int type.
139 llvm::IntegerType *IntTy;
140 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
141 /// used in the code to document the difference between i8* meaning a pointer
142 /// to a C string and i8* meaning a pointer to some opaque type.
143 llvm::PointerType *PtrTy;
144 /// LLVM type for C long type. The runtime uses this in a lot of places where
145 /// it should be using intptr_t, but we can't fix this without breaking
146 /// compatibility with GCC...
147 llvm::IntegerType *LongTy;
148 /// LLVM type for C size_t. Used in various runtime data structures.
149 llvm::IntegerType *SizeTy;
150 /// LLVM type for C intptr_t.
151 llvm::IntegerType *IntPtrTy;
152 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
153 llvm::IntegerType *PtrDiffTy;
154 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
155 /// variables.
156 llvm::PointerType *PtrToIntTy;
157 /// LLVM type for Objective-C BOOL type.
158 llvm::Type *BoolTy;
159 /// 32-bit integer type, to save us needing to look it up every time it's used.
160 llvm::IntegerType *Int32Ty;
161 /// 64-bit integer type, to save us needing to look it up every time it's used.
162 llvm::IntegerType *Int64Ty;
163 /// The type of struct objc_property.
164 llvm::StructType *PropertyMetadataTy;
165 /// Metadata kind used to tie method lookups to message sends. The GNUstep
166 /// runtime provides some LLVM passes that can use this to do things like
167 /// automatic IMP caching and speculative inlining.
168 unsigned msgSendMDKind;
169 /// Does the current target use SEH-based exceptions? False implies
170 /// Itanium-style DWARF unwinding.
171 bool usesSEHExceptions;
172 /// Does the current target uses C++-based exceptions?
173 bool usesCxxExceptions;
174
175 /// Helper to check if we are targeting a specific runtime version or later.
176 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
177 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
178 return (R.getKind() == kind) &&
179 (R.getVersion() >= VersionTuple(major, minor));
180 }
181
182 std::string ManglePublicSymbol(StringRef Name) {
183 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
184 }
185
186 std::string SymbolForProtocol(Twine Name) {
187 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
188 }
189
190 std::string SymbolForProtocolRef(StringRef Name) {
191 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
192 }
193
194
195 /// Helper function that generates a constant string and returns a pointer to
196 /// the start of the string. The result of this function can be used anywhere
197 /// where the C code specifies const char*.
198 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
199 ConstantAddress Array =
200 CGM.GetAddrOfConstantCString(std::string(Str), Name);
201 return Array.getPointer();
202 }
203
204 /// Emits a linkonce_odr string, whose name is the prefix followed by the
205 /// string value. This allows the linker to combine the strings between
206 /// different modules. Used for EH typeinfo names, selector strings, and a
207 /// few other things.
208 llvm::Constant *ExportUniqueString(const std::string &Str,
209 const std::string &prefix,
210 bool Private=false) {
211 std::string name = prefix + Str;
212 auto *ConstStr = TheModule.getGlobalVariable(name);
213 if (!ConstStr) {
214 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
215 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
216 llvm::GlobalValue::LinkOnceODRLinkage, value, name);
217 GV->setComdat(TheModule.getOrInsertComdat(name));
218 if (Private)
219 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
220 ConstStr = GV;
221 }
222 return ConstStr;
223 }
224
225 /// Returns a property name and encoding string.
226 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
227 const Decl *Container) {
228 assert(!isRuntime(ObjCRuntime::GNUstep, 2));
229 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
230 std::string NameAndAttributes;
231 std::string TypeStr =
232 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
233 NameAndAttributes += '\0';
234 NameAndAttributes += TypeStr.length() + 3;
235 NameAndAttributes += TypeStr;
236 NameAndAttributes += '\0';
237 NameAndAttributes += PD->getNameAsString();
238 return MakeConstantString(NameAndAttributes);
239 }
240 return MakeConstantString(PD->getNameAsString());
241 }
242
243 /// Push the property attributes into two structure fields.
244 void PushPropertyAttributes(ConstantStructBuilder &Fields,
245 const ObjCPropertyDecl *property, bool isSynthesized=true, bool
246 isDynamic=true) {
247 int attrs = property->getPropertyAttributes();
248 // For read-only properties, clear the copy and retain flags
250 attrs &= ~ObjCPropertyAttribute::kind_copy;
251 attrs &= ~ObjCPropertyAttribute::kind_retain;
252 attrs &= ~ObjCPropertyAttribute::kind_weak;
253 attrs &= ~ObjCPropertyAttribute::kind_strong;
254 }
255 // The first flags field has the same attribute values as clang uses internally
256 Fields.addInt(Int8Ty, attrs & 0xff);
257 attrs >>= 8;
258 attrs <<= 2;
259 // For protocol properties, synthesized and dynamic have no meaning, so we
260 // reuse these flags to indicate that this is a protocol property (both set
261 // has no meaning, as a property can't be both synthesized and dynamic)
262 attrs |= isSynthesized ? (1<<0) : 0;
263 attrs |= isDynamic ? (1<<1) : 0;
264 // The second field is the next four fields left shifted by two, with the
265 // low bit set to indicate whether the field is synthesized or dynamic.
266 Fields.addInt(Int8Ty, attrs & 0xff);
267 // Two padding fields
268 Fields.addInt(Int8Ty, 0);
269 Fields.addInt(Int8Ty, 0);
270 }
271
272 virtual llvm::Constant *GenerateCategoryProtocolList(const
273 ObjCCategoryDecl *OCD);
274 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
275 int count) {
276 // int count;
277 Fields.addInt(IntTy, count);
278 // int size; (only in GNUstep v2 ABI.
279 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
280 const llvm::DataLayout &DL = TheModule.getDataLayout();
281 Fields.addInt(IntTy, DL.getTypeSizeInBits(PropertyMetadataTy) /
282 CGM.getContext().getCharWidth());
283 }
284 // struct objc_property_list *next;
285 Fields.add(NULLPtr);
286 // struct objc_property properties[]
287 return Fields.beginArray(PropertyMetadataTy);
288 }
289 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
290 const ObjCPropertyDecl *property,
291 const Decl *OCD,
292 bool isSynthesized=true, bool
293 isDynamic=true) {
294 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
295 ASTContext &Context = CGM.getContext();
296 Fields.add(MakePropertyEncodingString(property, OCD));
297 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
298 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
299 if (accessor) {
300 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
301 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
302 Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
303 Fields.add(TypeEncoding);
304 } else {
305 Fields.add(NULLPtr);
306 Fields.add(NULLPtr);
307 }
308 };
309 addPropertyMethod(property->getGetterMethodDecl());
310 addPropertyMethod(property->getSetterMethodDecl());
311 Fields.finishAndAddTo(PropertiesArray);
312 }
313
314 /// Ensures that the value has the required type, by inserting a bitcast if
315 /// required. This function lets us avoid inserting bitcasts that are
316 /// redundant.
317 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
318 if (V->getType() == Ty)
319 return V;
320 return B.CreateBitCast(V, Ty);
321 }
322
323 // Some zeros used for GEPs in lots of places.
324 llvm::Constant *Zeros[2];
325 /// Null pointer value. Mainly used as a terminator in various arrays.
326 llvm::Constant *NULLPtr;
327 /// LLVM context.
328 llvm::LLVMContext &VMContext;
329
330protected:
331
332 /// Placeholder for the class. Lots of things refer to the class before we've
333 /// actually emitted it. We use this alias as a placeholder, and then replace
334 /// it with a pointer to the class structure before finally emitting the
335 /// module.
336 llvm::GlobalAlias *ClassPtrAlias;
337 /// Placeholder for the metaclass. Lots of things refer to the class before
338 /// we've / actually emitted it. We use this alias as a placeholder, and then
339 /// replace / it with a pointer to the metaclass structure before finally
340 /// emitting the / module.
341 llvm::GlobalAlias *MetaClassPtrAlias;
342 /// All of the classes that have been generated for this compilation units.
343 std::vector<llvm::Constant*> Classes;
344 /// All of the categories that have been generated for this compilation units.
345 std::vector<llvm::Constant*> Categories;
346 /// All of the Objective-C constant strings that have been generated for this
347 /// compilation units.
348 std::vector<llvm::Constant*> ConstantStrings;
349 /// Map from string values to Objective-C constant strings in the output.
350 /// Used to prevent emitting Objective-C strings more than once. This should
351 /// not be required at all - CodeGenModule should manage this list.
352 llvm::StringMap<llvm::Constant*> ObjCStrings;
353 /// All of the protocols that have been declared.
354 llvm::StringMap<llvm::Constant*> ExistingProtocols;
355 /// For each variant of a selector, we store the type encoding and a
356 /// placeholder value. For an untyped selector, the type will be the empty
357 /// string. Selector references are all done via the module's selector table,
358 /// so we create an alias as a placeholder and then replace it with the real
359 /// value later.
360 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
361 /// Type of the selector map. This is roughly equivalent to the structure
362 /// used in the GNUstep runtime, which maintains a list of all of the valid
363 /// types for a selector in a table.
364 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
365 SelectorMap;
366 /// A map from selectors to selector types. This allows us to emit all
367 /// selectors of the same name and type together.
368 SelectorMap SelectorTable;
369
370 /// Selectors related to memory management. When compiling in GC mode, we
371 /// omit these.
372 Selector RetainSel, ReleaseSel, AutoreleaseSel;
373 /// Runtime functions used for memory management in GC mode. Note that clang
374 /// supports code generation for calling these functions, but neither GNU
375 /// runtime actually supports this API properly yet.
376 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
377 WeakAssignFn, GlobalAssignFn;
378
379 typedef std::pair<std::string, std::string> ClassAliasPair;
380 /// All classes that have aliases set for them.
381 std::vector<ClassAliasPair> ClassAliases;
382
383protected:
384 /// Function used for throwing Objective-C exceptions.
385 LazyRuntimeFunction ExceptionThrowFn;
386 /// Function used for rethrowing exceptions, used at the end of \@finally or
387 /// \@synchronize blocks.
388 LazyRuntimeFunction ExceptionReThrowFn;
389 /// Function called when entering a catch function. This is required for
390 /// differentiating Objective-C exceptions and foreign exceptions.
391 LazyRuntimeFunction EnterCatchFn;
392 /// Function called when exiting from a catch block. Used to do exception
393 /// cleanup.
394 LazyRuntimeFunction ExitCatchFn;
395 /// Function called when entering an \@synchronize block. Acquires the lock.
396 LazyRuntimeFunction SyncEnterFn;
397 /// Function called when exiting an \@synchronize block. Releases the lock.
398 LazyRuntimeFunction SyncExitFn;
399
400private:
401 /// Function called if fast enumeration detects that the collection is
402 /// modified during the update.
403 LazyRuntimeFunction EnumerationMutationFn;
404 /// Function for implementing synthesized property getters that return an
405 /// object.
406 LazyRuntimeFunction GetPropertyFn;
407 /// Function for implementing synthesized property setters that return an
408 /// object.
409 LazyRuntimeFunction SetPropertyFn;
410 /// Function used for non-object declared property getters.
411 LazyRuntimeFunction GetStructPropertyFn;
412 /// Function used for non-object declared property setters.
413 LazyRuntimeFunction SetStructPropertyFn;
414
415protected:
416 /// The version of the runtime that this class targets. Must match the
417 /// version in the runtime.
418 int RuntimeVersion;
419 /// The version of the protocol class. Used to differentiate between ObjC1
420 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
421 /// components and can not contain declared properties. We always emit
422 /// Objective-C 2 property structures, but we have to pretend that they're
423 /// Objective-C 1 property structures when targeting the GCC runtime or it
424 /// will abort.
425 const int ProtocolVersion;
426 /// The version of the class ABI. This value is used in the class structure
427 /// and indicates how various fields should be interpreted.
428 const int ClassABIVersion;
429 /// Generates an instance variable list structure. This is a structure
430 /// containing a size and an array of structures containing instance variable
431 /// metadata. This is used purely for introspection in the fragile ABI. In
432 /// the non-fragile ABI, it's used for instance variable fixup.
433 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
435 ArrayRef<llvm::Constant *> IvarOffsets,
438
439 /// Generates a method list structure. This is a structure containing a size
440 /// and an array of structures containing method metadata.
441 ///
442 /// This structure is used by both classes and categories, and contains a next
443 /// pointer allowing them to be chained together in a linked list.
444 llvm::Constant *GenerateMethodList(StringRef ClassName,
445 StringRef CategoryName,
447 bool isClassMethodList);
448
449 /// Emits an empty protocol. This is used for \@protocol() where no protocol
450 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
451 /// real protocol.
452 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
453
454 /// Generates a list of property metadata structures. This follows the same
455 /// pattern as method and instance variable metadata lists.
456 llvm::Constant *GeneratePropertyList(const Decl *Container,
457 const ObjCContainerDecl *OCD,
458 bool isClassProperty=false,
459 bool protocolOptionalProperties=false);
460
461 /// Generates a list of referenced protocols. Classes, categories, and
462 /// protocols all use this structure.
463 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
464
465 /// To ensure that all protocols are seen by the runtime, we add a category on
466 /// a class defined in the runtime, declaring no methods, but adopting the
467 /// protocols. This is a horribly ugly hack, but it allows us to collect all
468 /// of the protocols without changing the ABI.
469 void GenerateProtocolHolderCategory();
470
471 /// Generates a class structure.
472 llvm::Constant *GenerateClassStructure(
473 llvm::Constant *MetaClass,
474 llvm::Constant *SuperClass,
475 unsigned info,
476 const char *Name,
477 llvm::Constant *Version,
478 llvm::Constant *InstanceSize,
479 llvm::Constant *IVars,
480 llvm::Constant *Methods,
481 llvm::Constant *Protocols,
482 llvm::Constant *IvarOffsets,
483 llvm::Constant *Properties,
484 llvm::Constant *StrongIvarBitmap,
485 llvm::Constant *WeakIvarBitmap,
486 bool isMeta=false);
487
488 /// Generates a method list. This is used by protocols to define the required
489 /// and optional methods.
490 virtual llvm::Constant *GenerateProtocolMethodList(
492 /// Emits optional and required method lists.
493 template<class T>
494 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
495 llvm::Constant *&Optional) {
498 for (const auto *I : Methods)
499 if (I->isOptional())
500 OptionalMethods.push_back(I);
501 else
502 RequiredMethods.push_back(I);
503 Required = GenerateProtocolMethodList(RequiredMethods);
504 Optional = GenerateProtocolMethodList(OptionalMethods);
505 }
506
507 /// Returns a selector with the specified type encoding. An empty string is
508 /// used to return an untyped selector (with the types field set to NULL).
509 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
510 const std::string &TypeEncoding);
511
512 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this
513 /// contains the class and ivar names, in the v2 ABI this contains the type
514 /// encoding as well.
515 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
516 const ObjCIvarDecl *Ivar) {
517 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
518 + '.' + Ivar->getNameAsString();
519 return Name;
520 }
521 /// Returns the variable used to store the offset of an instance variable.
522 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
523 const ObjCIvarDecl *Ivar);
524 /// Emits a reference to a class. This allows the linker to object if there
525 /// is no class of the matching name.
526 void EmitClassRef(const std::string &className);
527
528 /// Emits a pointer to the named class
529 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
530 const std::string &Name, bool isWeak);
531
532 /// Looks up the method for sending a message to the specified object. This
533 /// mechanism differs between the GCC and GNU runtimes, so this method must be
534 /// overridden in subclasses.
535 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
536 llvm::Value *&Receiver,
537 llvm::Value *cmd,
538 llvm::MDNode *node,
539 MessageSendInfo &MSI) = 0;
540
541 /// Looks up the method for sending a message to a superclass. This
542 /// mechanism differs between the GCC and GNU runtimes, so this method must
543 /// be overridden in subclasses.
544 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
545 Address ObjCSuper,
546 llvm::Value *cmd,
547 MessageSendInfo &MSI) = 0;
548
549 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
550 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
551 /// bits set to their values, LSB first, while larger ones are stored in a
552 /// structure of this / form:
553 ///
554 /// struct { int32_t length; int32_t values[length]; };
555 ///
556 /// The values in the array are stored in host-endian format, with the least
557 /// significant bit being assumed to come first in the bitfield. Therefore,
558 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
559 /// while a bitfield / with the 63rd bit set will be 1<<64.
560 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
561
562public:
563 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
564 unsigned protocolClassVersion, unsigned classABI=1);
565
567
568 RValue
570 QualType ResultType, Selector Sel,
571 llvm::Value *Receiver, const CallArgList &CallArgs,
572 const ObjCInterfaceDecl *Class,
573 const ObjCMethodDecl *Method) override;
574 RValue
576 QualType ResultType, Selector Sel,
577 const ObjCInterfaceDecl *Class,
578 bool isCategoryImpl, llvm::Value *Receiver,
579 bool IsClassMessage, const CallArgList &CallArgs,
580 const ObjCMethodDecl *Method) override;
581 llvm::Value *GetClass(CodeGenFunction &CGF,
582 const ObjCInterfaceDecl *OID) override;
583 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
585 llvm::Value *GetSelector(CodeGenFunction &CGF,
586 const ObjCMethodDecl *Method) override;
587 virtual llvm::Constant *GetConstantSelector(Selector Sel,
588 const std::string &TypeEncoding) {
589 llvm_unreachable("Runtime unable to generate constant selector");
590 }
591 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
592 return GetConstantSelector(M->getSelector(),
594 }
595 llvm::Constant *GetEHType(QualType T) override;
596
597 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
598 const ObjCContainerDecl *CD) override;
599
600 // Map to unify direct method definitions.
601 llvm::DenseMap<const ObjCMethodDecl *, llvm::Function *>
602 DirectMethodDefinitions;
603 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
604 const ObjCMethodDecl *OMD,
605 const ObjCContainerDecl *CD) override;
606 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
607 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
608 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
609 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
610 const ObjCProtocolDecl *PD) override;
611 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
612
613 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
614
615 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
616 return GenerateProtocolRef(PD);
617 }
618
619 llvm::Function *ModuleInitFunction() override;
620 llvm::FunctionCallee GetPropertyGetFunction() override;
621 llvm::FunctionCallee GetPropertySetFunction() override;
622 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
623 bool copy) override;
624 llvm::FunctionCallee GetSetStructFunction() override;
625 llvm::FunctionCallee GetGetStructFunction() override;
626 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
627 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
628 llvm::FunctionCallee EnumerationMutationFunction() override;
629
631 const ObjCAtTryStmt &S) override;
633 const ObjCAtSynchronizedStmt &S) override;
635 const ObjCAtThrowStmt &S,
636 bool ClearInsertionPoint=true) override;
637 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
638 Address AddrWeakObj) override;
640 llvm::Value *src, Address dst) override;
642 llvm::Value *src, Address dest,
643 bool threadlocal=false) override;
644 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
645 Address dest, llvm::Value *ivarOffset) override;
647 llvm::Value *src, Address dest) override;
649 Address SrcPtr,
650 llvm::Value *Size) override;
652 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
653 unsigned CVRQualifiers) override;
654 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
656 const ObjCIvarDecl *Ivar) override;
657 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
658 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
659 const CGBlockInfo &blockInfo) override {
660 return NULLPtr;
661 }
662 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
663 const CGBlockInfo &blockInfo) override {
664 return NULLPtr;
665 }
666
667 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
668 return NULLPtr;
669 }
670};
671
672/// Class representing the legacy GCC Objective-C ABI. This is the default when
673/// -fobjc-nonfragile-abi is not specified.
674///
675/// The GCC ABI target actually generates code that is approximately compatible
676/// with the new GNUstep runtime ABI, but refrains from using any features that
677/// would not work with the GCC runtime. For example, clang always generates
678/// the extended form of the class structure, and the extra fields are simply
679/// ignored by GCC libobjc.
680class CGObjCGCC : public CGObjCGNU {
681 /// The GCC ABI message lookup function. Returns an IMP pointing to the
682 /// method implementation for this message.
683 LazyRuntimeFunction MsgLookupFn;
684 /// The GCC ABI superclass message lookup function. Takes a pointer to a
685 /// structure describing the receiver and the class, and a selector as
686 /// arguments. Returns the IMP for the corresponding method.
687 LazyRuntimeFunction MsgLookupSuperFn;
688
689protected:
690 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
691 llvm::Value *cmd, llvm::MDNode *node,
692 MessageSendInfo &MSI) override {
693 CGBuilderTy &Builder = CGF.Builder;
694 llvm::Value *args[] = {
695 EnforceType(Builder, Receiver, IdTy),
696 EnforceType(Builder, cmd, SelectorTy) };
697 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
698 imp->setMetadata(msgSendMDKind, node);
699 return imp;
700 }
701
702 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
703 llvm::Value *cmd, MessageSendInfo &MSI) override {
704 CGBuilderTy &Builder = CGF.Builder;
705 llvm::Value *lookupArgs[] = {
706 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
707 cmd};
708 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
709 }
710
711public:
712 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
713 // IMP objc_msg_lookup(id, SEL);
714 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
715 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
716 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
717 PtrToObjCSuperTy, SelectorTy);
718 }
719};
720
721/// Class used when targeting the new GNUstep runtime ABI.
722class CGObjCGNUstep : public CGObjCGNU {
723 /// The slot lookup function. Returns a pointer to a cacheable structure
724 /// that contains (among other things) the IMP.
725 LazyRuntimeFunction SlotLookupFn;
726 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
727 /// a structure describing the receiver and the class, and a selector as
728 /// arguments. Returns the slot for the corresponding method. Superclass
729 /// message lookup rarely changes, so this is a good caching opportunity.
730 LazyRuntimeFunction SlotLookupSuperFn;
731 /// Specialised function for setting atomic retain properties
732 LazyRuntimeFunction SetPropertyAtomic;
733 /// Specialised function for setting atomic copy properties
734 LazyRuntimeFunction SetPropertyAtomicCopy;
735 /// Specialised function for setting nonatomic retain properties
736 LazyRuntimeFunction SetPropertyNonAtomic;
737 /// Specialised function for setting nonatomic copy properties
738 LazyRuntimeFunction SetPropertyNonAtomicCopy;
739 /// Function to perform atomic copies of C++ objects with nontrivial copy
740 /// constructors from Objective-C ivars.
741 LazyRuntimeFunction CxxAtomicObjectGetFn;
742 /// Function to perform atomic copies of C++ objects with nontrivial copy
743 /// constructors to Objective-C ivars.
744 LazyRuntimeFunction CxxAtomicObjectSetFn;
745 /// Type of a slot structure pointer. This is returned by the various
746 /// lookup functions.
747 llvm::Type *SlotTy;
748 /// Type of a slot structure.
749 llvm::Type *SlotStructTy;
750
751 public:
752 llvm::Constant *GetEHType(QualType T) override;
753
754 protected:
755 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
756 llvm::Value *cmd, llvm::MDNode *node,
757 MessageSendInfo &MSI) override {
758 CGBuilderTy &Builder = CGF.Builder;
759 llvm::FunctionCallee LookupFn = SlotLookupFn;
760
761 // Store the receiver on the stack so that we can reload it later
762 RawAddress ReceiverPtr =
763 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
764 Builder.CreateStore(Receiver, ReceiverPtr);
765
766 llvm::Value *self;
767
768 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
769 self = CGF.LoadObjCSelf();
770 } else {
771 self = llvm::ConstantPointerNull::get(IdTy);
772 }
773
774 // The lookup function is guaranteed not to capture the receiver pointer.
775 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
776 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture);
777
778 llvm::Value *args[] = {
779 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
780 EnforceType(Builder, cmd, SelectorTy),
781 EnforceType(Builder, self, IdTy)};
782 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
783 slot->setOnlyReadsMemory();
784 slot->setMetadata(msgSendMDKind, node);
785
786 // Load the imp from the slot
787 llvm::Value *imp = Builder.CreateAlignedLoad(
788 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
789 CGF.getPointerAlign());
790
791 // The lookup function may have changed the receiver, so make sure we use
792 // the new one.
793 Receiver = Builder.CreateLoad(ReceiverPtr, true);
794 return imp;
795 }
796
797 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
798 llvm::Value *cmd,
799 MessageSendInfo &MSI) override {
800 CGBuilderTy &Builder = CGF.Builder;
801 llvm::Value *lookupArgs[] = {ObjCSuper.emitRawPointer(CGF), cmd};
802
803 llvm::CallInst *slot =
804 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
805 slot->setOnlyReadsMemory();
806
807 return Builder.CreateAlignedLoad(
808 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
809 CGF.getPointerAlign());
810 }
811
812 public:
813 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
814 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
815 unsigned ClassABI) :
816 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
817 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
818
819 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
820 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
821 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
822 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
823 SelectorTy, IdTy);
824 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
825 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
826 PtrToObjCSuperTy, SelectorTy);
827 // If we're in ObjC++ mode, then we want to make
828 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
829 if (usesCxxExceptions) {
830 // void *__cxa_begin_catch(void *e)
831 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
832 // void __cxa_end_catch(void)
833 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
834 // void objc_exception_rethrow(void*)
835 ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy);
836 } else if (usesSEHExceptions) {
837 // void objc_exception_rethrow(void)
838 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
839 } else if (CGM.getLangOpts().CPlusPlus) {
840 // void *__cxa_begin_catch(void *e)
841 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
842 // void __cxa_end_catch(void)
843 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
844 // void _Unwind_Resume_or_Rethrow(void*)
845 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
846 PtrTy);
847 } else if (R.getVersion() >= VersionTuple(1, 7)) {
848 // id objc_begin_catch(void *e)
849 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
850 // void objc_end_catch(void)
851 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
852 // void _Unwind_Resume_or_Rethrow(void*)
853 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
854 }
855 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
856 SelectorTy, IdTy, PtrDiffTy);
857 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
858 IdTy, SelectorTy, IdTy, PtrDiffTy);
859 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
860 IdTy, SelectorTy, IdTy, PtrDiffTy);
861 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
862 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
863 // void objc_setCppObjectAtomic(void *dest, const void *src, void
864 // *helper);
865 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
866 PtrTy, PtrTy);
867 // void objc_getCppObjectAtomic(void *dest, const void *src, void
868 // *helper);
869 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
870 PtrTy, PtrTy);
871 }
872
873 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
874 // The optimised functions were added in version 1.7 of the GNUstep
875 // runtime.
876 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
877 VersionTuple(1, 7));
878 return CxxAtomicObjectGetFn;
879 }
880
881 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
882 // The optimised functions were added in version 1.7 of the GNUstep
883 // runtime.
884 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
885 VersionTuple(1, 7));
886 return CxxAtomicObjectSetFn;
887 }
888
889 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
890 bool copy) override {
891 // The optimised property functions omit the GC check, and so are not
892 // safe to use in GC mode. The standard functions are fast in GC mode,
893 // so there is less advantage in using them.
894 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
895 // The optimised functions were added in version 1.7 of the GNUstep
896 // runtime.
897 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
898 VersionTuple(1, 7));
899
900 if (atomic) {
901 if (copy) return SetPropertyAtomicCopy;
902 return SetPropertyAtomic;
903 }
904
905 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
906 }
907};
908
909/// GNUstep Objective-C ABI version 2 implementation.
910/// This is the ABI that provides a clean break with the legacy GCC ABI and
911/// cleans up a number of things that were added to work around 1980s linkers.
912class CGObjCGNUstep2 : public CGObjCGNUstep {
913 enum SectionKind
914 {
915 SelectorSection = 0,
916 ClassSection,
917 ClassReferenceSection,
918 CategorySection,
919 ProtocolSection,
920 ProtocolReferenceSection,
921 ClassAliasSection,
922 ConstantStringSection
923 };
924 /// The subset of `objc_class_flags` used at compile time.
925 enum ClassFlags {
926 /// This is a metaclass
927 ClassFlagMeta = (1 << 0),
928 /// This class has been initialised by the runtime (+initialize has been
929 /// sent if necessary).
930 ClassFlagInitialized = (1 << 8),
931 };
932 static const char *const SectionsBaseNames[8];
933 static const char *const PECOFFSectionsBaseNames[8];
934 template<SectionKind K>
935 std::string sectionName() {
936 if (CGM.getTriple().isOSBinFormatCOFF()) {
937 std::string name(PECOFFSectionsBaseNames[K]);
938 name += "$m";
939 return name;
940 }
941 return SectionsBaseNames[K];
942 }
943 /// The GCC ABI superclass message lookup function. Takes a pointer to a
944 /// structure describing the receiver and the class, and a selector as
945 /// arguments. Returns the IMP for the corresponding method.
946 LazyRuntimeFunction MsgLookupSuperFn;
947 /// Function to ensure that +initialize is sent to a class.
948 LazyRuntimeFunction SentInitializeFn;
949 /// A flag indicating if we've emitted at least one protocol.
950 /// If we haven't, then we need to emit an empty protocol, to ensure that the
951 /// __start__objc_protocols and __stop__objc_protocols sections exist.
952 bool EmittedProtocol = false;
953 /// A flag indicating if we've emitted at least one protocol reference.
954 /// If we haven't, then we need to emit an empty protocol, to ensure that the
955 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
956 /// exist.
957 bool EmittedProtocolRef = false;
958 /// A flag indicating if we've emitted at least one class.
959 /// If we haven't, then we need to emit an empty protocol, to ensure that the
960 /// __start__objc_classes and __stop__objc_classes sections / exist.
961 bool EmittedClass = false;
962 /// Generate the name of a symbol for a reference to a class. Accesses to
963 /// classes should be indirected via this.
964
965 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>>
966 EarlyInitPair;
967 std::vector<EarlyInitPair> EarlyInitList;
968
969 std::string SymbolForClassRef(StringRef Name, bool isWeak) {
970 if (isWeak)
971 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
972 else
973 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
974 }
975 /// Generate the name of a class symbol.
976 std::string SymbolForClass(StringRef Name) {
977 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
978 }
979 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
982 for (auto *Arg : Args)
983 Types.push_back(Arg->getType());
984 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
985 false);
986 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
987 B.CreateCall(Fn, Args);
988 }
989
990 ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
991
992 auto Str = SL->getString();
993 CharUnits Align = CGM.getPointerAlign();
994
995 // Look for an existing one
996 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
997 if (old != ObjCStrings.end())
998 return ConstantAddress(old->getValue(), IdElemTy, Align);
999
1000 bool isNonASCII = SL->containsNonAscii();
1001
1002 auto LiteralLength = SL->getLength();
1003
1004 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) &&
1005 (LiteralLength < 9) && !isNonASCII) {
1006 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit
1007 // ASCII characters in the high 56 bits, followed by a 4-bit length and a
1008 // 3-bit tag (which is always 4).
1009 uint64_t str = 0;
1010 // Fill in the characters
1011 for (unsigned i=0 ; i<LiteralLength ; i++)
1012 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
1013 // Fill in the length
1014 str |= LiteralLength << 3;
1015 // Set the tag
1016 str |= 4;
1017 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
1018 llvm::ConstantInt::get(Int64Ty, str), IdTy);
1019 ObjCStrings[Str] = ObjCStr;
1020 return ConstantAddress(ObjCStr, IdElemTy, Align);
1021 }
1022
1023 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1024
1025 if (StringClass.empty()) StringClass = "NSConstantString";
1026
1027 std::string Sym = SymbolForClass(StringClass);
1028
1029 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1030
1031 if (!isa) {
1032 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1033 llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1034 if (CGM.getTriple().isOSBinFormatCOFF()) {
1035 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1036 }
1037 }
1038
1039 // struct
1040 // {
1041 // Class isa;
1042 // uint32_t flags;
1043 // uint32_t length; // Number of codepoints
1044 // uint32_t size; // Number of bytes
1045 // uint32_t hash;
1046 // const char *data;
1047 // };
1048
1049 ConstantInitBuilder Builder(CGM);
1050 auto Fields = Builder.beginStruct();
1051 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1052 Fields.add(isa);
1053 } else {
1054 Fields.addNullPointer(PtrTy);
1055 }
1056 // For now, all non-ASCII strings are represented as UTF-16. As such, the
1057 // number of bytes is simply double the number of UTF-16 codepoints. In
1058 // ASCII strings, the number of bytes is equal to the number of non-ASCII
1059 // codepoints.
1060 if (isNonASCII) {
1061 unsigned NumU8CodeUnits = Str.size();
1062 // A UTF-16 representation of a unicode string contains at most the same
1063 // number of code units as a UTF-8 representation. Allocate that much
1064 // space, plus one for the final null character.
1065 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1066 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1067 llvm::UTF16 *ToPtr = &ToBuf[0];
1068 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1069 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1070 uint32_t StringLength = ToPtr - &ToBuf[0];
1071 // Add null terminator
1072 *ToPtr = 0;
1073 // Flags: 2 indicates UTF-16 encoding
1074 Fields.addInt(Int32Ty, 2);
1075 // Number of UTF-16 codepoints
1076 Fields.addInt(Int32Ty, StringLength);
1077 // Number of bytes
1078 Fields.addInt(Int32Ty, StringLength * 2);
1079 // Hash. Not currently initialised by the compiler.
1080 Fields.addInt(Int32Ty, 0);
1081 // pointer to the data string.
1082 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1);
1083 auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1084 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1085 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1086 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1087 Fields.add(Buffer);
1088 } else {
1089 // Flags: 0 indicates ASCII encoding
1090 Fields.addInt(Int32Ty, 0);
1091 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1092 Fields.addInt(Int32Ty, Str.size());
1093 // Number of bytes
1094 Fields.addInt(Int32Ty, Str.size());
1095 // Hash. Not currently initialised by the compiler.
1096 Fields.addInt(Int32Ty, 0);
1097 // Data pointer
1098 Fields.add(MakeConstantString(Str));
1099 }
1100 std::string StringName;
1101 bool isNamed = !isNonASCII;
1102 if (isNamed) {
1103 StringName = ".objc_str_";
1104 for (int i=0,e=Str.size() ; i<e ; ++i) {
1105 unsigned char c = Str[i];
1106 if (isalnum(c))
1107 StringName += c;
1108 else if (c == ' ')
1109 StringName += '_';
1110 else {
1111 isNamed = false;
1112 break;
1113 }
1114 }
1115 }
1116 llvm::GlobalVariable *ObjCStrGV =
1117 Fields.finishAndCreateGlobal(
1118 isNamed ? StringRef(StringName) : ".objc_string",
1119 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1120 : llvm::GlobalValue::PrivateLinkage);
1121 ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1122 if (isNamed) {
1123 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1124 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1125 }
1126 if (CGM.getTriple().isOSBinFormatCOFF()) {
1127 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0};
1128 EarlyInitList.emplace_back(Sym, v);
1129 }
1130 ObjCStrings[Str] = ObjCStrGV;
1131 ConstantStrings.push_back(ObjCStrGV);
1132 return ConstantAddress(ObjCStrGV, IdElemTy, Align);
1133 }
1134
1135 void PushProperty(ConstantArrayBuilder &PropertiesArray,
1136 const ObjCPropertyDecl *property,
1137 const Decl *OCD,
1138 bool isSynthesized=true, bool
1139 isDynamic=true) override {
1140 // struct objc_property
1141 // {
1142 // const char *name;
1143 // const char *attributes;
1144 // const char *type;
1145 // SEL getter;
1146 // SEL setter;
1147 // };
1148 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1149 ASTContext &Context = CGM.getContext();
1150 Fields.add(MakeConstantString(property->getNameAsString()));
1151 std::string TypeStr =
1152 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1153 Fields.add(MakeConstantString(TypeStr));
1154 std::string typeStr;
1155 Context.getObjCEncodingForType(property->getType(), typeStr);
1156 Fields.add(MakeConstantString(typeStr));
1157 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1158 if (accessor) {
1159 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1160 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1161 } else {
1162 Fields.add(NULLPtr);
1163 }
1164 };
1165 addPropertyMethod(property->getGetterMethodDecl());
1166 addPropertyMethod(property->getSetterMethodDecl());
1167 Fields.finishAndAddTo(PropertiesArray);
1168 }
1169
1170 llvm::Constant *
1171 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1172 // struct objc_protocol_method_description
1173 // {
1174 // SEL selector;
1175 // const char *types;
1176 // };
1177 llvm::StructType *ObjCMethodDescTy =
1178 llvm::StructType::get(CGM.getLLVMContext(),
1179 { PtrToInt8Ty, PtrToInt8Ty });
1180 ASTContext &Context = CGM.getContext();
1181 ConstantInitBuilder Builder(CGM);
1182 // struct objc_protocol_method_description_list
1183 // {
1184 // int count;
1185 // int size;
1186 // struct objc_protocol_method_description methods[];
1187 // };
1188 auto MethodList = Builder.beginStruct();
1189 // int count;
1190 MethodList.addInt(IntTy, Methods.size());
1191 // int size; // sizeof(struct objc_method_description)
1192 const llvm::DataLayout &DL = TheModule.getDataLayout();
1193 MethodList.addInt(IntTy, DL.getTypeSizeInBits(ObjCMethodDescTy) /
1194 CGM.getContext().getCharWidth());
1195 // struct objc_method_description[]
1196 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1197 for (auto *M : Methods) {
1198 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1199 Method.add(CGObjCGNU::GetConstantSelector(M));
1200 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1201 Method.finishAndAddTo(MethodArray);
1202 }
1203 MethodArray.finishAndAddTo(MethodList);
1204 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1205 CGM.getPointerAlign());
1206 }
1207 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1208 override {
1209 const auto &ReferencedProtocols = OCD->getReferencedProtocols();
1210 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(),
1211 ReferencedProtocols.end());
1213 for (const auto *PI : RuntimeProtocols)
1214 Protocols.push_back(GenerateProtocolRef(PI));
1215 return GenerateProtocolList(Protocols);
1216 }
1217
1218 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1219 llvm::Value *cmd, MessageSendInfo &MSI) override {
1220 // Don't access the slot unless we're trying to cache the result.
1221 CGBuilderTy &Builder = CGF.Builder;
1222 llvm::Value *lookupArgs[] = {
1223 CGObjCGNU::EnforceType(Builder, ObjCSuper.emitRawPointer(CGF),
1224 PtrToObjCSuperTy),
1225 cmd};
1226 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1227 }
1228
1229 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1230 std::string SymbolName = SymbolForClassRef(Name, isWeak);
1231 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1232 if (ClassSymbol)
1233 return ClassSymbol;
1234 ClassSymbol = new llvm::GlobalVariable(TheModule,
1235 IdTy, false, llvm::GlobalValue::ExternalLinkage,
1236 nullptr, SymbolName);
1237 // If this is a weak symbol, then we are creating a valid definition for
1238 // the symbol, pointing to a weak definition of the real class pointer. If
1239 // this is not a weak reference, then we are expecting another compilation
1240 // unit to provide the real indirection symbol.
1241 if (isWeak)
1242 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1243 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1244 nullptr, SymbolForClass(Name)));
1245 else {
1246 if (CGM.getTriple().isOSBinFormatCOFF()) {
1247 IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1250
1251 const ObjCInterfaceDecl *OID = nullptr;
1252 for (const auto *Result : DC->lookup(&II))
1253 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1254 break;
1255
1256 // The first Interface we find may be a @class,
1257 // which should only be treated as the source of
1258 // truth in the absence of a true declaration.
1259 assert(OID && "Failed to find ObjCInterfaceDecl");
1260 const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1261 if (OIDDef != nullptr)
1262 OID = OIDDef;
1263
1264 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1265 if (OID->hasAttr<DLLImportAttr>())
1266 Storage = llvm::GlobalValue::DLLImportStorageClass;
1267 else if (OID->hasAttr<DLLExportAttr>())
1268 Storage = llvm::GlobalValue::DLLExportStorageClass;
1269
1270 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1271 }
1272 }
1273 assert(ClassSymbol->getName() == SymbolName);
1274 return ClassSymbol;
1275 }
1276 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1277 const std::string &Name,
1278 bool isWeak) override {
1279 return CGF.Builder.CreateLoad(
1280 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign()));
1281 }
1282 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1283 // typedef enum {
1284 // ownership_invalid = 0,
1285 // ownership_strong = 1,
1286 // ownership_weak = 2,
1287 // ownership_unsafe = 3
1288 // } ivar_ownership;
1289 int Flag;
1290 switch (Ownership) {
1292 Flag = 1;
1293 break;
1295 Flag = 2;
1296 break;
1298 Flag = 3;
1299 break;
1302 assert(Ownership != Qualifiers::OCL_Autoreleasing);
1303 Flag = 0;
1304 }
1305 return Flag;
1306 }
1307 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1309 ArrayRef<llvm::Constant *> IvarOffsets,
1311 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1312 llvm_unreachable("Method should not be called!");
1313 }
1314
1315 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1316 std::string Name = SymbolForProtocol(ProtocolName);
1317 auto *GV = TheModule.getGlobalVariable(Name);
1318 if (!GV) {
1319 // Emit a placeholder symbol.
1320 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1321 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1322 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1323 }
1324 return GV;
1325 }
1326
1327 /// Existing protocol references.
1328 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1329
1330 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1331 const ObjCProtocolDecl *PD) override {
1332 auto Name = PD->getNameAsString();
1333 auto *&Ref = ExistingProtocolRefs[Name];
1334 if (!Ref) {
1335 auto *&Protocol = ExistingProtocols[Name];
1336 if (!Protocol)
1337 Protocol = GenerateProtocolRef(PD);
1338 std::string RefName = SymbolForProtocolRef(Name);
1339 assert(!TheModule.getGlobalVariable(RefName));
1340 // Emit a reference symbol.
1341 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false,
1342 llvm::GlobalValue::LinkOnceODRLinkage,
1343 Protocol, RefName);
1344 GV->setComdat(TheModule.getOrInsertComdat(RefName));
1345 GV->setSection(sectionName<ProtocolReferenceSection>());
1346 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1347 Ref = GV;
1348 }
1349 EmittedProtocolRef = true;
1350 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref,
1351 CGM.getPointerAlign());
1352 }
1353
1354 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1355 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1356 Protocols.size());
1357 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1358 Protocols);
1359 ConstantInitBuilder builder(CGM);
1360 auto ProtocolBuilder = builder.beginStruct();
1361 ProtocolBuilder.addNullPointer(PtrTy);
1362 ProtocolBuilder.addInt(SizeTy, Protocols.size());
1363 ProtocolBuilder.add(ProtocolArray);
1364 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1365 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1366 }
1367
1368 void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1369 // Do nothing - we only emit referenced protocols.
1370 }
1371 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1372 std::string ProtocolName = PD->getNameAsString();
1373 auto *&Protocol = ExistingProtocols[ProtocolName];
1374 if (Protocol)
1375 return Protocol;
1376
1377 EmittedProtocol = true;
1378
1379 auto SymName = SymbolForProtocol(ProtocolName);
1380 auto *OldGV = TheModule.getGlobalVariable(SymName);
1381
1382 // Use the protocol definition, if there is one.
1383 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1384 PD = Def;
1385 else {
1386 // If there is no definition, then create an external linkage symbol and
1387 // hope that someone else fills it in for us (and fail to link if they
1388 // don't).
1389 assert(!OldGV);
1390 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1391 /*isConstant*/false,
1392 llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1393 return Protocol;
1394 }
1395
1397 auto RuntimeProtocols =
1398 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end());
1399 for (const auto *PI : RuntimeProtocols)
1400 Protocols.push_back(GenerateProtocolRef(PI));
1401 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1402
1403 // Collect information about methods
1404 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1405 llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1406 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1407 OptionalInstanceMethodList);
1408 EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1409 OptionalClassMethodList);
1410
1411 // The isa pointer must be set to a magic number so the runtime knows it's
1412 // the correct layout.
1413 ConstantInitBuilder builder(CGM);
1414 auto ProtocolBuilder = builder.beginStruct();
1415 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1416 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1417 ProtocolBuilder.add(MakeConstantString(ProtocolName));
1418 ProtocolBuilder.add(ProtocolList);
1419 ProtocolBuilder.add(InstanceMethodList);
1420 ProtocolBuilder.add(ClassMethodList);
1421 ProtocolBuilder.add(OptionalInstanceMethodList);
1422 ProtocolBuilder.add(OptionalClassMethodList);
1423 // Required instance properties
1424 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1425 // Optional instance properties
1426 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1427 // Required class properties
1428 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1429 // Optional class properties
1430 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1431
1432 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1433 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1434 GV->setSection(sectionName<ProtocolSection>());
1435 GV->setComdat(TheModule.getOrInsertComdat(SymName));
1436 if (OldGV) {
1437 OldGV->replaceAllUsesWith(GV);
1438 OldGV->removeFromParent();
1439 GV->setName(SymName);
1440 }
1441 Protocol = GV;
1442 return GV;
1443 }
1444 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1445 const std::string &TypeEncoding) override {
1446 return GetConstantSelector(Sel, TypeEncoding);
1447 }
1448 std::string GetSymbolNameForTypeEncoding(const std::string &TypeEncoding) {
1449 std::string MangledTypes = std::string(TypeEncoding);
1450 // @ is used as a special character in ELF symbol names (used for symbol
1451 // versioning), so mangle the name to not include it. Replace it with a
1452 // character that is not a valid type encoding character (and, being
1453 // non-printable, never will be!)
1454 if (CGM.getTriple().isOSBinFormatELF())
1455 std::replace(MangledTypes.begin(), MangledTypes.end(), '@', '\1');
1456 // = in dll exported names causes lld to fail when linking on Windows.
1457 if (CGM.getTriple().isOSWindows())
1458 std::replace(MangledTypes.begin(), MangledTypes.end(), '=', '\2');
1459 return MangledTypes;
1460 }
1461 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) {
1462 if (TypeEncoding.empty())
1463 return NULLPtr;
1464 std::string MangledTypes =
1465 GetSymbolNameForTypeEncoding(std::string(TypeEncoding));
1466 std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1467 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1468 if (!TypesGlobal) {
1469 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1470 TypeEncoding);
1471 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1472 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1473 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1474 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1475 TypesGlobal = GV;
1476 }
1477 return TypesGlobal;
1478 }
1479 llvm::Constant *GetConstantSelector(Selector Sel,
1480 const std::string &TypeEncoding) override {
1481 std::string MangledTypes = GetSymbolNameForTypeEncoding(TypeEncoding);
1482 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1483 MangledTypes).str();
1484 if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1485 return GV;
1486 ConstantInitBuilder builder(CGM);
1487 auto SelBuilder = builder.beginStruct();
1488 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1489 true));
1490 SelBuilder.add(GetTypeString(TypeEncoding));
1491 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1492 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1493 GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1494 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1495 GV->setSection(sectionName<SelectorSection>());
1496 return GV;
1497 }
1498 llvm::StructType *emptyStruct = nullptr;
1499
1500 /// Return pointers to the start and end of a section. On ELF platforms, we
1501 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1502 /// to the start and end of section names, as long as those section names are
1503 /// valid identifiers and the symbols are referenced but not defined. On
1504 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1505 /// by subsections and place everything that we want to reference in a middle
1506 /// subsection and then insert zero-sized symbols in subsections a and z.
1507 std::pair<llvm::Constant*,llvm::Constant*>
1508 GetSectionBounds(StringRef Section) {
1509 if (CGM.getTriple().isOSBinFormatCOFF()) {
1510 if (emptyStruct == nullptr) {
1511 emptyStruct = llvm::StructType::create(
1512 VMContext, {}, ".objc_section_sentinel", /*isPacked=*/true);
1513 }
1514 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1515 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1516 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1517 /*isConstant*/false,
1518 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1519 Section);
1520 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1521 Sym->setSection((Section + SecSuffix).str());
1522 Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1523 Section).str()));
1524 Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1525 return Sym;
1526 };
1527 return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1528 }
1529 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1530 /*isConstant*/false,
1531 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1532 Section);
1533 Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1534 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1535 /*isConstant*/false,
1536 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1537 Section);
1538 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1539 return { Start, Stop };
1540 }
1541 CatchTypeInfo getCatchAllTypeInfo() override {
1542 return CGM.getCXXABI().getCatchAllTypeInfo();
1543 }
1544 llvm::Function *ModuleInitFunction() override {
1545 llvm::Function *LoadFunction = llvm::Function::Create(
1546 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1547 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1548 &TheModule);
1549 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1550 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1551
1552 llvm::BasicBlock *EntryBB =
1553 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1554 CGBuilderTy B(CGM, VMContext);
1555 B.SetInsertPoint(EntryBB);
1556 ConstantInitBuilder builder(CGM);
1557 auto InitStructBuilder = builder.beginStruct();
1558 InitStructBuilder.addInt(Int64Ty, 0);
1559 auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1560 for (auto *s : sectionVec) {
1561 auto bounds = GetSectionBounds(s);
1562 InitStructBuilder.add(bounds.first);
1563 InitStructBuilder.add(bounds.second);
1564 }
1565 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1566 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1567 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1568 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1569
1570 CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1571 B.CreateRetVoid();
1572 // Make sure that the optimisers don't delete this function.
1573 CGM.addCompilerUsedGlobal(LoadFunction);
1574 // FIXME: Currently ELF only!
1575 // We have to do this by hand, rather than with @llvm.ctors, so that the
1576 // linker can remove the duplicate invocations.
1577 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1578 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1579 LoadFunction, ".objc_ctor");
1580 // Check that this hasn't been renamed. This shouldn't happen, because
1581 // this function should be called precisely once.
1582 assert(InitVar->getName() == ".objc_ctor");
1583 // In Windows, initialisers are sorted by the suffix. XCL is for library
1584 // initialisers, which run before user initialisers. We are running
1585 // Objective-C loads at the end of library load. This means +load methods
1586 // will run before any other static constructors, but that static
1587 // constructors can see a fully initialised Objective-C state.
1588 if (CGM.getTriple().isOSBinFormatCOFF())
1589 InitVar->setSection(".CRT$XCLz");
1590 else
1591 {
1592 if (CGM.getCodeGenOpts().UseInitArray)
1593 InitVar->setSection(".init_array");
1594 else
1595 InitVar->setSection(".ctors");
1596 }
1597 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1598 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1599 CGM.addUsedGlobal(InitVar);
1600 for (auto *C : Categories) {
1601 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1602 Cat->setSection(sectionName<CategorySection>());
1603 CGM.addUsedGlobal(Cat);
1604 }
1605 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1606 StringRef Section) {
1607 auto nullBuilder = builder.beginStruct();
1608 for (auto *F : Init)
1609 nullBuilder.add(F);
1610 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1611 false, llvm::GlobalValue::LinkOnceODRLinkage);
1612 GV->setSection(Section);
1613 GV->setComdat(TheModule.getOrInsertComdat(Name));
1614 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1615 CGM.addUsedGlobal(GV);
1616 return GV;
1617 };
1618 for (auto clsAlias : ClassAliases)
1619 createNullGlobal(std::string(".objc_class_alias") +
1620 clsAlias.second, { MakeConstantString(clsAlias.second),
1621 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1622 // On ELF platforms, add a null value for each special section so that we
1623 // can always guarantee that the _start and _stop symbols will exist and be
1624 // meaningful. This is not required on COFF platforms, where our start and
1625 // stop symbols will create the section.
1626 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1627 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1628 sectionName<SelectorSection>());
1629 if (Categories.empty())
1630 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1631 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1632 sectionName<CategorySection>());
1633 if (!EmittedClass) {
1634 createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1635 sectionName<ClassSection>());
1636 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1637 sectionName<ClassReferenceSection>());
1638 }
1639 if (!EmittedProtocol)
1640 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1641 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1642 NULLPtr}, sectionName<ProtocolSection>());
1643 if (!EmittedProtocolRef)
1644 createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1645 sectionName<ProtocolReferenceSection>());
1646 if (ClassAliases.empty())
1647 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1648 sectionName<ClassAliasSection>());
1649 if (ConstantStrings.empty()) {
1650 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1651 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1652 i32Zero, i32Zero, i32Zero, NULLPtr },
1653 sectionName<ConstantStringSection>());
1654 }
1655 }
1656 ConstantStrings.clear();
1657 Categories.clear();
1658 Classes.clear();
1659
1660 if (EarlyInitList.size() > 0) {
1661 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1662 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1663 &CGM.getModule());
1664 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1665 Init));
1666 for (const auto &lateInit : EarlyInitList) {
1667 auto *global = TheModule.getGlobalVariable(lateInit.first);
1668 if (global) {
1669 llvm::GlobalVariable *GV = lateInit.second.first;
1670 b.CreateAlignedStore(
1671 global,
1672 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second),
1673 CGM.getPointerAlign().getAsAlign());
1674 }
1675 }
1676 b.CreateRetVoid();
1677 // We can't use the normal LLVM global initialisation array, because we
1678 // need to specify that this runs early in library initialisation.
1679 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1680 /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1681 Init, ".objc_early_init_ptr");
1682 InitVar->setSection(".CRT$XCLb");
1683 CGM.addUsedGlobal(InitVar);
1684 }
1685 return nullptr;
1686 }
1687 /// In the v2 ABI, ivar offset variables use the type encoding in their name
1688 /// to trigger linker failures if the types don't match.
1689 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1690 const ObjCIvarDecl *Ivar) override {
1691 std::string TypeEncoding;
1692 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1693 TypeEncoding = GetSymbolNameForTypeEncoding(TypeEncoding);
1694 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1695 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1696 return Name;
1697 }
1698 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1700 const ObjCIvarDecl *Ivar) override {
1701 const ObjCInterfaceDecl *ContainingInterface =
1702 Ivar->getContainingInterface();
1703 const std::string Name =
1704 GetIVarOffsetVariableName(ContainingInterface, Ivar);
1705 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1706 if (!IvarOffsetPointer) {
1707 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1708 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1709 if (Ivar->getAccessControl() != ObjCIvarDecl::Private &&
1711 CGM.setGVProperties(IvarOffsetPointer, ContainingInterface);
1712 }
1713 CharUnits Align = CGM.getIntAlign();
1714 llvm::Value *Offset =
1715 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align);
1716 if (Offset->getType() != PtrDiffTy)
1717 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1718 return Offset;
1719 }
1720 void GenerateClass(const ObjCImplementationDecl *OID) override {
1721 ASTContext &Context = CGM.getContext();
1722 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1723
1724 // Get the class name
1725 ObjCInterfaceDecl *classDecl =
1726 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1727 std::string className = classDecl->getNameAsString();
1728 auto *classNameConstant = MakeConstantString(className);
1729
1730 ConstantInitBuilder builder(CGM);
1731 auto metaclassFields = builder.beginStruct();
1732 // struct objc_class *isa;
1733 metaclassFields.addNullPointer(PtrTy);
1734 // struct objc_class *super_class;
1735 metaclassFields.addNullPointer(PtrTy);
1736 // const char *name;
1737 metaclassFields.add(classNameConstant);
1738 // long version;
1739 metaclassFields.addInt(LongTy, 0);
1740 // unsigned long info;
1741 // objc_class_flag_meta
1742 metaclassFields.addInt(LongTy, ClassFlags::ClassFlagMeta);
1743 // long instance_size;
1744 // Setting this to zero is consistent with the older ABI, but it might be
1745 // more sensible to set this to sizeof(struct objc_class)
1746 metaclassFields.addInt(LongTy, 0);
1747 // struct objc_ivar_list *ivars;
1748 metaclassFields.addNullPointer(PtrTy);
1749 // struct objc_method_list *methods
1750 // FIXME: Almost identical code is copied and pasted below for the
1751 // class, but refactoring it cleanly requires C++14 generic lambdas.
1752 if (OID->classmeth_begin() == OID->classmeth_end())
1753 metaclassFields.addNullPointer(PtrTy);
1754 else {
1756 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1757 OID->classmeth_end());
1758 metaclassFields.add(
1759 GenerateMethodList(className, "", ClassMethods, true));
1760 }
1761 // void *dtable;
1762 metaclassFields.addNullPointer(PtrTy);
1763 // IMP cxx_construct;
1764 metaclassFields.addNullPointer(PtrTy);
1765 // IMP cxx_destruct;
1766 metaclassFields.addNullPointer(PtrTy);
1767 // struct objc_class *subclass_list
1768 metaclassFields.addNullPointer(PtrTy);
1769 // struct objc_class *sibling_class
1770 metaclassFields.addNullPointer(PtrTy);
1771 // struct objc_protocol_list *protocols;
1772 metaclassFields.addNullPointer(PtrTy);
1773 // struct reference_list *extra_data;
1774 metaclassFields.addNullPointer(PtrTy);
1775 // long abi_version;
1776 metaclassFields.addInt(LongTy, 0);
1777 // struct objc_property_list *properties
1778 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1779
1780 auto *metaclass = metaclassFields.finishAndCreateGlobal(
1781 ManglePublicSymbol("OBJC_METACLASS_") + className,
1782 CGM.getPointerAlign());
1783
1784 auto classFields = builder.beginStruct();
1785 // struct objc_class *isa;
1786 classFields.add(metaclass);
1787 // struct objc_class *super_class;
1788 // Get the superclass name.
1789 const ObjCInterfaceDecl * SuperClassDecl =
1791 llvm::Constant *SuperClass = nullptr;
1792 if (SuperClassDecl) {
1793 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1794 SuperClass = TheModule.getNamedGlobal(SuperClassName);
1795 if (!SuperClass)
1796 {
1797 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1798 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1799 if (IsCOFF) {
1800 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1801 if (SuperClassDecl->hasAttr<DLLImportAttr>())
1802 Storage = llvm::GlobalValue::DLLImportStorageClass;
1803 else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1804 Storage = llvm::GlobalValue::DLLExportStorageClass;
1805
1806 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1807 }
1808 }
1809 if (!IsCOFF)
1810 classFields.add(SuperClass);
1811 else
1812 classFields.addNullPointer(PtrTy);
1813 } else
1814 classFields.addNullPointer(PtrTy);
1815 // const char *name;
1816 classFields.add(classNameConstant);
1817 // long version;
1818 classFields.addInt(LongTy, 0);
1819 // unsigned long info;
1820 // !objc_class_flag_meta
1821 classFields.addInt(LongTy, 0);
1822 // long instance_size;
1823 int superInstanceSize = !SuperClassDecl ? 0 :
1824 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1825 // Instance size is negative for classes that have not yet had their ivar
1826 // layout calculated.
1827 classFields.addInt(LongTy,
1828 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1829 superInstanceSize));
1830
1831 if (classDecl->all_declared_ivar_begin() == nullptr)
1832 classFields.addNullPointer(PtrTy);
1833 else {
1834 int ivar_count = 0;
1835 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1836 IVD = IVD->getNextIvar()) ivar_count++;
1837 const llvm::DataLayout &DL = TheModule.getDataLayout();
1838 // struct objc_ivar_list *ivars;
1840 auto ivarListBuilder = b.beginStruct();
1841 // int count;
1842 ivarListBuilder.addInt(IntTy, ivar_count);
1843 // size_t size;
1844 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1845 PtrToInt8Ty,
1846 PtrToInt8Ty,
1847 PtrToInt8Ty,
1848 Int32Ty,
1849 Int32Ty);
1850 ivarListBuilder.addInt(SizeTy, DL.getTypeSizeInBits(ObjCIvarTy) /
1851 CGM.getContext().getCharWidth());
1852 // struct objc_ivar ivars[]
1853 auto ivarArrayBuilder = ivarListBuilder.beginArray();
1854 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1855 IVD = IVD->getNextIvar()) {
1856 auto ivarTy = IVD->getType();
1857 auto ivarBuilder = ivarArrayBuilder.beginStruct();
1858 // const char *name;
1859 ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1860 // const char *type;
1861 std::string TypeStr;
1862 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1863 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1864 ivarBuilder.add(MakeConstantString(TypeStr));
1865 // int *offset;
1866 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1867 uint64_t Offset = BaseOffset - superInstanceSize;
1868 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1869 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1870 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1871 if (OffsetVar)
1872 OffsetVar->setInitializer(OffsetValue);
1873 else
1874 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1875 false, llvm::GlobalValue::ExternalLinkage,
1876 OffsetValue, OffsetName);
1877 auto ivarVisibility =
1878 (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1879 IVD->getAccessControl() == ObjCIvarDecl::Package ||
1880 classDecl->getVisibility() == HiddenVisibility) ?
1881 llvm::GlobalValue::HiddenVisibility :
1882 llvm::GlobalValue::DefaultVisibility;
1883 OffsetVar->setVisibility(ivarVisibility);
1884 if (ivarVisibility != llvm::GlobalValue::HiddenVisibility)
1885 CGM.setGVProperties(OffsetVar, OID->getClassInterface());
1886 ivarBuilder.add(OffsetVar);
1887 // Ivar size
1888 ivarBuilder.addInt(Int32Ty,
1889 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1890 // Alignment will be stored as a base-2 log of the alignment.
1891 unsigned align =
1892 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1893 // Objects that require more than 2^64-byte alignment should be impossible!
1894 assert(align < 64);
1895 // uint32_t flags;
1896 // Bits 0-1 are ownership.
1897 // Bit 2 indicates an extended type encoding
1898 // Bits 3-8 contain log2(aligment)
1899 ivarBuilder.addInt(Int32Ty,
1900 (align << 3) | (1<<2) |
1901 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1902 ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1903 }
1904 ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1905 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1906 CGM.getPointerAlign(), /*constant*/ false,
1907 llvm::GlobalValue::PrivateLinkage);
1908 classFields.add(ivarList);
1909 }
1910 // struct objc_method_list *methods
1912 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1913 OID->instmeth_end());
1914 for (auto *propImpl : OID->property_impls())
1915 if (propImpl->getPropertyImplementation() ==
1917 auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1918 if (OMD && OMD->hasBody())
1919 InstanceMethods.push_back(OMD);
1920 };
1921 addIfExists(propImpl->getGetterMethodDecl());
1922 addIfExists(propImpl->getSetterMethodDecl());
1923 }
1924
1925 if (InstanceMethods.size() == 0)
1926 classFields.addNullPointer(PtrTy);
1927 else
1928 classFields.add(
1929 GenerateMethodList(className, "", InstanceMethods, false));
1930
1931 // void *dtable;
1932 classFields.addNullPointer(PtrTy);
1933 // IMP cxx_construct;
1934 classFields.addNullPointer(PtrTy);
1935 // IMP cxx_destruct;
1936 classFields.addNullPointer(PtrTy);
1937 // struct objc_class *subclass_list
1938 classFields.addNullPointer(PtrTy);
1939 // struct objc_class *sibling_class
1940 classFields.addNullPointer(PtrTy);
1941 // struct objc_protocol_list *protocols;
1942 auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(),
1943 classDecl->protocol_end());
1945 for (const auto *I : RuntimeProtocols)
1946 Protocols.push_back(GenerateProtocolRef(I));
1947
1948 if (Protocols.empty())
1949 classFields.addNullPointer(PtrTy);
1950 else
1951 classFields.add(GenerateProtocolList(Protocols));
1952 // struct reference_list *extra_data;
1953 classFields.addNullPointer(PtrTy);
1954 // long abi_version;
1955 classFields.addInt(LongTy, 0);
1956 // struct objc_property_list *properties
1957 classFields.add(GeneratePropertyList(OID, classDecl));
1958
1959 llvm::GlobalVariable *classStruct =
1960 classFields.finishAndCreateGlobal(SymbolForClass(className),
1961 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1962
1963 auto *classRefSymbol = GetClassVar(className);
1964 classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1965 classRefSymbol->setInitializer(classStruct);
1966
1967 if (IsCOFF) {
1968 // we can't import a class struct.
1969 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1970 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1971 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1972 }
1973
1974 if (SuperClass) {
1975 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1};
1976 EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1977 std::move(v));
1978 }
1979
1980 }
1981
1982
1983 // Resolve the class aliases, if they exist.
1984 // FIXME: Class pointer aliases shouldn't exist!
1985 if (ClassPtrAlias) {
1986 ClassPtrAlias->replaceAllUsesWith(classStruct);
1987 ClassPtrAlias->eraseFromParent();
1988 ClassPtrAlias = nullptr;
1989 }
1990 if (auto Placeholder =
1991 TheModule.getNamedGlobal(SymbolForClass(className)))
1992 if (Placeholder != classStruct) {
1993 Placeholder->replaceAllUsesWith(classStruct);
1994 Placeholder->eraseFromParent();
1995 classStruct->setName(SymbolForClass(className));
1996 }
1997 if (MetaClassPtrAlias) {
1998 MetaClassPtrAlias->replaceAllUsesWith(metaclass);
1999 MetaClassPtrAlias->eraseFromParent();
2000 MetaClassPtrAlias = nullptr;
2001 }
2002 assert(classStruct->getName() == SymbolForClass(className));
2003
2004 auto classInitRef = new llvm::GlobalVariable(TheModule,
2005 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
2006 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
2007 classInitRef->setSection(sectionName<ClassSection>());
2008 CGM.addUsedGlobal(classInitRef);
2009
2010 EmittedClass = true;
2011 }
2012 public:
2013 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
2014 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2015 PtrToObjCSuperTy, SelectorTy);
2016 SentInitializeFn.init(&CGM, "objc_send_initialize",
2017 llvm::Type::getVoidTy(VMContext), IdTy);
2018 // struct objc_property
2019 // {
2020 // const char *name;
2021 // const char *attributes;
2022 // const char *type;
2023 // SEL getter;
2024 // SEL setter;
2025 // }
2026 PropertyMetadataTy =
2027 llvm::StructType::get(CGM.getLLVMContext(),
2028 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2029 }
2030
2031 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
2032 const ObjCMethodDecl *OMD,
2033 const ObjCContainerDecl *CD) override {
2034 auto &Builder = CGF.Builder;
2035 bool ReceiverCanBeNull = true;
2036 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl());
2037 auto selfValue = Builder.CreateLoad(selfAddr);
2038
2039 // Generate:
2040 //
2041 // /* unless the receiver is never NULL */
2042 // if (self == nil) {
2043 // return (ReturnType){ };
2044 // }
2045 //
2046 // /* for class methods only to force class lazy initialization */
2047 // if (!__objc_{class}_initialized)
2048 // {
2049 // objc_send_initialize(class);
2050 // __objc_{class}_initialized = 1;
2051 // }
2052 //
2053 // _cmd = @selector(...)
2054 // ...
2055
2056 if (OMD->isClassMethod()) {
2057 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD);
2058
2059 // Nullable `Class` expressions cannot be messaged with a direct method
2060 // so the only reason why the receive can be null would be because
2061 // of weak linking.
2062 ReceiverCanBeNull = isWeakLinkedClass(OID);
2063 }
2064
2065 llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2066 if (ReceiverCanBeNull) {
2067 llvm::BasicBlock *SelfIsNilBlock =
2068 CGF.createBasicBlock("objc_direct_method.self_is_nil");
2069 llvm::BasicBlock *ContBlock =
2070 CGF.createBasicBlock("objc_direct_method.cont");
2071
2072 // if (self == nil) {
2073 auto selfTy = cast<llvm::PointerType>(selfValue->getType());
2074 auto Zero = llvm::ConstantPointerNull::get(selfTy);
2075
2076 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero),
2077 SelfIsNilBlock, ContBlock,
2078 MDHelper.createUnlikelyBranchWeights());
2079
2080 CGF.EmitBlock(SelfIsNilBlock);
2081
2082 // return (ReturnType){ };
2083 auto retTy = OMD->getReturnType();
2084 Builder.SetInsertPoint(SelfIsNilBlock);
2085 if (!retTy->isVoidType()) {
2086 CGF.EmitNullInitialization(CGF.ReturnValue, retTy);
2087 }
2089 // }
2090
2091 // rest of the body
2092 CGF.EmitBlock(ContBlock);
2093 Builder.SetInsertPoint(ContBlock);
2094 }
2095
2096 if (OMD->isClassMethod()) {
2097 // Prefix of the class type.
2098 auto *classStart =
2099 llvm::StructType::get(PtrTy, PtrTy, PtrTy, LongTy, LongTy);
2100 auto &astContext = CGM.getContext();
2101 // FIXME: The following few lines up to and including the call to
2102 // `CreateLoad` were known to miscompile when MSVC 19.40.33813 is used
2103 // to build Clang. When the bug is fixed in future MSVC releases, we
2104 // should revert these lines to their previous state. See discussion in
2105 // https://github.com/llvm/llvm-project/pull/102681
2106 llvm::Value *Val = Builder.CreateStructGEP(classStart, selfValue, 4);
2107 auto Align = CharUnits::fromQuantity(
2108 astContext.getTypeAlign(astContext.UnsignedLongTy));
2109 auto flags = Builder.CreateLoad(Address{Val, LongTy, Align});
2110 auto isInitialized =
2111 Builder.CreateAnd(flags, ClassFlags::ClassFlagInitialized);
2112 llvm::BasicBlock *notInitializedBlock =
2113 CGF.createBasicBlock("objc_direct_method.class_uninitialized");
2114 llvm::BasicBlock *initializedBlock =
2115 CGF.createBasicBlock("objc_direct_method.class_initialized");
2116 Builder.CreateCondBr(Builder.CreateICmpEQ(isInitialized, Zeros[0]),
2117 notInitializedBlock, initializedBlock,
2118 MDHelper.createUnlikelyBranchWeights());
2119 CGF.EmitBlock(notInitializedBlock);
2120 Builder.SetInsertPoint(notInitializedBlock);
2121 CGF.EmitRuntimeCall(SentInitializeFn, selfValue);
2122 Builder.CreateBr(initializedBlock);
2123 CGF.EmitBlock(initializedBlock);
2124 Builder.SetInsertPoint(initializedBlock);
2125 }
2126
2127 // only synthesize _cmd if it's referenced
2128 if (OMD->getCmdDecl()->isUsed()) {
2129 // `_cmd` is not a parameter to direct methods, so storage must be
2130 // explicitly declared for it.
2131 CGF.EmitVarDecl(*OMD->getCmdDecl());
2132 Builder.CreateStore(GetSelector(CGF, OMD),
2133 CGF.GetAddrOfLocalVar(OMD->getCmdDecl()));
2134 }
2135 }
2136};
2137
2138const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2139{
2140"__objc_selectors",
2141"__objc_classes",
2142"__objc_class_refs",
2143"__objc_cats",
2144"__objc_protocols",
2145"__objc_protocol_refs",
2146"__objc_class_aliases",
2147"__objc_constant_string"
2148};
2149
2150const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2151{
2152".objcrt$SEL",
2153".objcrt$CLS",
2154".objcrt$CLR",
2155".objcrt$CAT",
2156".objcrt$PCL",
2157".objcrt$PCR",
2158".objcrt$CAL",
2159".objcrt$STR"
2160};
2161
2162/// Support for the ObjFW runtime.
2163class CGObjCObjFW: public CGObjCGNU {
2164protected:
2165 /// The GCC ABI message lookup function. Returns an IMP pointing to the
2166 /// method implementation for this message.
2167 LazyRuntimeFunction MsgLookupFn;
2168 /// stret lookup function. While this does not seem to make sense at the
2169 /// first look, this is required to call the correct forwarding function.
2170 LazyRuntimeFunction MsgLookupFnSRet;
2171 /// The GCC ABI superclass message lookup function. Takes a pointer to a
2172 /// structure describing the receiver and the class, and a selector as
2173 /// arguments. Returns the IMP for the corresponding method.
2174 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2175
2176 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2177 llvm::Value *cmd, llvm::MDNode *node,
2178 MessageSendInfo &MSI) override {
2179 CGBuilderTy &Builder = CGF.Builder;
2180 llvm::Value *args[] = {
2181 EnforceType(Builder, Receiver, IdTy),
2182 EnforceType(Builder, cmd, SelectorTy) };
2183
2184 llvm::CallBase *imp;
2185 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2186 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2187 else
2188 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2189
2190 imp->setMetadata(msgSendMDKind, node);
2191 return imp;
2192 }
2193
2194 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2195 llvm::Value *cmd, MessageSendInfo &MSI) override {
2196 CGBuilderTy &Builder = CGF.Builder;
2197 llvm::Value *lookupArgs[] = {
2198 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
2199 cmd,
2200 };
2201
2202 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2203 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2204 else
2205 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2206 }
2207
2208 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2209 bool isWeak) override {
2210 if (isWeak)
2211 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2212
2213 EmitClassRef(Name);
2214 std::string SymbolName = "_OBJC_CLASS_" + Name;
2215 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2216 if (!ClassSymbol)
2217 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2218 llvm::GlobalValue::ExternalLinkage,
2219 nullptr, SymbolName);
2220 return ClassSymbol;
2221 }
2222
2223public:
2224 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2225 // IMP objc_msg_lookup(id, SEL);
2226 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2227 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2228 SelectorTy);
2229 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2230 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2231 PtrToObjCSuperTy, SelectorTy);
2232 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2233 PtrToObjCSuperTy, SelectorTy);
2234 }
2235};
2236} // end anonymous namespace
2237
2238/// Emits a reference to a dummy variable which is emitted with each class.
2239/// This ensures that a linker error will be generated when trying to link
2240/// together modules where a referenced class is not defined.
2241void CGObjCGNU::EmitClassRef(const std::string &className) {
2242 std::string symbolRef = "__objc_class_ref_" + className;
2243 // Don't emit two copies of the same symbol
2244 if (TheModule.getGlobalVariable(symbolRef))
2245 return;
2246 std::string symbolName = "__objc_class_name_" + className;
2247 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2248 if (!ClassSymbol) {
2249 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2250 llvm::GlobalValue::ExternalLinkage,
2251 nullptr, symbolName);
2252 }
2253 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2254 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2255}
2256
2257CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2258 unsigned protocolClassVersion, unsigned classABI)
2259 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2260 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2261 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2262 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2263
2264 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2265 usesSEHExceptions =
2266 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2267 usesCxxExceptions =
2268 cgm.getContext().getTargetInfo().getTriple().isOSCygMing() &&
2269 isRuntime(ObjCRuntime::GNUstep, 2);
2270
2271 CodeGenTypes &Types = CGM.getTypes();
2272 IntTy = cast<llvm::IntegerType>(
2273 Types.ConvertType(CGM.getContext().IntTy));
2274 LongTy = cast<llvm::IntegerType>(
2275 Types.ConvertType(CGM.getContext().LongTy));
2276 SizeTy = cast<llvm::IntegerType>(
2277 Types.ConvertType(CGM.getContext().getSizeType()));
2278 PtrDiffTy = cast<llvm::IntegerType>(
2279 Types.ConvertType(CGM.getContext().getPointerDiffType()));
2280 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2281
2282 Int8Ty = llvm::Type::getInt8Ty(VMContext);
2283 // C string type. Used in lots of places.
2284 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2285 ProtocolPtrTy = llvm::PointerType::getUnqual(
2286 Types.ConvertType(CGM.getContext().getObjCProtoType()));
2287
2288 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2289 Zeros[1] = Zeros[0];
2290 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2291 // Get the selector Type.
2292 QualType selTy = CGM.getContext().getObjCSelType();
2293 if (QualType() == selTy) {
2294 SelectorTy = PtrToInt8Ty;
2295 SelectorElemTy = Int8Ty;
2296 } else {
2297 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2298 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType());
2299 }
2300
2301 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2302 PtrTy = PtrToInt8Ty;
2303
2304 Int32Ty = llvm::Type::getInt32Ty(VMContext);
2305 Int64Ty = llvm::Type::getInt64Ty(VMContext);
2306
2307 IntPtrTy =
2308 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2309
2310 // Object type
2311 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2312 ASTIdTy = CanQualType();
2313 if (UnqualIdTy != QualType()) {
2314 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2315 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2316 IdElemTy = CGM.getTypes().ConvertTypeForMem(
2317 ASTIdTy.getTypePtr()->getPointeeType());
2318 } else {
2319 IdTy = PtrToInt8Ty;
2320 IdElemTy = Int8Ty;
2321 }
2322 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2323 ProtocolTy = llvm::StructType::get(IdTy,
2324 PtrToInt8Ty, // name
2325 PtrToInt8Ty, // protocols
2326 PtrToInt8Ty, // instance methods
2327 PtrToInt8Ty, // class methods
2328 PtrToInt8Ty, // optional instance methods
2329 PtrToInt8Ty, // optional class methods
2330 PtrToInt8Ty, // properties
2331 PtrToInt8Ty);// optional properties
2332
2333 // struct objc_property_gsv1
2334 // {
2335 // const char *name;
2336 // char attributes;
2337 // char attributes2;
2338 // char unused1;
2339 // char unused2;
2340 // const char *getter_name;
2341 // const char *getter_types;
2342 // const char *setter_name;
2343 // const char *setter_types;
2344 // }
2345 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2346 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2347 PtrToInt8Ty, PtrToInt8Ty });
2348
2349 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2350 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2351
2352 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2353
2354 // void objc_exception_throw(id);
2355 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2356 ExceptionReThrowFn.init(&CGM,
2357 usesCxxExceptions ? "objc_exception_rethrow"
2358 : "objc_exception_throw",
2359 VoidTy, IdTy);
2360 // int objc_sync_enter(id);
2361 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2362 // int objc_sync_exit(id);
2363 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2364
2365 // void objc_enumerationMutation (id)
2366 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2367
2368 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2369 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2370 PtrDiffTy, BoolTy);
2371 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2372 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2373 PtrDiffTy, IdTy, BoolTy, BoolTy);
2374 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2375 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2376 PtrDiffTy, BoolTy, BoolTy);
2377 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2378 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2379 PtrDiffTy, BoolTy, BoolTy);
2380
2381 // IMP type
2382 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2383 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2384 true));
2385
2386 const LangOptions &Opts = CGM.getLangOpts();
2387 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2388 RuntimeVersion = 10;
2389
2390 // Don't bother initialising the GC stuff unless we're compiling in GC mode
2391 if (Opts.getGC() != LangOptions::NonGC) {
2392 // This is a bit of an hack. We should sort this out by having a proper
2393 // CGObjCGNUstep subclass for GC, but we may want to really support the old
2394 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2395 // Get selectors needed in GC mode
2396 RetainSel = GetNullarySelector("retain", CGM.getContext());
2397 ReleaseSel = GetNullarySelector("release", CGM.getContext());
2398 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2399
2400 // Get functions needed in GC mode
2401
2402 // id objc_assign_ivar(id, id, ptrdiff_t);
2403 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2404 // id objc_assign_strongCast (id, id*)
2405 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2406 PtrToIdTy);
2407 // id objc_assign_global(id, id*);
2408 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2409 // id objc_assign_weak(id, id*);
2410 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2411 // id objc_read_weak(id*);
2412 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2413 // void *objc_memmove_collectable(void*, void *, size_t);
2414 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2415 SizeTy);
2416 }
2417}
2418
2419llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2420 const std::string &Name, bool isWeak) {
2421 llvm::Constant *ClassName = MakeConstantString(Name);
2422 // With the incompatible ABI, this will need to be replaced with a direct
2423 // reference to the class symbol. For the compatible nonfragile ABI we are
2424 // still performing this lookup at run time but emitting the symbol for the
2425 // class externally so that we can make the switch later.
2426 //
2427 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2428 // with memoized versions or with static references if it's safe to do so.
2429 if (!isWeak)
2430 EmitClassRef(Name);
2431
2432 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2433 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2434 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2435}
2436
2437// This has to perform the lookup every time, since posing and related
2438// techniques can modify the name -> class mapping.
2439llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2440 const ObjCInterfaceDecl *OID) {
2441 auto *Value =
2442 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2443 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2444 CGM.setGVProperties(ClassSymbol, OID);
2445 return Value;
2446}
2447
2448llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2449 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false);
2450 if (CGM.getTriple().isOSBinFormatCOFF()) {
2451 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2452 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2455
2456 const VarDecl *VD = nullptr;
2457 for (const auto *Result : DC->lookup(&II))
2458 if ((VD = dyn_cast<VarDecl>(Result)))
2459 break;
2460
2461 CGM.setGVProperties(ClassSymbol, VD);
2462 }
2463 }
2464 return Value;
2465}
2466
2467llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2468 const std::string &TypeEncoding) {
2470 llvm::GlobalAlias *SelValue = nullptr;
2471
2472 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2473 e = Types.end() ; i!=e ; i++) {
2474 if (i->first == TypeEncoding) {
2475 SelValue = i->second;
2476 break;
2477 }
2478 }
2479 if (!SelValue) {
2480 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0,
2481 llvm::GlobalValue::PrivateLinkage,
2482 ".objc_selector_" + Sel.getAsString(),
2483 &TheModule);
2484 Types.emplace_back(TypeEncoding, SelValue);
2485 }
2486
2487 return SelValue;
2488}
2489
2490Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2491 llvm::Value *SelValue = GetSelector(CGF, Sel);
2492
2493 // Store it to a temporary. Does this satisfy the semantics of
2494 // GetAddrOfSelector? Hopefully.
2495 Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2496 CGF.getPointerAlign());
2497 CGF.Builder.CreateStore(SelValue, tmp);
2498 return tmp;
2499}
2500
2501llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2502 return GetTypedSelector(CGF, Sel, std::string());
2503}
2504
2505llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2506 const ObjCMethodDecl *Method) {
2507 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2508 return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2509}
2510
2511llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2512 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2513 // With the old ABI, there was only one kind of catchall, which broke
2514 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
2515 // a pointer indicating object catchalls, and NULL to indicate real
2516 // catchalls
2517 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2518 return MakeConstantString("@id");
2519 } else {
2520 return nullptr;
2521 }
2522 }
2523
2524 // All other types should be Objective-C interface pointer types.
2526 assert(OPT && "Invalid @catch type.");
2527 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2528 assert(IDecl && "Invalid @catch type.");
2529 return MakeConstantString(IDecl->getIdentifier()->getName());
2530}
2531
2532llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2533 if (usesSEHExceptions)
2534 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2535
2536 if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions)
2537 return CGObjCGNU::GetEHType(T);
2538
2539 // For Objective-C++, we want to provide the ability to catch both C++ and
2540 // Objective-C objects in the same function.
2541
2542 // There's a particular fixed type info for 'id'.
2543 if (T->isObjCIdType() ||
2545 llvm::Constant *IDEHType =
2546 CGM.getModule().getGlobalVariable("__objc_id_type_info");
2547 if (!IDEHType)
2548 IDEHType =
2549 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2550 false,
2551 llvm::GlobalValue::ExternalLinkage,
2552 nullptr, "__objc_id_type_info");
2553 return IDEHType;
2554 }
2555
2556 const ObjCObjectPointerType *PT =
2558 assert(PT && "Invalid @catch type.");
2559 const ObjCInterfaceType *IT = PT->getInterfaceType();
2560 assert(IT && "Invalid @catch type.");
2561 std::string className =
2562 std::string(IT->getDecl()->getIdentifier()->getName());
2563
2564 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2565
2566 // Return the existing typeinfo if it exists
2567 if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName))
2568 return typeinfo;
2569
2570 // Otherwise create it.
2571
2572 // vtable for gnustep::libobjc::__objc_class_type_info
2573 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
2574 // platform's name mangling.
2575 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2576 auto *Vtable = TheModule.getGlobalVariable(vtableName);
2577 if (!Vtable) {
2578 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2579 llvm::GlobalValue::ExternalLinkage,
2580 nullptr, vtableName);
2581 }
2582 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2583 auto *BVtable =
2584 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two);
2585
2586 llvm::Constant *typeName =
2587 ExportUniqueString(className, "__objc_eh_typename_");
2588
2589 ConstantInitBuilder builder(CGM);
2590 auto fields = builder.beginStruct();
2591 fields.add(BVtable);
2592 fields.add(typeName);
2593 llvm::Constant *TI =
2594 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2595 CGM.getPointerAlign(),
2596 /*constant*/ false,
2597 llvm::GlobalValue::LinkOnceODRLinkage);
2598 return TI;
2599}
2600
2601/// Generate an NSConstantString object.
2602ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2603
2604 std::string Str = SL->getString().str();
2605 CharUnits Align = CGM.getPointerAlign();
2606
2607 // Look for an existing one
2608 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2609 if (old != ObjCStrings.end())
2610 return ConstantAddress(old->getValue(), Int8Ty, Align);
2611
2612 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2613
2614 if (StringClass.empty()) StringClass = "NSConstantString";
2615
2616 std::string Sym = "_OBJC_CLASS_";
2617 Sym += StringClass;
2618
2619 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2620
2621 if (!isa)
2622 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false,
2623 llvm::GlobalValue::ExternalWeakLinkage,
2624 nullptr, Sym);
2625
2626 ConstantInitBuilder Builder(CGM);
2627 auto Fields = Builder.beginStruct();
2628 Fields.add(isa);
2629 Fields.add(MakeConstantString(Str));
2630 Fields.addInt(IntTy, Str.size());
2631 llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align);
2632 ObjCStrings[Str] = ObjCStr;
2633 ConstantStrings.push_back(ObjCStr);
2634 return ConstantAddress(ObjCStr, Int8Ty, Align);
2635}
2636
2637///Generates a message send where the super is the receiver. This is a message
2638///send to self with special delivery semantics indicating which class's method
2639///should be called.
2640RValue
2641CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2642 ReturnValueSlot Return,
2643 QualType ResultType,
2644 Selector Sel,
2645 const ObjCInterfaceDecl *Class,
2646 bool isCategoryImpl,
2647 llvm::Value *Receiver,
2648 bool IsClassMessage,
2649 const CallArgList &CallArgs,
2650 const ObjCMethodDecl *Method) {
2651 CGBuilderTy &Builder = CGF.Builder;
2652 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2653 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2654 return RValue::get(EnforceType(Builder, Receiver,
2655 CGM.getTypes().ConvertType(ResultType)));
2656 }
2657 if (Sel == ReleaseSel) {
2658 return RValue::get(nullptr);
2659 }
2660 }
2661
2662 llvm::Value *cmd = GetSelector(CGF, Sel);
2663 CallArgList ActualArgs;
2664
2665 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2666 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2667 ActualArgs.addFrom(CallArgs);
2668
2669 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2670
2671 llvm::Value *ReceiverClass = nullptr;
2672 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2673 if (isV2ABI) {
2674 ReceiverClass = GetClassNamed(CGF,
2675 Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2676 if (IsClassMessage) {
2677 // Load the isa pointer of the superclass is this is a class method.
2678 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2679 llvm::PointerType::getUnqual(IdTy));
2680 ReceiverClass =
2681 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2682 }
2683 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2684 } else {
2685 if (isCategoryImpl) {
2686 llvm::FunctionCallee classLookupFunction = nullptr;
2687 if (IsClassMessage) {
2688 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2689 IdTy, PtrTy, true), "objc_get_meta_class");
2690 } else {
2691 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2692 IdTy, PtrTy, true), "objc_get_class");
2693 }
2694 ReceiverClass = Builder.CreateCall(classLookupFunction,
2695 MakeConstantString(Class->getNameAsString()));
2696 } else {
2697 // Set up global aliases for the metaclass or class pointer if they do not
2698 // already exist. These will are forward-references which will be set to
2699 // pointers to the class and metaclass structure created for the runtime
2700 // load function. To send a message to super, we look up the value of the
2701 // super_class pointer from either the class or metaclass structure.
2702 if (IsClassMessage) {
2703 if (!MetaClassPtrAlias) {
2704 MetaClassPtrAlias = llvm::GlobalAlias::create(
2705 IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2706 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2707 }
2708 ReceiverClass = MetaClassPtrAlias;
2709 } else {
2710 if (!ClassPtrAlias) {
2711 ClassPtrAlias = llvm::GlobalAlias::create(
2712 IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2713 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2714 }
2715 ReceiverClass = ClassPtrAlias;
2716 }
2717 }
2718 // Cast the pointer to a simplified version of the class structure
2719 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2720 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2721 llvm::PointerType::getUnqual(CastTy));
2722 // Get the superclass pointer
2723 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2724 // Load the superclass pointer
2725 ReceiverClass =
2726 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2727 }
2728 // Construct the structure used to look up the IMP
2729 llvm::StructType *ObjCSuperTy =
2730 llvm::StructType::get(Receiver->getType(), IdTy);
2731
2732 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2733 CGF.getPointerAlign());
2734
2735 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2736 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2737
2738 // Get the IMP
2739 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2740 imp = EnforceType(Builder, imp, MSI.MessengerType);
2741
2742 llvm::Metadata *impMD[] = {
2743 llvm::MDString::get(VMContext, Sel.getAsString()),
2744 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2745 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2746 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2747 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2748
2749 CGCallee callee(CGCalleeInfo(), imp);
2750
2751 llvm::CallBase *call;
2752 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2753 call->setMetadata(msgSendMDKind, node);
2754 return msgRet;
2755}
2756
2757/// Generate code for a message send expression.
2758RValue
2759CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2760 ReturnValueSlot Return,
2761 QualType ResultType,
2762 Selector Sel,
2763 llvm::Value *Receiver,
2764 const CallArgList &CallArgs,
2765 const ObjCInterfaceDecl *Class,
2766 const ObjCMethodDecl *Method) {
2767 CGBuilderTy &Builder = CGF.Builder;
2768
2769 // Strip out message sends to retain / release in GC mode
2770 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2771 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2772 return RValue::get(EnforceType(Builder, Receiver,
2773 CGM.getTypes().ConvertType(ResultType)));
2774 }
2775 if (Sel == ReleaseSel) {
2776 return RValue::get(nullptr);
2777 }
2778 }
2779
2780 bool isDirect = Method && Method->isDirectMethod();
2781
2782 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2783 llvm::Value *cmd;
2784 if (!isDirect) {
2785 if (Method)
2786 cmd = GetSelector(CGF, Method);
2787 else
2788 cmd = GetSelector(CGF, Sel);
2789 cmd = EnforceType(Builder, cmd, SelectorTy);
2790 }
2791
2792 Receiver = EnforceType(Builder, Receiver, IdTy);
2793
2794 llvm::Metadata *impMD[] = {
2795 llvm::MDString::get(VMContext, Sel.getAsString()),
2796 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2797 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2798 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2799 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2800
2801 CallArgList ActualArgs;
2802 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2803 if (!isDirect)
2804 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2805 ActualArgs.addFrom(CallArgs);
2806
2807 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2808
2809 // Message sends are expected to return a zero value when the
2810 // receiver is nil. At one point, this was only guaranteed for
2811 // simple integer and pointer types, but expectations have grown
2812 // over time.
2813 //
2814 // Given a nil receiver, the GNU runtime's message lookup will
2815 // return a stub function that simply sets various return-value
2816 // registers to zero and then returns. That's good enough for us
2817 // if and only if (1) the calling conventions of that stub are
2818 // compatible with the signature we're using and (2) the registers
2819 // it sets are sufficient to produce a zero value of the return type.
2820 // Rather than doing a whole target-specific analysis, we assume it
2821 // only works for void, integer, and pointer types, and in all
2822 // other cases we do an explicit nil check is emitted code. In
2823 // addition to ensuring we produce a zero value for other types, this
2824 // sidesteps the few outright CC incompatibilities we know about that
2825 // could otherwise lead to crashes, like when a method is expected to
2826 // return on the x87 floating point stack or adjust the stack pointer
2827 // because of an indirect return.
2828 bool hasParamDestroyedInCallee = false;
2829 bool requiresExplicitZeroResult = false;
2830 bool requiresNilReceiverCheck = [&] {
2831 // We never need a check if we statically know the receiver isn't nil.
2832 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false,
2833 Class, Receiver))
2834 return false;
2835
2836 // If there's a consumed argument, we need a nil check.
2837 if (Method && Method->hasParamDestroyedInCallee()) {
2838 hasParamDestroyedInCallee = true;
2839 }
2840
2841 // If the return value isn't flagged as unused, and the result
2842 // type isn't in our narrow set where we assume compatibility,
2843 // we need a nil check to ensure a nil value.
2844 if (!Return.isUnused()) {
2845 if (ResultType->isVoidType()) {
2846 // void results are definitely okay.
2847 } else if (ResultType->hasPointerRepresentation() &&
2848 CGM.getTypes().isZeroInitializable(ResultType)) {
2849 // Pointer types should be fine as long as they have
2850 // bitwise-zero null pointers. But do we need to worry
2851 // about unusual address spaces?
2852 } else if (ResultType->isIntegralOrEnumerationType()) {
2853 // Bitwise zero should always be zero for integral types.
2854 // FIXME: we probably need a size limit here, but we've
2855 // never imposed one before
2856 } else {
2857 // Otherwise, use an explicit check just to be sure, unless we're
2858 // calling a direct method, where the implementation does this for us.
2859 requiresExplicitZeroResult = !isDirect;
2860 }
2861 }
2862
2863 return hasParamDestroyedInCallee || requiresExplicitZeroResult;
2864 }();
2865
2866 // We will need to explicitly zero-initialize an aggregate result slot
2867 // if we generally require explicit zeroing and we have an aggregate
2868 // result.
2869 bool requiresExplicitAggZeroing =
2870 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType);
2871
2872 // The block we're going to end up in after any message send or nil path.
2873 llvm::BasicBlock *continueBB = nullptr;
2874 // The block that eventually branched to continueBB along the nil path.
2875 llvm::BasicBlock *nilPathBB = nullptr;
2876 // The block to do explicit work in along the nil path, if necessary.
2877 llvm::BasicBlock *nilCleanupBB = nullptr;
2878
2879 // Emit the nil-receiver check.
2880 if (requiresNilReceiverCheck) {
2881 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend");
2882 continueBB = CGF.createBasicBlock("continue");
2883
2884 // If we need to zero-initialize an aggregate result or destroy
2885 // consumed arguments, we'll need a separate cleanup block.
2886 // Otherwise we can just branch directly to the continuation block.
2887 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) {
2888 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup");
2889 } else {
2890 nilPathBB = Builder.GetInsertBlock();
2891 }
2892
2893 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2894 llvm::Constant::getNullValue(Receiver->getType()));
2895 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB,
2896 messageBB);
2897 CGF.EmitBlock(messageBB);
2898 }
2899
2900 // Get the IMP to call
2901 llvm::Value *imp;
2902
2903 // If this is a direct method, just emit it here.
2904 if (isDirect)
2905 imp = GenerateMethod(Method, Method->getClassInterface());
2906 else
2907 // If we have non-legacy dispatch specified, we try using the
2908 // objc_msgSend() functions. These are not supported on all platforms
2909 // (or all runtimes on a given platform), so we
2910 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2912 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2913 break;
2916 StringRef name = "objc_msgSend";
2917 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2918 name = "objc_msgSend_fpret";
2919 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2920 name = "objc_msgSend_stret";
2921
2922 // The address of the memory block is be passed in x8 for POD type,
2923 // or in x0 for non-POD type (marked as inreg).
2924 bool shouldCheckForInReg =
2925 CGM.getContext()
2926 .getTargetInfo()
2927 .getTriple()
2928 .isWindowsMSVCEnvironment() &&
2929 CGM.getContext().getTargetInfo().getTriple().isAArch64();
2930 if (shouldCheckForInReg && CGM.ReturnTypeHasInReg(MSI.CallInfo)) {
2931 name = "objc_msgSend_stret2";
2932 }
2933 }
2934 // The actual types here don't matter - we're going to bitcast the
2935 // function anyway
2936 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2937 name)
2938 .getCallee();
2939 }
2940
2941 // Reset the receiver in case the lookup modified it
2942 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2943
2944 imp = EnforceType(Builder, imp, MSI.MessengerType);
2945
2946 llvm::CallBase *call;
2947 CGCallee callee(CGCalleeInfo(), imp);
2948 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2949 if (!isDirect)
2950 call->setMetadata(msgSendMDKind, node);
2951
2952 if (requiresNilReceiverCheck) {
2953 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock();
2954 CGF.Builder.CreateBr(continueBB);
2955
2956 // Emit the nil path if we decided it was necessary above.
2957 if (nilCleanupBB) {
2958 CGF.EmitBlock(nilCleanupBB);
2959
2960 if (hasParamDestroyedInCallee) {
2961 destroyCalleeDestroyedArguments(CGF, Method, CallArgs);
2962 }
2963
2964 if (requiresExplicitAggZeroing) {
2965 assert(msgRet.isAggregate());
2966 Address addr = msgRet.getAggregateAddress();
2967 CGF.EmitNullInitialization(addr, ResultType);
2968 }
2969
2970 nilPathBB = CGF.Builder.GetInsertBlock();
2971 CGF.Builder.CreateBr(continueBB);
2972 }
2973
2974 // Enter the continuation block and emit a phi if required.
2975 CGF.EmitBlock(continueBB);
2976 if (msgRet.isScalar()) {
2977 // If the return type is void, do nothing
2978 if (llvm::Value *v = msgRet.getScalarVal()) {
2979 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2980 phi->addIncoming(v, nonNilPathBB);
2981 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB);
2982 msgRet = RValue::get(phi);
2983 }
2984 } else if (msgRet.isAggregate()) {
2985 // Aggregate zeroing is handled in nilCleanupBB when it's required.
2986 } else /* isComplex() */ {
2987 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2988 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2989 phi->addIncoming(v.first, nonNilPathBB);
2990 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2991 nilPathBB);
2992 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2993 phi2->addIncoming(v.second, nonNilPathBB);
2994 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2995 nilPathBB);
2996 msgRet = RValue::getComplex(phi, phi2);
2997 }
2998 }
2999 return msgRet;
3000}
3001
3002/// Generates a MethodList. Used in construction of a objc_class and
3003/// objc_category structures.
3004llvm::Constant *CGObjCGNU::
3005GenerateMethodList(StringRef ClassName,
3006 StringRef CategoryName,
3008 bool isClassMethodList) {
3009 if (Methods.empty())
3010 return NULLPtr;
3011
3012 ConstantInitBuilder Builder(CGM);
3013
3014 auto MethodList = Builder.beginStruct();
3015 MethodList.addNullPointer(CGM.Int8PtrTy);
3016 MethodList.addInt(Int32Ty, Methods.size());
3017
3018 // Get the method structure type.
3019 llvm::StructType *ObjCMethodTy =
3020 llvm::StructType::get(CGM.getLLVMContext(), {
3021 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3022 PtrToInt8Ty, // Method types
3023 IMPTy // Method pointer
3024 });
3025 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
3026 if (isV2ABI) {
3027 // size_t size;
3028 const llvm::DataLayout &DL = TheModule.getDataLayout();
3029 MethodList.addInt(SizeTy, DL.getTypeSizeInBits(ObjCMethodTy) /
3030 CGM.getContext().getCharWidth());
3031 ObjCMethodTy =
3032 llvm::StructType::get(CGM.getLLVMContext(), {
3033 IMPTy, // Method pointer
3034 PtrToInt8Ty, // Selector
3035 PtrToInt8Ty // Extended type encoding
3036 });
3037 } else {
3038 ObjCMethodTy =
3039 llvm::StructType::get(CGM.getLLVMContext(), {
3040 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3041 PtrToInt8Ty, // Method types
3042 IMPTy // Method pointer
3043 });
3044 }
3045 auto MethodArray = MethodList.beginArray();
3046 ASTContext &Context = CGM.getContext();
3047 for (const auto *OMD : Methods) {
3048 llvm::Constant *FnPtr =
3049 TheModule.getFunction(getSymbolNameForMethod(OMD));
3050 assert(FnPtr && "Can't generate metadata for method that doesn't exist");
3051 auto Method = MethodArray.beginStruct(ObjCMethodTy);
3052 if (isV2ABI) {
3053 Method.add(FnPtr);
3054 Method.add(GetConstantSelector(OMD->getSelector(),
3055 Context.getObjCEncodingForMethodDecl(OMD)));
3056 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
3057 } else {
3058 Method.add(MakeConstantString(OMD->getSelector().getAsString()));
3059 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
3060 Method.add(FnPtr);
3061 }
3062 Method.finishAndAddTo(MethodArray);
3063 }
3064 MethodArray.finishAndAddTo(MethodList);
3065
3066 // Create an instance of the structure
3067 return MethodList.finishAndCreateGlobal(".objc_method_list",
3068 CGM.getPointerAlign());
3069}
3070
3071/// Generates an IvarList. Used in construction of a objc_class.
3072llvm::Constant *CGObjCGNU::
3073GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
3075 ArrayRef<llvm::Constant *> IvarOffsets,
3077 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
3078 if (IvarNames.empty())
3079 return NULLPtr;
3080
3081 ConstantInitBuilder Builder(CGM);
3082
3083 // Structure containing array count followed by array.
3084 auto IvarList = Builder.beginStruct();
3085 IvarList.addInt(IntTy, (int)IvarNames.size());
3086
3087 // Get the ivar structure type.
3088 llvm::StructType *ObjCIvarTy =
3089 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
3090
3091 // Array of ivar structures.
3092 auto Ivars = IvarList.beginArray(ObjCIvarTy);
3093 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
3094 auto Ivar = Ivars.beginStruct(ObjCIvarTy);
3095 Ivar.add(IvarNames[i]);
3096 Ivar.add(IvarTypes[i]);
3097 Ivar.add(IvarOffsets[i]);
3098 Ivar.finishAndAddTo(Ivars);
3099 }
3100 Ivars.finishAndAddTo(IvarList);
3101
3102 // Create an instance of the structure
3103 return IvarList.finishAndCreateGlobal(".objc_ivar_list",
3104 CGM.getPointerAlign());
3105}
3106
3107/// Generate a class structure
3108llvm::Constant *CGObjCGNU::GenerateClassStructure(
3109 llvm::Constant *MetaClass,
3110 llvm::Constant *SuperClass,
3111 unsigned info,
3112 const char *Name,
3113 llvm::Constant *Version,
3114 llvm::Constant *InstanceSize,
3115 llvm::Constant *IVars,
3116 llvm::Constant *Methods,
3117 llvm::Constant *Protocols,
3118 llvm::Constant *IvarOffsets,
3119 llvm::Constant *Properties,
3120 llvm::Constant *StrongIvarBitmap,
3121 llvm::Constant *WeakIvarBitmap,
3122 bool isMeta) {
3123 // Set up the class structure
3124 // Note: Several of these are char*s when they should be ids. This is
3125 // because the runtime performs this translation on load.
3126 //
3127 // Fields marked New ABI are part of the GNUstep runtime. We emit them
3128 // anyway; the classes will still work with the GNU runtime, they will just
3129 // be ignored.
3130 llvm::StructType *ClassTy = llvm::StructType::get(
3131 PtrToInt8Ty, // isa
3132 PtrToInt8Ty, // super_class
3133 PtrToInt8Ty, // name
3134 LongTy, // version
3135 LongTy, // info
3136 LongTy, // instance_size
3137 IVars->getType(), // ivars
3138 Methods->getType(), // methods
3139 // These are all filled in by the runtime, so we pretend
3140 PtrTy, // dtable
3141 PtrTy, // subclass_list
3142 PtrTy, // sibling_class
3143 PtrTy, // protocols
3144 PtrTy, // gc_object_type
3145 // New ABI:
3146 LongTy, // abi_version
3147 IvarOffsets->getType(), // ivar_offsets
3148 Properties->getType(), // properties
3149 IntPtrTy, // strong_pointers
3150 IntPtrTy // weak_pointers
3151 );
3152
3153 ConstantInitBuilder Builder(CGM);
3154 auto Elements = Builder.beginStruct(ClassTy);
3155
3156 // Fill in the structure
3157
3158 // isa
3159 Elements.add(MetaClass);
3160 // super_class
3161 Elements.add(SuperClass);
3162 // name
3163 Elements.add(MakeConstantString(Name, ".class_name"));
3164 // version
3165 Elements.addInt(LongTy, 0);
3166 // info
3167 Elements.addInt(LongTy, info);
3168 // instance_size
3169 if (isMeta) {
3170 const llvm::DataLayout &DL = TheModule.getDataLayout();
3171 Elements.addInt(LongTy, DL.getTypeSizeInBits(ClassTy) /
3172 CGM.getContext().getCharWidth());
3173 } else
3174 Elements.add(InstanceSize);
3175 // ivars
3176 Elements.add(IVars);
3177 // methods
3178 Elements.add(Methods);
3179 // These are all filled in by the runtime, so we pretend
3180 // dtable
3181 Elements.add(NULLPtr);
3182 // subclass_list
3183 Elements.add(NULLPtr);
3184 // sibling_class
3185 Elements.add(NULLPtr);
3186 // protocols
3187 Elements.add(Protocols);
3188 // gc_object_type
3189 Elements.add(NULLPtr);
3190 // abi_version
3191 Elements.addInt(LongTy, ClassABIVersion);
3192 // ivar_offsets
3193 Elements.add(IvarOffsets);
3194 // properties
3195 Elements.add(Properties);
3196 // strong_pointers
3197 Elements.add(StrongIvarBitmap);
3198 // weak_pointers
3199 Elements.add(WeakIvarBitmap);
3200 // Create an instance of the structure
3201 // This is now an externally visible symbol, so that we can speed up class
3202 // messages in the next ABI. We may already have some weak references to
3203 // this, so check and fix them properly.
3204 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
3205 std::string(Name));
3206 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
3207 llvm::Constant *Class =
3208 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
3209 llvm::GlobalValue::ExternalLinkage);
3210 if (ClassRef) {
3211 ClassRef->replaceAllUsesWith(Class);
3212 ClassRef->removeFromParent();
3213 Class->setName(ClassSym);
3214 }
3215 return Class;
3216}
3217
3218llvm::Constant *CGObjCGNU::
3219GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3220 // Get the method structure type.
3221 llvm::StructType *ObjCMethodDescTy =
3222 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3223 ASTContext &Context = CGM.getContext();
3224 ConstantInitBuilder Builder(CGM);
3225 auto MethodList = Builder.beginStruct();
3226 MethodList.addInt(IntTy, Methods.size());
3227 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3228 for (auto *M : Methods) {
3229 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3230 Method.add(MakeConstantString(M->getSelector().getAsString()));
3231 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3232 Method.finishAndAddTo(MethodArray);
3233 }
3234 MethodArray.finishAndAddTo(MethodList);
3235 return MethodList.finishAndCreateGlobal(".objc_method_list",
3236 CGM.getPointerAlign());
3237}
3238
3239// Create the protocol list structure used in classes, categories and so on
3240llvm::Constant *
3241CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3242
3243 ConstantInitBuilder Builder(CGM);
3244 auto ProtocolList = Builder.beginStruct();
3245 ProtocolList.add(NULLPtr);
3246 ProtocolList.addInt(LongTy, Protocols.size());
3247
3248 auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3249 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3250 iter != endIter ; iter++) {
3251 llvm::Constant *protocol = nullptr;
3252 llvm::StringMap<llvm::Constant*>::iterator value =
3253 ExistingProtocols.find(*iter);
3254 if (value == ExistingProtocols.end()) {
3255 protocol = GenerateEmptyProtocol(*iter);
3256 } else {
3257 protocol = value->getValue();
3258 }
3259 Elements.add(protocol);
3260 }
3261 Elements.finishAndAddTo(ProtocolList);
3262 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3263 CGM.getPointerAlign());
3264}
3265
3266llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3267 const ObjCProtocolDecl *PD) {
3268 auto protocol = GenerateProtocolRef(PD);
3269 llvm::Type *T =
3271 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3272}
3273
3274llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3275 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3276 if (!protocol)
3277 GenerateProtocol(PD);
3278 assert(protocol && "Unknown protocol");
3279 return protocol;
3280}
3281
3282llvm::Constant *
3283CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3284 llvm::Constant *ProtocolList = GenerateProtocolList({});
3285 llvm::Constant *MethodList = GenerateProtocolMethodList({});
3286 // Protocols are objects containing lists of the methods implemented and
3287 // protocols adopted.
3288 ConstantInitBuilder Builder(CGM);
3289 auto Elements = Builder.beginStruct();
3290
3291 // The isa pointer must be set to a magic number so the runtime knows it's
3292 // the correct layout.
3293 Elements.add(llvm::ConstantExpr::getIntToPtr(
3294 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3295
3296 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3297 Elements.add(ProtocolList); /* .protocol_list */
3298 Elements.add(MethodList); /* .instance_methods */
3299 Elements.add(MethodList); /* .class_methods */
3300 Elements.add(MethodList); /* .optional_instance_methods */
3301 Elements.add(MethodList); /* .optional_class_methods */
3302 Elements.add(NULLPtr); /* .properties */
3303 Elements.add(NULLPtr); /* .optional_properties */
3304 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3305 CGM.getPointerAlign());
3306}
3307
3308void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3309 if (PD->isNonRuntimeProtocol())
3310 return;
3311
3312 std::string ProtocolName = PD->getNameAsString();
3313
3314 // Use the protocol definition, if there is one.
3315 if (const ObjCProtocolDecl *Def = PD->getDefinition())
3316 PD = Def;
3317
3319 for (const auto *PI : PD->protocols())
3320 Protocols.push_back(PI->getNameAsString());
3322 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3323 for (const auto *I : PD->instance_methods())
3324 if (I->isOptional())
3325 OptionalInstanceMethods.push_back(I);
3326 else
3327 InstanceMethods.push_back(I);
3328 // Collect information about class methods:
3330 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3331 for (const auto *I : PD->class_methods())
3332 if (I->isOptional())
3333 OptionalClassMethods.push_back(I);
3334 else
3335 ClassMethods.push_back(I);
3336
3337 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3338 llvm::Constant *InstanceMethodList =
3339 GenerateProtocolMethodList(InstanceMethods);
3340 llvm::Constant *ClassMethodList =
3341 GenerateProtocolMethodList(ClassMethods);
3342 llvm::Constant *OptionalInstanceMethodList =
3343 GenerateProtocolMethodList(OptionalInstanceMethods);
3344 llvm::Constant *OptionalClassMethodList =
3345 GenerateProtocolMethodList(OptionalClassMethods);
3346
3347 // Property metadata: name, attributes, isSynthesized, setter name, setter
3348 // types, getter name, getter types.
3349 // The isSynthesized value is always set to 0 in a protocol. It exists to
3350 // simplify the runtime library by allowing it to use the same data
3351 // structures for protocol metadata everywhere.
3352
3353 llvm::Constant *PropertyList =
3354 GeneratePropertyList(nullptr, PD, false, false);
3355 llvm::Constant *OptionalPropertyList =
3356 GeneratePropertyList(nullptr, PD, false, true);
3357
3358 // Protocols are objects containing lists of the methods implemented and
3359 // protocols adopted.
3360 // The isa pointer must be set to a magic number so the runtime knows it's
3361 // the correct layout.
3362 ConstantInitBuilder Builder(CGM);
3363 auto Elements = Builder.beginStruct();
3364 Elements.add(
3365 llvm::ConstantExpr::getIntToPtr(
3366 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3367 Elements.add(MakeConstantString(ProtocolName));
3368 Elements.add(ProtocolList);
3369 Elements.add(InstanceMethodList);
3370 Elements.add(ClassMethodList);
3371 Elements.add(OptionalInstanceMethodList);
3372 Elements.add(OptionalClassMethodList);
3373 Elements.add(PropertyList);
3374 Elements.add(OptionalPropertyList);
3375 ExistingProtocols[ProtocolName] =
3376 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign());
3377}
3378void CGObjCGNU::GenerateProtocolHolderCategory() {
3379 // Collect information about instance methods
3380
3381 ConstantInitBuilder Builder(CGM);
3382 auto Elements = Builder.beginStruct();
3383
3384 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3385 const std::string CategoryName = "AnotherHack";
3386 Elements.add(MakeConstantString(CategoryName));
3387 Elements.add(MakeConstantString(ClassName));
3388 // Instance method list
3389 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false));
3390 // Class method list
3391 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true));
3392
3393 // Protocol list
3394 ConstantInitBuilder ProtocolListBuilder(CGM);
3395 auto ProtocolList = ProtocolListBuilder.beginStruct();
3396 ProtocolList.add(NULLPtr);
3397 ProtocolList.addInt(LongTy, ExistingProtocols.size());
3398 auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3399 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3400 iter != endIter ; iter++) {
3401 ProtocolElements.add(iter->getValue());
3402 }
3403 ProtocolElements.finishAndAddTo(ProtocolList);
3404 Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3405 CGM.getPointerAlign()));
3406 Categories.push_back(
3407 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()));
3408}
3409
3410/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3411/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3412/// bits set to their values, LSB first, while larger ones are stored in a
3413/// structure of this / form:
3414///
3415/// struct { int32_t length; int32_t values[length]; };
3416///
3417/// The values in the array are stored in host-endian format, with the least
3418/// significant bit being assumed to come first in the bitfield. Therefore, a
3419/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3420/// bitfield / with the 63rd bit set will be 1<<64.
3421llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3422 int bitCount = bits.size();
3423 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3424 if (bitCount < ptrBits) {
3425 uint64_t val = 1;
3426 for (int i=0 ; i<bitCount ; ++i) {
3427 if (bits[i]) val |= 1ULL<<(i+1);
3428 }
3429 return llvm::ConstantInt::get(IntPtrTy, val);
3430 }
3432 int v=0;
3433 while (v < bitCount) {
3434 int32_t word = 0;
3435 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
3436 if (bits[v]) word |= 1<<i;
3437 v++;
3438 }
3439 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3440 }
3441
3442 ConstantInitBuilder builder(CGM);
3443 auto fields = builder.beginStruct();
3444 fields.addInt(Int32Ty, values.size());
3445 auto array = fields.beginArray();
3446 for (auto *v : values) array.add(v);
3447 array.finishAndAddTo(fields);
3448
3449 llvm::Constant *GS =
3450 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3451 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3452 return ptr;
3453}
3454
3455llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3456 ObjCCategoryDecl *OCD) {
3457 const auto &RefPro = OCD->getReferencedProtocols();
3458 const auto RuntimeProtos =
3459 GetRuntimeProtocolList(RefPro.begin(), RefPro.end());
3461 for (const auto *PD : RuntimeProtos)
3462 Protocols.push_back(PD->getNameAsString());
3463 return GenerateProtocolList(Protocols);
3464}
3465
3466void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3468 std::string ClassName = Class->getNameAsString();
3469 std::string CategoryName = OCD->getNameAsString();
3470
3471 // Collect the names of referenced protocols
3472 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3473
3474 ConstantInitBuilder Builder(CGM);
3475 auto Elements = Builder.beginStruct();
3476 Elements.add(MakeConstantString(CategoryName));
3477 Elements.add(MakeConstantString(ClassName));
3478 // Instance method list
3479 SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3480 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3481 OCD->instmeth_end());
3482 Elements.add(
3483 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false));
3484
3485 // Class method list
3486
3488 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3489 OCD->classmeth_end());
3490 Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true));
3491
3492 // Protocol list
3493 Elements.add(GenerateCategoryProtocolList(CatDecl));
3494 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3495 const ObjCCategoryDecl *Category =
3496 Class->FindCategoryDeclaration(OCD->getIdentifier());
3497 if (Category) {
3498 // Instance properties
3499 Elements.add(GeneratePropertyList(OCD, Category, false));
3500 // Class properties
3501 Elements.add(GeneratePropertyList(OCD, Category, true));
3502 } else {
3503 Elements.addNullPointer(PtrTy);
3504 Elements.addNullPointer(PtrTy);
3505 }
3506 }
3507
3508 Categories.push_back(Elements.finishAndCreateGlobal(
3509 std::string(".objc_category_") + ClassName + CategoryName,
3510 CGM.getPointerAlign()));
3511}
3512
3513llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3514 const ObjCContainerDecl *OCD,
3515 bool isClassProperty,
3516 bool protocolOptionalProperties) {
3517
3520 bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3521 ASTContext &Context = CGM.getContext();
3522
3523 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3524 = [&](const ObjCProtocolDecl *Proto) {
3525 for (const auto *P : Proto->protocols())
3526 collectProtocolProperties(P);
3527 for (const auto *PD : Proto->properties()) {
3528 if (isClassProperty != PD->isClassProperty())
3529 continue;
3530 // Skip any properties that are declared in protocols that this class
3531 // conforms to but are not actually implemented by this class.
3532 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3533 continue;
3534 if (!PropertySet.insert(PD->getIdentifier()).second)
3535 continue;
3536 Properties.push_back(PD);
3537 }
3538 };
3539
3540 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3541 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3542 for (auto *PD : ClassExt->properties()) {
3543 if (isClassProperty != PD->isClassProperty())
3544 continue;
3545 PropertySet.insert(PD->getIdentifier());
3546 Properties.push_back(PD);
3547 }
3548
3549 for (const auto *PD : OCD->properties()) {
3550 if (isClassProperty != PD->isClassProperty())
3551 continue;
3552 // If we're generating a list for a protocol, skip optional / required ones
3553 // when generating the other list.
3554 if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3555 continue;
3556 // Don't emit duplicate metadata for properties that were already in a
3557 // class extension.
3558 if (!PropertySet.insert(PD->getIdentifier()).second)
3559 continue;
3560
3561 Properties.push_back(PD);
3562 }
3563
3564 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3565 for (const auto *P : OID->all_referenced_protocols())
3566 collectProtocolProperties(P);
3567 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3568 for (const auto *P : CD->protocols())
3569 collectProtocolProperties(P);
3570
3571 auto numProperties = Properties.size();
3572
3573 if (numProperties == 0)
3574 return NULLPtr;
3575
3576 ConstantInitBuilder builder(CGM);
3577 auto propertyList = builder.beginStruct();
3578 auto properties = PushPropertyListHeader(propertyList, numProperties);
3579
3580 // Add all of the property methods need adding to the method list and to the
3581 // property metadata list.
3582 for (auto *property : Properties) {
3583 bool isSynthesized = false;
3584 bool isDynamic = false;
3585 if (!isProtocol) {
3586 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3587 if (propertyImpl) {
3588 isSynthesized = (propertyImpl->getPropertyImplementation() ==
3590 isDynamic = (propertyImpl->getPropertyImplementation() ==
3592 }
3593 }
3594 PushProperty(properties, property, Container, isSynthesized, isDynamic);
3595 }
3596 properties.finishAndAddTo(propertyList);
3597
3598 return propertyList.finishAndCreateGlobal(".objc_property_list",
3599 CGM.getPointerAlign());
3600}
3601
3602void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3603 // Get the class declaration for which the alias is specified.
3604 ObjCInterfaceDecl *ClassDecl =
3605 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3606 ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3607 OAD->getNameAsString());
3608}
3609
3610void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3611 ASTContext &Context = CGM.getContext();
3612
3613 // Get the superclass name.
3614 const ObjCInterfaceDecl * SuperClassDecl =
3616 std::string SuperClassName;
3617 if (SuperClassDecl) {
3618 SuperClassName = SuperClassDecl->getNameAsString();
3619 EmitClassRef(SuperClassName);
3620 }
3621
3622 // Get the class name
3623 ObjCInterfaceDecl *ClassDecl =
3624 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3625 std::string ClassName = ClassDecl->getNameAsString();
3626
3627 // Emit the symbol that is used to generate linker errors if this class is
3628 // referenced in other modules but not declared.
3629 std::string classSymbolName = "__objc_class_name_" + ClassName;
3630 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3631 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3632 } else {
3633 new llvm::GlobalVariable(TheModule, LongTy, false,
3634 llvm::GlobalValue::ExternalLinkage,
3635 llvm::ConstantInt::get(LongTy, 0),
3636 classSymbolName);
3637 }
3638
3639 // Get the size of instances.
3640 int instanceSize =
3642
3643 // Collect information about instance variables.
3649
3650 ConstantInitBuilder IvarOffsetBuilder(CGM);
3651 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3652 SmallVector<bool, 16> WeakIvars;
3653 SmallVector<bool, 16> StrongIvars;
3654
3655 int superInstanceSize = !SuperClassDecl ? 0 :
3656 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3657 // For non-fragile ivars, set the instance size to 0 - {the size of just this
3658 // class}. The runtime will then set this to the correct value on load.
3659 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3660 instanceSize = 0 - (instanceSize - superInstanceSize);
3661 }
3662
3663 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3664 IVD = IVD->getNextIvar()) {
3665 // Store the name
3666 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3667 // Get the type encoding for this ivar
3668 std::string TypeStr;
3669 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3670 IvarTypes.push_back(MakeConstantString(TypeStr));
3671 IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3672 Context.getTypeSize(IVD->getType())));
3673 // Get the offset
3674 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3675 uint64_t Offset = BaseOffset;
3676 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3677 Offset = BaseOffset - superInstanceSize;
3678 }
3679 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3680 // Create the direct offset value
3681 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3682 IVD->getNameAsString();
3683
3684 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3685 if (OffsetVar) {
3686 OffsetVar->setInitializer(OffsetValue);
3687 // If this is the real definition, change its linkage type so that
3688 // different modules will use this one, rather than their private
3689 // copy.
3690 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3691 } else
3692 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3693 false, llvm::GlobalValue::ExternalLinkage,
3694 OffsetValue, OffsetName);
3695 IvarOffsets.push_back(OffsetValue);
3696 IvarOffsetValues.add(OffsetVar);
3697 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3698 IvarOwnership.push_back(lt);
3699 switch (lt) {
3701 StrongIvars.push_back(true);
3702 WeakIvars.push_back(false);
3703 break;
3705 StrongIvars.push_back(false);
3706 WeakIvars.push_back(true);
3707 break;
3708 default:
3709 StrongIvars.push_back(false);
3710 WeakIvars.push_back(false);
3711 }
3712 }
3713 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3714 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3715 llvm::GlobalVariable *IvarOffsetArray =
3716 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3717 CGM.getPointerAlign());
3718
3719 // Collect information about instance methods
3721 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3722 OID->instmeth_end());
3723
3725 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3726 OID->classmeth_end());
3727
3728 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3729
3730 // Collect the names of referenced protocols
3731 auto RefProtocols = ClassDecl->protocols();
3732 auto RuntimeProtocols =
3733 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end());
3735 for (const auto *I : RuntimeProtocols)
3736 Protocols.push_back(I->getNameAsString());
3737
3738 // Get the superclass pointer.
3739 llvm::Constant *SuperClass;
3740 if (!SuperClassName.empty()) {
3741 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3742 } else {
3743 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3744 }
3745 // Empty vector used to construct empty method lists
3747 // Generate the method and instance variable lists
3748 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3749 InstanceMethods, false);
3750 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3751 ClassMethods, true);
3752 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3753 IvarOffsets, IvarAligns, IvarOwnership);
3754 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3755 // we emit a symbol containing the offset for each ivar in the class. This
3756 // allows code compiled for the non-Fragile ABI to inherit from code compiled
3757 // for the legacy ABI, without causing problems. The converse is also
3758 // possible, but causes all ivar accesses to be fragile.
3759
3760 // Offset pointer for getting at the correct field in the ivar list when
3761 // setting up the alias. These are: The base address for the global, the
3762 // ivar array (second field), the ivar in this list (set for each ivar), and
3763 // the offset (third field in ivar structure)
3764 llvm::Type *IndexTy = Int32Ty;
3765 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3766 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3767 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3768
3769 unsigned ivarIndex = 0;
3770 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3771 IVD = IVD->getNextIvar()) {
3772 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3773 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3774 // Get the correct ivar field
3775 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3776 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3777 offsetPointerIndexes);
3778 // Get the existing variable, if one exists.
3779 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3780 if (offset) {
3781 offset->setInitializer(offsetValue);
3782 // If this is the real definition, change its linkage type so that
3783 // different modules will use this one, rather than their private
3784 // copy.
3785 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3786 } else
3787 // Add a new alias if there isn't one already.
3788 new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3789 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3790 ++ivarIndex;
3791 }
3792 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3793
3794 //Generate metaclass for class methods
3795 llvm::Constant *MetaClassStruct = GenerateClassStructure(
3796 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3797 NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3798 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3799 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3800 OID->getClassInterface());
3801
3802 // Generate the class structure
3803 llvm::Constant *ClassStruct = GenerateClassStructure(
3804 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3805 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3806 GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3807 StrongIvarBitmap, WeakIvarBitmap);
3808 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3809 OID->getClassInterface());
3810
3811 // Resolve the class aliases, if they exist.
3812 if (ClassPtrAlias) {
3813 ClassPtrAlias->replaceAllUsesWith(ClassStruct);
3814 ClassPtrAlias->eraseFromParent();
3815 ClassPtrAlias = nullptr;
3816 }
3817 if (MetaClassPtrAlias) {
3818 MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct);
3819 MetaClassPtrAlias->eraseFromParent();
3820 MetaClassPtrAlias = nullptr;
3821 }
3822
3823 // Add class structure to list to be added to the symtab later
3824 Classes.push_back(ClassStruct);
3825}
3826
3827llvm::Function *CGObjCGNU::ModuleInitFunction() {
3828 // Only emit an ObjC load function if no Objective-C stuff has been called
3829 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3830 ExistingProtocols.empty() && SelectorTable.empty())
3831 return nullptr;
3832
3833 // Add all referenced protocols to a category.
3834 GenerateProtocolHolderCategory();
3835
3836 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy);
3837 if (!selStructTy) {
3838 selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3839 { PtrToInt8Ty, PtrToInt8Ty });
3840 }
3841
3842 // Generate statics list:
3843 llvm::Constant *statics = NULLPtr;
3844 if (!ConstantStrings.empty()) {
3845 llvm::GlobalVariable *fileStatics = [&] {
3846 ConstantInitBuilder builder(CGM);
3847 auto staticsStruct = builder.beginStruct();
3848
3849 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3850 if (stringClass.empty()) stringClass = "NXConstantString";
3851 staticsStruct.add(MakeConstantString(stringClass,
3852 ".objc_static_class_name"));
3853
3854 auto array = staticsStruct.beginArray();
3855 array.addAll(ConstantStrings);
3856 array.add(NULLPtr);
3857 array.finishAndAddTo(staticsStruct);
3858
3859 return staticsStruct.finishAndCreateGlobal(".objc_statics",
3860 CGM.getPointerAlign());
3861 }();
3862
3863 ConstantInitBuilder builder(CGM);
3864 auto allStaticsArray = builder.beginArray(fileStatics->getType());
3865 allStaticsArray.add(fileStatics);
3866 allStaticsArray.addNullPointer(fileStatics->getType());
3867
3868 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3869 CGM.getPointerAlign());
3870 }
3871
3872 // Array of classes, categories, and constant objects.
3873
3875 unsigned selectorCount;
3876
3877 // Pointer to an array of selectors used in this module.
3878 llvm::GlobalVariable *selectorList = [&] {
3879 ConstantInitBuilder builder(CGM);
3880 auto selectors = builder.beginArray(selStructTy);
3881 auto &table = SelectorTable; // MSVC workaround
3882 std::vector<Selector> allSelectors;
3883 for (auto &entry : table)
3884 allSelectors.push_back(entry.first);
3885 llvm::sort(allSelectors);
3886
3887 for (auto &untypedSel : allSelectors) {
3888 std::string selNameStr = untypedSel.getAsString();
3889 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3890
3891 for (TypedSelector &sel : table[untypedSel]) {
3892 llvm::Constant *selectorTypeEncoding = NULLPtr;
3893 if (!sel.first.empty())
3894 selectorTypeEncoding =
3895 MakeConstantString(sel.first, ".objc_sel_types");
3896
3897 auto selStruct = selectors.beginStruct(selStructTy);
3898 selStruct.add(selName);
3899 selStruct.add(selectorTypeEncoding);
3900 selStruct.finishAndAddTo(selectors);
3901
3902 // Store the selector alias for later replacement
3903 selectorAliases.push_back(sel.second);
3904 }
3905 }
3906
3907 // Remember the number of entries in the selector table.
3908 selectorCount = selectors.size();
3909
3910 // NULL-terminate the selector list. This should not actually be required,
3911 // because the selector list has a length field. Unfortunately, the GCC
3912 // runtime decides to ignore the length field and expects a NULL terminator,
3913 // and GCC cooperates with this by always setting the length to 0.
3914 auto selStruct = selectors.beginStruct(selStructTy);
3915 selStruct.add(NULLPtr);
3916 selStruct.add(NULLPtr);
3917 selStruct.finishAndAddTo(selectors);
3918
3919 return selectors.finishAndCreateGlobal(".objc_selector_list",
3920 CGM.getPointerAlign());
3921 }();
3922
3923 // Now that all of the static selectors exist, create pointers to them.
3924 for (unsigned i = 0; i < selectorCount; ++i) {
3925 llvm::Constant *idxs[] = {
3926 Zeros[0],
3927 llvm::ConstantInt::get(Int32Ty, i)
3928 };
3929 // FIXME: We're generating redundant loads and stores here!
3930 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3931 selectorList->getValueType(), selectorList, idxs);
3932 selectorAliases[i]->replaceAllUsesWith(selPtr);
3933 selectorAliases[i]->eraseFromParent();
3934 }
3935
3936 llvm::GlobalVariable *symtab = [&] {
3937 ConstantInitBuilder builder(CGM);
3938 auto symtab = builder.beginStruct();
3939
3940 // Number of static selectors
3941 symtab.addInt(LongTy, selectorCount);
3942
3943 symtab.add(selectorList);
3944
3945 // Number of classes defined.
3946 symtab.addInt(CGM.Int16Ty, Classes.size());
3947 // Number of categories defined
3948 symtab.addInt(CGM.Int16Ty, Categories.size());
3949
3950 // Create an array of classes, then categories, then static object instances
3951 auto classList = symtab.beginArray(PtrToInt8Ty);
3952 classList.addAll(Classes);
3953 classList.addAll(Categories);
3954 // NULL-terminated list of static object instances (mainly constant strings)
3955 classList.add(statics);
3956 classList.add(NULLPtr);
3957 classList.finishAndAddTo(symtab);
3958
3959 // Construct the symbol table.
3960 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3961 }();
3962
3963 // The symbol table is contained in a module which has some version-checking
3964 // constants
3965 llvm::Constant *module = [&] {
3966 llvm::Type *moduleEltTys[] = {
3967 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3968 };
3969 llvm::StructType *moduleTy = llvm::StructType::get(
3970 CGM.getLLVMContext(),
3971 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3972
3973 ConstantInitBuilder builder(CGM);
3974 auto module = builder.beginStruct(moduleTy);
3975 // Runtime version, used for ABI compatibility checking.
3976 module.addInt(LongTy, RuntimeVersion);
3977 // sizeof(ModuleTy)
3978 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3979
3980 // The path to the source file where this module was declared
3982 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID());
3983 std::string path =
3984 (mainFile->getDir().getName() + "/" + mainFile->getName()).str();
3985 module.add(MakeConstantString(path, ".objc_source_file_name"));
3986 module.add(symtab);
3987
3988 if (RuntimeVersion >= 10) {
3989 switch (CGM.getLangOpts().getGC()) {
3990 case LangOptions::GCOnly:
3991 module.addInt(IntTy, 2);
3992 break;
3993 case LangOptions::NonGC:
3994 if (CGM.getLangOpts().ObjCAutoRefCount)
3995 module.addInt(IntTy, 1);
3996 else
3997 module.addInt(IntTy, 0);
3998 break;
3999 case LangOptions::HybridGC:
4000 module.addInt(IntTy, 1);
4001 break;
4002 }
4003 }
4004
4005 return module.finishAndCreateGlobal("", CGM.getPointerAlign());
4006 }();
4007
4008 // Create the load function calling the runtime entry point with the module
4009 // structure
4010 llvm::Function * LoadFunction = llvm::Function::Create(
4011 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
4012 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
4013 &TheModule);
4014 llvm::BasicBlock *EntryBB =
4015 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
4016 CGBuilderTy Builder(CGM, VMContext);
4017 Builder.SetInsertPoint(EntryBB);
4018
4019 llvm::FunctionType *FT =
4020 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
4021 llvm::FunctionCallee Register =
4022 CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
4023 Builder.CreateCall(Register, module);
4024
4025 if (!ClassAliases.empty()) {
4026 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
4027 llvm::FunctionType *RegisterAliasTy =
4028 llvm::FunctionType::get(Builder.getVoidTy(),
4029 ArgTypes, false);
4030 llvm::Function *RegisterAlias = llvm::Function::Create(
4031 RegisterAliasTy,
4032 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
4033 &TheModule);
4034 llvm::BasicBlock *AliasBB =
4035 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
4036 llvm::BasicBlock *NoAliasBB =
4037 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
4038
4039 // Branch based on whether the runtime provided class_registerAlias_np()
4040 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
4041 llvm::Constant::getNullValue(RegisterAlias->getType()));
4042 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
4043
4044 // The true branch (has alias registration function):
4045 Builder.SetInsertPoint(AliasBB);
4046 // Emit alias registration calls:
4047 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
4048 iter != ClassAliases.end(); ++iter) {
4049 llvm::Constant *TheClass =
4050 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
4051 if (TheClass) {
4052 Builder.CreateCall(RegisterAlias,
4053 {TheClass, MakeConstantString(iter->second)});
4054 }
4055 }
4056 // Jump to end:
4057 Builder.CreateBr(NoAliasBB);
4058
4059 // Missing alias registration function, just return from the function:
4060 Builder.SetInsertPoint(NoAliasBB);
4061 }
4062 Builder.CreateRetVoid();
4063
4064 return LoadFunction;
4065}
4066
4067llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
4068 const ObjCContainerDecl *CD) {
4069 CodeGenTypes &Types = CGM.getTypes();
4070 llvm::FunctionType *MethodTy =
4071 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
4072
4073 bool isDirect = OMD->isDirectMethod();
4074 std::string FunctionName =
4075 getSymbolNameForMethod(OMD, /*include category*/ !isDirect);
4076
4077 if (!isDirect)
4078 return llvm::Function::Create(MethodTy,
4079 llvm::GlobalVariable::InternalLinkage,
4080 FunctionName, &TheModule);
4081
4082 auto *COMD = OMD->getCanonicalDecl();
4083 auto I = DirectMethodDefinitions.find(COMD);
4084 llvm::Function *OldFn = nullptr, *Fn = nullptr;
4085
4086 if (I == DirectMethodDefinitions.end()) {
4087 auto *F =
4088 llvm::Function::Create(MethodTy, llvm::GlobalVariable::ExternalLinkage,
4089 FunctionName, &TheModule);
4090 DirectMethodDefinitions.insert(std::make_pair(COMD, F));
4091 return F;
4092 }
4093
4094 // Objective-C allows for the declaration and implementation types
4095 // to differ slightly.
4096 //
4097 // If we're being asked for the Function associated for a method
4098 // implementation, a previous value might have been cached
4099 // based on the type of the canonical declaration.
4100 //
4101 // If these do not match, then we'll replace this function with
4102 // a new one that has the proper type below.
4103 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType())
4104 return I->second;
4105
4106 OldFn = I->second;
4107 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, "",
4108 &CGM.getModule());
4109 Fn->takeName(OldFn);
4110 OldFn->replaceAllUsesWith(Fn);
4111 OldFn->eraseFromParent();
4112
4113 // Replace the cached function in the map.
4114 I->second = Fn;
4115 return Fn;
4116}
4117
4118void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
4119 llvm::Function *Fn,
4120 const ObjCMethodDecl *OMD,
4121 const ObjCContainerDecl *CD) {
4122 // GNU runtime doesn't support direct calls at this time
4123}
4124
4125llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
4126 return GetPropertyFn;
4127}
4128
4129llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
4130 return SetPropertyFn;
4131}
4132
4133llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
4134 bool copy) {
4135 return nullptr;
4136}
4137
4138llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
4139 return GetStructPropertyFn;
4140}
4141
4142llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
4143 return SetStructPropertyFn;
4144}
4145
4146llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
4147 return nullptr;
4148}
4149
4150llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
4151 return nullptr;
4152}
4153
4154llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
4155 return EnumerationMutationFn;
4156}
4157
4158void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
4159 const ObjCAtSynchronizedStmt &S) {
4160 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
4161}
4162
4163
4164void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
4165 const ObjCAtTryStmt &S) {
4166 // Unlike the Apple non-fragile runtimes, which also uses
4167 // unwind-based zero cost exceptions, the GNU Objective C runtime's
4168 // EH support isn't a veneer over C++ EH. Instead, exception
4169 // objects are created by objc_exception_throw and destroyed by
4170 // the personality function; this avoids the need for bracketing
4171 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
4172 // (or even _Unwind_DeleteException), but probably doesn't
4173 // interoperate very well with foreign exceptions.
4174 //
4175 // In Objective-C++ mode, we actually emit something equivalent to the C++
4176 // exception handler.
4177 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
4178}
4179
4180void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
4181 const ObjCAtThrowStmt &S,
4182 bool ClearInsertionPoint) {
4183 llvm::Value *ExceptionAsObject;
4184 bool isRethrow = false;
4185
4186 if (const Expr *ThrowExpr = S.getThrowExpr()) {
4187 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4188 ExceptionAsObject = Exception;
4189 } else {
4190 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4191 "Unexpected rethrow outside @catch block.");
4192 ExceptionAsObject = CGF.ObjCEHValueStack.back();
4193 isRethrow = true;
4194 }
4195 if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) {
4196 // For SEH, ExceptionAsObject may be undef, because the catch handler is
4197 // not passed it for catchalls and so it is not visible to the catch
4198 // funclet. The real thrown object will still be live on the stack at this
4199 // point and will be rethrown. If we are explicitly rethrowing the object
4200 // that was passed into the `@catch` block, then this code path is not
4201 // reached and we will instead call `objc_exception_throw` with an explicit
4202 // argument.
4203 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
4204 Throw->setDoesNotReturn();
4205 } else {
4206 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
4207 llvm::CallBase *Throw =
4208 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
4209 Throw->setDoesNotReturn();
4210 }
4211 CGF.Builder.CreateUnreachable();
4212 if (ClearInsertionPoint)
4213 CGF.Builder.ClearInsertionPoint();
4214}
4215
4216llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
4217 Address AddrWeakObj) {
4218 CGBuilderTy &B = CGF.Builder;
4219 return B.CreateCall(
4220 WeakReadFn, EnforceType(B, AddrWeakObj.emitRawPointer(CGF), PtrToIdTy));
4221}
4222
4223void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
4224 llvm::Value *src, Address dst) {
4225 CGBuilderTy &B = CGF.Builder;
4226 src = EnforceType(B, src, IdTy);
4227 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4228 B.CreateCall(WeakAssignFn, {src, dstVal});
4229}
4230
4231void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
4232 llvm::Value *src, Address dst,
4233 bool threadlocal) {
4234 CGBuilderTy &B = CGF.Builder;
4235 src = EnforceType(B, src, IdTy);
4236 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4237 // FIXME. Add threadloca assign API
4238 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
4239 B.CreateCall(GlobalAssignFn, {src, dstVal});
4240}
4241
4242void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4243 llvm::Value *src, Address dst,
4244 llvm::Value *ivarOffset) {
4245 CGBuilderTy &B = CGF.Builder;
4246 src = EnforceType(B, src, IdTy);
4247 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), IdTy);
4248 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset});
4249}
4250
4251void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4252 llvm::Value *src, Address dst) {
4253 CGBuilderTy &B = CGF.Builder;
4254 src = EnforceType(B, src, IdTy);
4255 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4256 B.CreateCall(StrongCastAssignFn, {src, dstVal});
4257}
4258
4259void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4260 Address DestPtr,
4261 Address SrcPtr,
4262 llvm::Value *Size) {
4263 CGBuilderTy &B = CGF.Builder;
4264 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.emitRawPointer(CGF), PtrTy);
4265 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.emitRawPointer(CGF), PtrTy);
4266
4267 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size});
4268}
4269
4270llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4271 const ObjCInterfaceDecl *ID,
4272 const ObjCIvarDecl *Ivar) {
4273 const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4274 // Emit the variable and initialize it with what we think the correct value
4275 // is. This allows code compiled with non-fragile ivars to work correctly
4276 // when linked against code which isn't (most of the time).
4277 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4278 if (!IvarOffsetPointer)
4279 IvarOffsetPointer = new llvm::GlobalVariable(
4280 TheModule, llvm::PointerType::getUnqual(VMContext), false,
4281 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4282 return IvarOffsetPointer;
4283}
4284
4285LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4286 QualType ObjectTy,
4287 llvm::Value *BaseValue,
4288 const ObjCIvarDecl *Ivar,
4289 unsigned CVRQualifiers) {
4290 const ObjCInterfaceDecl *ID =
4291 ObjectTy->castAs<ObjCObjectType>()->getInterface();
4292 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4293 EmitIvarOffset(CGF, ID, Ivar));
4294}
4295
4297 const ObjCInterfaceDecl *OID,
4298 const ObjCIvarDecl *OIVD) {
4299 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4300 next = next->getNextIvar()) {
4301 if (OIVD == next)
4302 return OID;
4303 }
4304
4305 // Otherwise check in the super class.
4306 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4307 return FindIvarInterface(Context, Super, OIVD);
4308
4309 return nullptr;
4310}
4311
4312llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4314 const ObjCIvarDecl *Ivar) {
4315 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4317
4318 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4319 // and ExternalLinkage, so create a reference to the ivar global and rely on
4320 // the definition being created as part of GenerateClass.
4321 if (RuntimeVersion < 10 ||
4322 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4323 return CGF.Builder.CreateZExtOrBitCast(
4325 Int32Ty,
4327 llvm::PointerType::getUnqual(VMContext),
4328 ObjCIvarOffsetVariable(Interface, Ivar),
4329 CGF.getPointerAlign(), "ivar"),
4331 PtrDiffTy);
4332 std::string name = "__objc_ivar_offset_value_" +
4333 Interface->getNameAsString() +"." + Ivar->getNameAsString();
4334 CharUnits Align = CGM.getIntAlign();
4335 llvm::Value *Offset = TheModule.getGlobalVariable(name);
4336 if (!Offset) {
4337 auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4338 false, llvm::GlobalValue::LinkOnceAnyLinkage,
4339 llvm::Constant::getNullValue(IntTy), name);
4340 GV->setAlignment(Align.getAsAlign());
4341 Offset = GV;
4342 }
4343 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align);
4344 if (Offset->getType() != PtrDiffTy)
4345 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4346 return Offset;
4347 }
4348 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4349 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4350}
4351
4354 auto Runtime = CGM.getLangOpts().ObjCRuntime;
4355 switch (Runtime.getKind()) {
4357 if (Runtime.getVersion() >= VersionTuple(2, 0))
4358 return new CGObjCGNUstep2(CGM);
4359 return new CGObjCGNUstep(CGM);
4360
4361 case ObjCRuntime::GCC:
4362 return new CGObjCGCC(CGM);
4363
4364 case ObjCRuntime::ObjFW:
4365 return new CGObjCObjFW(CGM);
4366
4369 case ObjCRuntime::iOS:
4371 llvm_unreachable("these runtimes are not GNU runtimes");
4372 }
4373 llvm_unreachable("bad runtime");
4374}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3443
StringRef P
#define SM(sm)
Definition: Cuda.cpp:84
static const ObjCInterfaceDecl * FindIvarInterface(ASTContext &Context, const ObjCInterfaceDecl *OID, const ObjCIvarDecl *OIVD)
Definition: CGObjCGNU.cpp:4296
static bool isNamed(const NamedDecl *ND, const char(&Str)[Len])
Definition: Decl.cpp:3270
int Category
Definition: Format.cpp:3035
Defines the SourceManager interface.
Defines the Objective-C statement AST node classes.
__device__ __2f16 b
__device__ __2f16 float __ockl_bool s
__device__ __2f16 float c
do v
Definition: arm_acle.h:91
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
SourceManager & getSourceManager()
Definition: ASTContext.h:741
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1141
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
CanQualType LongTy
Definition: ASTContext.h:1169
void getObjCEncodingForType(QualType T, std::string &S, const FieldDecl *Field=nullptr, QualType *NotEncodedT=nullptr) const
Emit the Objective-CC type encoding for the given type T into S.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2716
std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, bool Extended=false) const
Emit the encoded type for the method declaration Decl into S.
std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, const Decl *Container) const
getObjCEncodingForPropertyDecl - Return the encoded type for this method declaration.
const ASTRecordLayout & getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const
Get or compute information about the layout of the specified Objective-C implementation.
IdentifierTable & Idents
Definition: ASTContext.h:680
const ASTRecordLayout & getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const
Get or compute information about the layout of the specified Objective-C interface.
QualType getObjCProtoType() const
Retrieve the type of the Objective-C Protocol class.
Definition: ASTContext.h:2242
QualType getPointerDiffType() const
Return the unique type for "ptrdiff_t" (C99 7.17) defined in <stddef.h>.
ObjCPropertyImplDecl * getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl *PD, const Decl *Container) const
CanQualType BoolTy
Definition: ASTContext.h:1161
QualType getObjCSelType() const
Retrieve the type that corresponds to the predefined Objective-C 'SEL' type.
Definition: ASTContext.h:2206
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
CanQualType IntTy
Definition: ASTContext.h:1169
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:2196
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2482
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, QualType T, std::string &S, bool Extended) const
getObjCEncodingForMethodParameter - Return the encoded type for a single method parameter or return t...
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2486
CharUnits getSize() const
getSize - Get the record size in characters.
Definition: RecordLayout.h:193
const T * getTypePtr() const
Retrieve the underlying type pointer, which refers to a canonical type.
Definition: CanonicalType.h:84
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:128
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:251
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:156
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:136
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:108
llvm::LoadInst * CreateAlignedLoad(llvm::Type *Ty, llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:128
virtual llvm::Constant * getAddrOfRTTIDescriptor(QualType Ty)=0
virtual CatchTypeInfo getCatchAllTypeInfo()
Definition: CGCXXABI.cpp:338
Abstract information about a function or function prototype.
Definition: CGCall.h:41
All available information about a concrete callee.
Definition: CGCall.h:63
Implements runtime-specific code generation functions.
Definition: CGObjCRuntime.h:65
virtual llvm::Constant * GetEHType(QualType T)=0
Get the type constant to catch for the given ObjC pointer type.
virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest, llvm::Value *ivarOffset)=0
virtual llvm::FunctionCallee GetCppAtomicObjectGetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in getter.
virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest)=0
virtual llvm::Constant * BuildByrefLayout(CodeGen::CodeGenModule &CGM, QualType T)=0
Returns an i8* which points to the byref layout information.
virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, Address DestPtr, Address SrcPtr, llvm::Value *Size)=0
virtual llvm::FunctionCallee GetPropertySetFunction()=0
Return the runtime function for setting properties.
virtual llvm::FunctionCallee GetCppAtomicObjectSetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in setter.
virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtTryStmt &S)=0
virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &CallArgs, const ObjCInterfaceDecl *Class=nullptr, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation.
virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers)=0
virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD)=0
Register an class alias.
virtual void GenerateCategory(const ObjCCategoryImplDecl *OCD)=0
Generate a category.
virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, bool ClearInsertionPoint=true)=0
virtual llvm::Value * EmitIvarOffset(CodeGen::CodeGenFunction &CGF, const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar)=0
virtual llvm::Function * GenerateMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generate a function preamble for a method with the specified types.
virtual llvm::Value * GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *OPD)=0
Emit the code to return the named protocol as an object, as in a @protocol expression.
virtual llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, Address AddrWeakObj)=0
virtual llvm::Function * ModuleInitFunction()=0
Generate the function required to register all Objective-C components in this compilation unit with t...
virtual CodeGen::RValue GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, bool isCategoryImpl, llvm::Value *Self, bool IsClassMessage, const CallArgList &CallArgs, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation to the super class initiated in a method for Class and...
virtual void GenerateClass(const ObjCImplementationDecl *OID)=0
Generate a class structure for this class.
virtual llvm::FunctionCallee EnumerationMutationFunction()=0
EnumerationMutationFunction - Return the function that's called by the compiler when a mutation is de...
virtual llvm::Constant * BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, const CodeGen::CGBlockInfo &blockInfo)=0
virtual llvm::FunctionCallee GetGetStructFunction()=0
virtual llvm::Constant * GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0
GetOrEmitProtocol - Get the protocol object for the given declaration, emitting it if necessary.
virtual ConstantAddress GenerateConstantString(const StringLiteral *)=0
Generate a constant string object.
virtual llvm::Value * GetClass(CodeGenFunction &CGF, const ObjCInterfaceDecl *OID)=0
GetClass - Return a reference to the class for the given interface decl.
virtual void GenerateProtocol(const ObjCProtocolDecl *OPD)=0
Generate the named protocol.
virtual llvm::Constant * BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, const CodeGen::CGBlockInfo &blockInfo)=0
virtual llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, bool copy)=0
Return the runtime function for optimized setting properties.
virtual llvm::Value * GetSelector(CodeGenFunction &CGF, Selector Sel)=0
Get a selector for the specified name and type values.
virtual void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generates prologue for direct Objective-C Methods.
virtual Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel)=0
Get the address of a selector for the specified name and type values.
virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest)=0
virtual llvm::Value * EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF)
virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest, bool threadlocal=false)=0
virtual llvm::FunctionCallee GetPropertyGetFunction()=0
Return the runtime function for getting properties.
virtual llvm::FunctionCallee GetSetStructFunction()=0
virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S)=0
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:274
void add(RValue rvalue, QualType type)
Definition: CGCall.h:305
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:314
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
SmallVector< llvm::Value *, 8 > ObjCEHValueStack
ObjCEHValueStack - Stack of Objective-C exception values, used for rethrows.
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
JumpDest ReturnBlock
ReturnBlock - Unified return block.
llvm::Value * EmitObjCThrowOperand(const Expr *expr)
llvm::Value * LoadObjCSelf()
LoadObjCSelf - Load the value of self.
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
void EmitVarDecl(const VarDecl &D)
EmitVarDecl - Emit a local variable declaration.
llvm::CallInst * EmitNounwindRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
llvm::CallBase * EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, ArrayRef< llvm::Value * > args, const Twine &name="")
static bool hasAggregateEvaluationKind(QualType T)
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
This class organizes the cross-function state that is used while generating LLVM code.
void setGVProperties(llvm::GlobalValue *GV, GlobalDecl GD) const
Set visibility, dllimport/dllexport and dso_local.
llvm::Module & getModule() const
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
void addCompilerUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.compiler.used metadata.
bool ReturnTypeUsesFPRet(QualType ResultType)
Return true iff the given type uses 'fpret' when used as a return type.
Definition: CGCall.cpp:1596
const LangOptions & getLangOpts() const
const TargetInfo & getTarget() const
void addUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.used metadata.
const llvm::DataLayout & getDataLayout() const
CGCXXABI & getCXXABI() const
const llvm::Triple & getTriple() const
bool ReturnTypeHasInReg(const CGFunctionInfo &FI)
Return true iff the given type has inreg set.
Definition: CGCall.cpp:1586
ASTContext & getContext() const
bool ReturnTypeUsesSRet(const CGFunctionInfo &FI)
Return true iff the given type uses 'sret' when used as a return type.
Definition: CGCall.cpp:1581
const CodeGenOptions & getCodeGenOpts() const
llvm::LLVMContext & getLLVMContext()
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
ConstantAddress GetAddrOfConstantCString(const std::string &Str, const char *GlobalName=nullptr)
Returns a pointer to a character array containing the literal and a terminating '\0' character.
This class organizes the cross-module state that is used while lowering AST types to LLVM types.
Definition: CodeGenTypes.h:54
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
llvm::Type * ConvertTypeForMem(QualType T)
ConvertTypeForMem - Convert type T into a llvm::Type.
bool isZeroInitializable(QualType T)
IsZeroInitializable - Return whether a type can be zero-initialized (in the C++ sense) with an LLVM z...
A specialization of Address that requires the address to be an LLVM Constant.
Definition: Address.h:294
ArrayBuilder beginArray(llvm::Type *eltTy=nullptr)
llvm::GlobalVariable * finishAndCreateGlobal(As &&...args)
Given that this builder was created by beginning an array or struct directly on a ConstantInitBuilder...
StructBuilder beginStruct(llvm::StructType *ty=nullptr)
void finishAndAddTo(AggregateBuilderBase &parent)
Given that this builder was created by beginning an array or struct component on the given parent bui...
A helper class of ConstantInitBuilder, used for building constant array initializers.
The standard implementation of ConstantInitBuilder used in Clang.
A helper class of ConstantInitBuilder, used for building constant struct initializers.
LValue - This represents an lvalue references.
Definition: CGValue.h:182
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:42
bool isScalar() const
Definition: CGValue.h:64
static RValue get(llvm::Value *V)
Definition: CGValue.h:98
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition: CGValue.h:108
bool isAggregate() const
Definition: CGValue.h:66
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition: CGValue.h:83
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:71
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:78
An abstract representation of an aligned address.
Definition: Address.h:42
llvm::Value * getPointer() const
Definition: Address.h:66
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition: CGCall.h:386
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1435
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1854
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
static void add(Kind k)
Definition: DeclBase.cpp:221
bool isWeakImported() const
Determine whether this is a weak-imported symbol.
Definition: DeclBase.cpp:840
@ OBJC_TQ_None
Definition: DeclBase.h:199
bool isUsed(bool CheckUsedAttr=true) const
Whether any (re-)declaration of the entity was used, meaning that a definition is required.
Definition: DeclBase.cpp:549
bool hasAttr() const
Definition: DeclBase.h:580
StringRef getName() const
This represents one expression.
Definition: Expr.h:110
StringRef getName() const
The name of this FileEntry.
Definition: FileEntry.h:61
DirectoryEntryRef getDir() const
Definition: FileEntry.h:78
One of these records is kept for each identifier that is lexed.
StringRef getName() const
Return the actual identifier string.
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:499
clang::ObjCRuntime ObjCRuntime
Definition: LangOptions.h:534
std::string ObjCConstantStringClass
Definition: LangOptions.h:538
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:274
Visibility getVisibility() const
Determines the visibility of this entity.
Definition: Decl.h:423
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:296
Represents Objective-C's @synchronized statement.
Definition: StmtObjC.h:303
Represents Objective-C's @throw statement.
Definition: StmtObjC.h:358
Represents Objective-C's @try ... @catch ... @finally statement.
Definition: StmtObjC.h:167
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2328
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2395
ObjCCategoryImplDecl - An object of this class encapsulates a category @implementation declaration.
Definition: DeclObjC.h:2544
ObjCCategoryDecl * getCategoryDecl() const
Definition: DeclObjC.cpp:2197
ObjCCompatibleAliasDecl - Represents alias of a class.
Definition: DeclObjC.h:2774
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2792
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:947
classmeth_iterator classmeth_end() const
Definition: DeclObjC.h:1057
classmeth_iterator classmeth_begin() const
Definition: DeclObjC.h:1053
instmeth_range instance_methods() const
Definition: DeclObjC.h:1032
instmeth_iterator instmeth_end() const
Definition: DeclObjC.h:1040
instmeth_iterator instmeth_begin() const
Definition: DeclObjC.h:1036
prop_range properties() const
Definition: DeclObjC.h:966
classmeth_range class_methods() const
Definition: DeclObjC.h:1049
propimpl_range property_impls() const
Definition: DeclObjC.h:2512
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2485
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2596
Represents an ObjC class declaration.
Definition: DeclObjC.h:1153
all_protocol_range all_referenced_protocols() const
Definition: DeclObjC.h:1416
ObjCIvarDecl * all_declared_ivar_begin()
all_declared_ivar_begin - return first ivar declared in this class, its extensions and its implementa...
Definition: DeclObjC.cpp:1670
protocol_range protocols() const
Definition: DeclObjC.h:1358
protocol_iterator protocol_end() const
Definition: DeclObjC.h:1373
protocol_iterator protocol_begin() const
Definition: DeclObjC.h:1362
ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.cpp:350
ObjCInterfaceDecl * getDefinition()
Retrieve the definition of this class, or NULL if this class has been forward-declared (with @class) ...
Definition: DeclObjC.h:1541
known_extensions_range known_extensions() const
Definition: DeclObjC.h:1761
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:7524
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.cpp:936
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1951
AccessControl getAccessControl() const
Definition: DeclObjC.h:1999
ObjCInterfaceDecl * getContainingInterface()
Return the class interface that this ivar is logically contained in; this is either the interface whe...
Definition: DeclObjC.cpp:1873
ObjCIvarDecl * getNextIvar()
Definition: DeclObjC.h:1986
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:140
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:418
bool hasParamDestroyedInCallee() const
True if the method has a parameter that's destroyed in the callee.
Definition: DeclObjC.cpp:899
Stmt * getBody() const override
Retrieve the body of this method, if it has one.
Definition: DeclObjC.cpp:907
ObjCMethodDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclObjC.cpp:1010
bool isDirectMethod() const
True if the method is tagged as objc_direct.
Definition: DeclObjC.cpp:869
Selector getSelector() const
Definition: DeclObjC.h:327
ImplicitParamDecl * getCmdDecl() const
Definition: DeclObjC.h:420
QualType getReturnType() const
Definition: DeclObjC.h:329
bool isClassMethod() const
Definition: DeclObjC.h:434
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1209
Represents a pointer to an Objective C object.
Definition: Type.h:7580
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:7617
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1833
Represents a class type in Objective C.
Definition: Type.h:7326
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface.
Definition: Type.h:7559
Represents one property declaration in an Objective-C interface.
Definition: DeclObjC.h:730
ObjCMethodDecl * getGetterMethodDecl() const
Definition: DeclObjC.h:900
ObjCMethodDecl * getSetterMethodDecl() const
Definition: DeclObjC.h:903
QualType getType() const
Definition: DeclObjC.h:803
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2083
ObjCProtocolDecl * getDefinition()
Retrieve the definition of this protocol, if any.
Definition: DeclObjC.h:2249
bool isNonRuntimeProtocol() const
This is true iff the protocol is tagged with the objc_non_runtime_protocol attribute.
Definition: DeclObjC.cpp:1959
protocol_iterator protocol_begin() const
Definition: DeclObjC.h:2164
protocol_range protocols() const
Definition: DeclObjC.h:2160
protocol_iterator protocol_end() const
Definition: DeclObjC.h:2171
The basic abstraction for the target Objective-C runtime.
Definition: ObjCRuntime.h:28
Kind getKind() const
Definition: ObjCRuntime.h:77
const VersionTuple & getVersion() const
Definition: ObjCRuntime.h:78
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:82
Kind
The basic Objective-C runtimes that we know about.
Definition: ObjCRuntime.h:31
@ MacOSX
'macosx' is the Apple-provided NeXT-derived runtime on Mac OS X platforms that use the non-fragile AB...
Definition: ObjCRuntime.h:35
@ FragileMacOSX
'macosx-fragile' is the Apple-provided NeXT-derived runtime on Mac OS X platforms that use the fragil...
Definition: ObjCRuntime.h:40
@ GNUstep
'gnustep' is the modern non-fragile GNUstep runtime.
Definition: ObjCRuntime.h:56
@ ObjFW
'objfw' is the Objective-C runtime included in ObjFW
Definition: ObjCRuntime.h:59
@ iOS
'ios' is the Apple-provided NeXT-derived runtime on iOS or the iOS simulator; it is always non-fragil...
Definition: ObjCRuntime.h:45
@ GCC
'gcc' is the Objective-C runtime shipped with GCC, implementing a fragile Objective-C ABI
Definition: ObjCRuntime.h:53
@ WatchOS
'watchos' is a variant of iOS for Apple's watchOS.
Definition: ObjCRuntime.h:49
A (possibly-)qualified type.
Definition: Type.h:929
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: Type.h:354
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:347
@ OCL_None
There is no lifetime qualification on this type.
Definition: Type.h:343
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:357
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: Type.h:360
This table allows us to fully hide how we implement multi-keyword caching.
Smart pointer class that efficiently represents Objective-C method names.
std::string getAsString() const
Derive the full selector name (e.g.
This class handles loading and caching of source files into memory.
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1778
bool containsNonAscii() const
Definition: Expr.h:1910
unsigned getLength() const
Definition: Expr.h:1895
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1870
StringRef getString() const
Definition: Expr.h:1855
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1262
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition: TargetInfo.h:478
The top declaration context.
Definition: Decl.h:84
static DeclContext * castToDeclContext(const TranslationUnitDecl *D)
Definition: Decl.h:130
bool isVoidType() const
Definition: Type.h:8510
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8800
bool isObjCQualifiedIdType() const
Definition: Type.h:8349
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:8625
bool isObjCIdType() const
Definition: Type.h:8361
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8731
bool hasPointerRepresentation() const
Whether this type is represented natively as a pointer.
Definition: Type.h:8672
QualType getType() const
Definition: Decl.h:682
Represents a variable declaration or definition.
Definition: Decl.h:882
CGObjCRuntime * CreateGNUObjCRuntime(CodeGenModule &CGM)
Creates an instance of an Objective-C runtime class.
Definition: CGObjCGNU.cpp:4353
constexpr size_t align(size_t Size)
Aligns a size to the pointer alignment.
Definition: PrimType.h:131
bool Zero(InterpState &S, CodePtr OpPC)
Definition: Interp.h:2408
RangeSelector node(std::string ID)
Selects a node, including trailing semicolon, if any (for declarations and non-expression statements)...
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr, CxxCtorInitializer, and TypeLoc) selects th...
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
Definition: Address.h:328
CanQual< Type > CanQualType
Represents a canonical, potentially-qualified type.
Selector GetNullarySelector(StringRef name, ASTContext &Ctx)
Utility function for constructing a nullary selector.
Definition: ASTContext.h:3592
const FunctionProtoType * T
@ Interface
The "__interface" keyword introduces the elaborated-type-specifier.
@ Class
The "class" keyword introduces the elaborated-type-specifier.
@ HiddenVisibility
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:37
int int32_t
unsigned long uint64_t
unsigned int uint32_t
The MS C++ ABI needs a pointer to RTTI data plus some flags to describe the type of a catch handler,...
Definition: CGCleanup.h:39