clang 20.0.0git
ARM.cpp
Go to the documentation of this file.
1//===--- ARM.cpp - Implement ARM target feature support -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements ARM TargetInfo objects.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ARM.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/StringSwitch.h"
20#include "llvm/TargetParser/ARMTargetParser.h"
21
22using namespace clang;
23using namespace clang::targets;
24
25void ARMTargetInfo::setABIAAPCS() {
26 IsAAPCS = true;
27
30 BFloat16Format = &llvm::APFloat::BFloat();
31
32 const llvm::Triple &T = getTriple();
33
34 bool IsNetBSD = T.isOSNetBSD();
35 bool IsOpenBSD = T.isOSOpenBSD();
36 if (!T.isOSWindows() && !IsNetBSD && !IsOpenBSD)
38
40
42
43 // Thumb1 add sp, #imm requires the immediate value be multiple of 4,
44 // so set preferred for small types to 32.
45 if (T.isOSBinFormatMachO()) {
47 ? "E-m:o-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64"
48 : "e-m:o-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64",
49 "_");
50 } else if (T.isOSWindows()) {
51 assert(!BigEndian && "Windows on ARM does not support big endian");
53 "-m:w"
54 "-p:32:32"
55 "-Fi8"
56 "-i64:64"
57 "-v128:64:128"
58 "-a:0:32"
59 "-n32"
60 "-S64");
61 } else if (T.isOSNaCl()) {
62 assert(!BigEndian && "NaCl on ARM does not support big endian");
63 resetDataLayout("e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S128");
64 } else {
66 ? "E-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64"
67 : "e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64");
68 }
69
70 // FIXME: Enumerated types are variable width in straight AAPCS.
71}
72
73void ARMTargetInfo::setABIAPCS(bool IsAAPCS16) {
74 const llvm::Triple &T = getTriple();
75
76 IsAAPCS = false;
77
78 if (IsAAPCS16)
80 else
83 BFloat16Format = &llvm::APFloat::BFloat();
84
86
87 // Do not respect the alignment of bit-field types when laying out
88 // structures. This corresponds to PCC_BITFIELD_TYPE_MATTERS in gcc.
90
91 /// gcc forces the alignment to 4 bytes, regardless of the type of the
92 /// zero length bitfield. This corresponds to EMPTY_FIELD_BOUNDARY in
93 /// gcc.
95
96 if (T.isOSBinFormatMachO() && IsAAPCS16) {
97 assert(!BigEndian && "AAPCS16 does not support big-endian");
98 resetDataLayout("e-m:o-p:32:32-Fi8-i64:64-a:0:32-n32-S128", "_");
99 } else if (T.isOSBinFormatMachO())
102 ? "E-m:o-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
103 : "e-m:o-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32",
104 "_");
105 else
108 ? "E-m:e-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
109 : "e-m:e-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32");
110
111 // FIXME: Override "preferred align" for double and long long.
112}
113
114void ARMTargetInfo::setArchInfo() {
115 StringRef ArchName = getTriple().getArchName();
116
117 ArchISA = llvm::ARM::parseArchISA(ArchName);
118 CPU = std::string(llvm::ARM::getDefaultCPU(ArchName));
119 llvm::ARM::ArchKind AK = llvm::ARM::parseArch(ArchName);
120 if (AK != llvm::ARM::ArchKind::INVALID)
121 ArchKind = AK;
122 setArchInfo(ArchKind);
123}
124
125void ARMTargetInfo::setArchInfo(llvm::ARM::ArchKind Kind) {
126 StringRef SubArch;
127
128 // cache TargetParser info
129 ArchKind = Kind;
130 SubArch = llvm::ARM::getSubArch(ArchKind);
131 ArchProfile = llvm::ARM::parseArchProfile(SubArch);
132 ArchVersion = llvm::ARM::parseArchVersion(SubArch);
133
134 // cache CPU related strings
135 CPUAttr = getCPUAttr();
136 CPUProfile = getCPUProfile();
137}
138
139void ARMTargetInfo::setAtomic() {
140 // when triple does not specify a sub arch,
141 // then we are not using inline atomics
142 bool ShouldUseInlineAtomic =
143 (ArchISA == llvm::ARM::ISAKind::ARM && ArchVersion >= 6) ||
144 (ArchISA == llvm::ARM::ISAKind::THUMB && ArchVersion >= 7);
145 // Cortex M does not support 8 byte atomics, while general Thumb2 does.
146 if (ArchProfile == llvm::ARM::ProfileKind::M) {
148 if (ShouldUseInlineAtomic)
150 } else {
152 if (ShouldUseInlineAtomic)
154 }
155}
156
157bool ARMTargetInfo::hasMVE() const {
158 return ArchKind == llvm::ARM::ArchKind::ARMV8_1MMainline && MVE != 0;
159}
160
161bool ARMTargetInfo::hasMVEFloat() const {
162 return hasMVE() && (MVE & MVE_FP);
163}
164
165bool ARMTargetInfo::hasCDE() const { return getARMCDECoprocMask() != 0; }
166
167bool ARMTargetInfo::isThumb() const {
168 return ArchISA == llvm::ARM::ISAKind::THUMB;
169}
170
171bool ARMTargetInfo::supportsThumb() const {
172 return CPUAttr.count('T') || ArchVersion >= 6;
173}
174
175bool ARMTargetInfo::supportsThumb2() const {
176 return CPUAttr == "6T2" || (ArchVersion >= 7 && CPUAttr != "8M_BASE");
177}
178
179StringRef ARMTargetInfo::getCPUAttr() const {
180 // For most sub-arches, the build attribute CPU name is enough.
181 // For Cortex variants, it's slightly different.
182 switch (ArchKind) {
183 default:
184 return llvm::ARM::getCPUAttr(ArchKind);
185 case llvm::ARM::ArchKind::ARMV6M:
186 return "6M";
187 case llvm::ARM::ArchKind::ARMV7S:
188 return "7S";
189 case llvm::ARM::ArchKind::ARMV7A:
190 return "7A";
191 case llvm::ARM::ArchKind::ARMV7R:
192 return "7R";
193 case llvm::ARM::ArchKind::ARMV7M:
194 return "7M";
195 case llvm::ARM::ArchKind::ARMV7EM:
196 return "7EM";
197 case llvm::ARM::ArchKind::ARMV7VE:
198 return "7VE";
199 case llvm::ARM::ArchKind::ARMV8A:
200 return "8A";
201 case llvm::ARM::ArchKind::ARMV8_1A:
202 return "8_1A";
203 case llvm::ARM::ArchKind::ARMV8_2A:
204 return "8_2A";
205 case llvm::ARM::ArchKind::ARMV8_3A:
206 return "8_3A";
207 case llvm::ARM::ArchKind::ARMV8_4A:
208 return "8_4A";
209 case llvm::ARM::ArchKind::ARMV8_5A:
210 return "8_5A";
211 case llvm::ARM::ArchKind::ARMV8_6A:
212 return "8_6A";
213 case llvm::ARM::ArchKind::ARMV8_7A:
214 return "8_7A";
215 case llvm::ARM::ArchKind::ARMV8_8A:
216 return "8_8A";
217 case llvm::ARM::ArchKind::ARMV8_9A:
218 return "8_9A";
219 case llvm::ARM::ArchKind::ARMV9A:
220 return "9A";
221 case llvm::ARM::ArchKind::ARMV9_1A:
222 return "9_1A";
223 case llvm::ARM::ArchKind::ARMV9_2A:
224 return "9_2A";
225 case llvm::ARM::ArchKind::ARMV9_3A:
226 return "9_3A";
227 case llvm::ARM::ArchKind::ARMV9_4A:
228 return "9_4A";
229 case llvm::ARM::ArchKind::ARMV9_5A:
230 return "9_5A";
231 case llvm::ARM::ArchKind::ARMV9_6A:
232 return "9_6A";
233 case llvm::ARM::ArchKind::ARMV8MBaseline:
234 return "8M_BASE";
235 case llvm::ARM::ArchKind::ARMV8MMainline:
236 return "8M_MAIN";
237 case llvm::ARM::ArchKind::ARMV8R:
238 return "8R";
239 case llvm::ARM::ArchKind::ARMV8_1MMainline:
240 return "8_1M_MAIN";
241 }
242}
243
244StringRef ARMTargetInfo::getCPUProfile() const {
245 switch (ArchProfile) {
246 case llvm::ARM::ProfileKind::A:
247 return "A";
248 case llvm::ARM::ProfileKind::R:
249 return "R";
250 case llvm::ARM::ProfileKind::M:
251 return "M";
252 default:
253 return "";
254 }
255}
256
257ARMTargetInfo::ARMTargetInfo(const llvm::Triple &Triple,
258 const TargetOptions &Opts)
259 : TargetInfo(Triple), FPMath(FP_Default), IsAAPCS(true), LDREX(0),
260 HW_FP(0) {
261 bool IsFreeBSD = Triple.isOSFreeBSD();
262 bool IsOpenBSD = Triple.isOSOpenBSD();
263 bool IsNetBSD = Triple.isOSNetBSD();
264 bool IsHaiku = Triple.isOSHaiku();
265 bool IsOHOS = Triple.isOHOSFamily();
266
267 // FIXME: the isOSBinFormatMachO is a workaround for identifying a Darwin-like
268 // environment where size_t is `unsigned long` rather than `unsigned int`
269
271 (Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
272 IsNetBSD)
273 ? SignedLong
274 : SignedInt;
275
276 SizeType = (Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
277 IsNetBSD)
279 : UnsignedInt;
280
281 // ptrdiff_t is inconsistent on Darwin
282 if ((Triple.isOSDarwin() || Triple.isOSBinFormatMachO()) &&
283 !Triple.isWatchABI())
285
286 // Cache arch related info.
287 setArchInfo();
288
289 // {} in inline assembly are neon specifiers, not assembly variant
290 // specifiers.
291 NoAsmVariants = true;
292
293 // FIXME: This duplicates code from the driver that sets the -target-abi
294 // option - this code is used if -target-abi isn't passed and should
295 // be unified in some way.
296 if (Triple.isOSBinFormatMachO()) {
297 // The backend is hardwired to assume AAPCS for M-class processors, ensure
298 // the frontend matches that.
299 if (Triple.getEnvironment() == llvm::Triple::EABI ||
300 Triple.getOS() == llvm::Triple::UnknownOS ||
301 ArchProfile == llvm::ARM::ProfileKind::M) {
302 setABI("aapcs");
303 } else if (Triple.isWatchABI()) {
304 setABI("aapcs16");
305 } else {
306 setABI("apcs-gnu");
307 }
308 } else if (Triple.isOSWindows()) {
309 // FIXME: this is invalid for WindowsCE
310 setABI("aapcs");
311 } else {
312 // Select the default based on the platform.
313 switch (Triple.getEnvironment()) {
314 case llvm::Triple::Android:
315 case llvm::Triple::GNUEABI:
316 case llvm::Triple::GNUEABIT64:
317 case llvm::Triple::GNUEABIHF:
318 case llvm::Triple::GNUEABIHFT64:
319 case llvm::Triple::MuslEABI:
320 case llvm::Triple::MuslEABIHF:
321 case llvm::Triple::OpenHOS:
322 setABI("aapcs-linux");
323 break;
324 case llvm::Triple::EABIHF:
325 case llvm::Triple::EABI:
326 setABI("aapcs");
327 break;
328 case llvm::Triple::GNU:
329 setABI("apcs-gnu");
330 break;
331 default:
332 if (IsNetBSD)
333 setABI("apcs-gnu");
334 else if (IsFreeBSD || IsOpenBSD || IsHaiku || IsOHOS)
335 setABI("aapcs-linux");
336 else
337 setABI("aapcs");
338 break;
339 }
340 }
341
342 // ARM targets default to using the ARM C++ ABI.
343 TheCXXABI.set(TargetCXXABI::GenericARM);
344
345 // ARM has atomics up to 8 bytes
346 setAtomic();
347
348 // Maximum alignment for ARM NEON data types should be 64-bits (AAPCS)
349 // as well the default alignment
350 if (IsAAPCS && !Triple.isAndroid())
352
353 // Do force alignment of members that follow zero length bitfields. If
354 // the alignment of the zero-length bitfield is greater than the member
355 // that follows it, `bar', `bar' will be aligned as the type of the
356 // zero length bitfield.
358
359 if (Triple.getOS() == llvm::Triple::Linux ||
360 Triple.getOS() == llvm::Triple::UnknownOS)
361 this->MCountName = Opts.EABIVersion == llvm::EABI::GNU
362 ? "llvm.arm.gnu.eabi.mcount"
363 : "\01mcount";
364
365 SoftFloatABI = llvm::is_contained(Opts.FeaturesAsWritten, "+soft-float-abi");
366}
367
368StringRef ARMTargetInfo::getABI() const { return ABI; }
369
370bool ARMTargetInfo::setABI(const std::string &Name) {
371 ABI = Name;
372
373 // The defaults (above) are for AAPCS, check if we need to change them.
374 //
375 // FIXME: We need support for -meabi... we could just mangle it into the
376 // name.
377 if (Name == "apcs-gnu" || Name == "aapcs16") {
378 setABIAPCS(Name == "aapcs16");
379 return true;
380 }
381 if (Name == "aapcs" || Name == "aapcs-vfp" || Name == "aapcs-linux") {
382 setABIAAPCS();
383 return true;
384 }
385 return false;
386}
387
389 llvm::ARM::ArchKind CPUArch = llvm::ARM::parseCPUArch(Arch);
390 if (CPUArch == llvm::ARM::ArchKind::INVALID)
391 CPUArch = llvm::ARM::parseArch(getTriple().getArchName());
392
393 if (CPUArch == llvm::ARM::ArchKind::INVALID)
394 return false;
395
396 StringRef ArchFeature = llvm::ARM::getArchName(CPUArch);
397 auto a =
398 llvm::Triple(ArchFeature, getTriple().getVendorName(),
399 getTriple().getOSName(), getTriple().getEnvironmentName());
400
401 StringRef SubArch = llvm::ARM::getSubArch(CPUArch);
402 llvm::ARM::ProfileKind Profile = llvm::ARM::parseArchProfile(SubArch);
403 return a.isArmT32() && (Profile == llvm::ARM::ProfileKind::M);
404}
405
406bool ARMTargetInfo::validateBranchProtection(StringRef Spec, StringRef Arch,
408 StringRef &Err) const {
409 llvm::ARM::ParsedBranchProtection PBP;
410 if (!llvm::ARM::parseBranchProtection(Spec, PBP, Err))
411 return false;
412
414 return false;
415
416 BPI.SignReturnAddr =
417 llvm::StringSwitch<LangOptions::SignReturnAddressScopeKind>(PBP.Scope)
421
422 // Don't care for the sign key, beyond issuing a warning.
423 if (PBP.Key == "b_key")
424 Err = "b-key";
426
427 BPI.BranchTargetEnforcement = PBP.BranchTargetEnforcement;
428 BPI.BranchProtectionPAuthLR = PBP.BranchProtectionPAuthLR;
429 return true;
430}
431
432// FIXME: This should be based on Arch attributes, not CPU names.
434 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
435 const std::vector<std::string> &FeaturesVec) const {
436
437 std::string ArchFeature;
438 std::vector<StringRef> TargetFeatures;
439 llvm::ARM::ArchKind Arch = llvm::ARM::parseArch(getTriple().getArchName());
440
441 // Map the base architecture to an appropriate target feature, so we don't
442 // rely on the target triple.
443 llvm::ARM::ArchKind CPUArch = llvm::ARM::parseCPUArch(CPU);
444 if (CPUArch == llvm::ARM::ArchKind::INVALID)
445 CPUArch = Arch;
446 if (CPUArch != llvm::ARM::ArchKind::INVALID) {
447 ArchFeature = ("+" + llvm::ARM::getArchName(CPUArch)).str();
448 TargetFeatures.push_back(ArchFeature);
449
450 // These features are added to allow arm_neon.h target(..) attributes to
451 // match with both arm and aarch64. We need to add all previous architecture
452 // versions, so that "8.6" also allows "8.1" functions. In case of v9.x the
453 // v8.x counterparts are added too. We only need these for anything > 8.0-A.
454 for (llvm::ARM::ArchKind I = llvm::ARM::convertV9toV8(CPUArch);
455 I != llvm::ARM::ArchKind::INVALID; --I)
456 Features[llvm::ARM::getSubArch(I)] = true;
457 if (CPUArch > llvm::ARM::ArchKind::ARMV8A &&
458 CPUArch <= llvm::ARM::ArchKind::ARMV9_3A)
459 for (llvm::ARM::ArchKind I = CPUArch; I != llvm::ARM::ArchKind::INVALID;
460 --I)
461 Features[llvm::ARM::getSubArch(I)] = true;
462 }
463
464 // get default FPU features
465 llvm::ARM::FPUKind FPUKind = llvm::ARM::getDefaultFPU(CPU, Arch);
466 llvm::ARM::getFPUFeatures(FPUKind, TargetFeatures);
467
468 // get default Extension features
469 uint64_t Extensions = llvm::ARM::getDefaultExtensions(CPU, Arch);
470 llvm::ARM::getExtensionFeatures(Extensions, TargetFeatures);
471
472 for (auto Feature : TargetFeatures)
473 if (Feature[0] == '+')
474 Features[Feature.drop_front(1)] = true;
475
476 // Enable or disable thumb-mode explicitly per function to enable mixed
477 // ARM and Thumb code generation.
478 if (isThumb())
479 Features["thumb-mode"] = true;
480 else
481 Features["thumb-mode"] = false;
482
483 // Convert user-provided arm and thumb GNU target attributes to
484 // [-|+]thumb-mode target features respectively.
485 std::vector<std::string> UpdatedFeaturesVec;
486 for (const auto &Feature : FeaturesVec) {
487 // Skip soft-float-abi; it's something we only use to initialize a bit of
488 // class state, and is otherwise unrecognized.
489 if (Feature == "+soft-float-abi")
490 continue;
491
492 StringRef FixedFeature;
493 if (Feature == "+arm")
494 FixedFeature = "-thumb-mode";
495 else if (Feature == "+thumb")
496 FixedFeature = "+thumb-mode";
497 else
498 FixedFeature = Feature;
499 UpdatedFeaturesVec.push_back(FixedFeature.str());
500 }
501
502 return TargetInfo::initFeatureMap(Features, Diags, CPU, UpdatedFeaturesVec);
503}
504
505
506bool ARMTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
507 DiagnosticsEngine &Diags) {
508 FPU = 0;
509 MVE = 0;
510 CRC = 0;
511 Crypto = 0;
512 SHA2 = 0;
513 AES = 0;
514 DSP = 0;
515 HasUnalignedAccess = true;
516 SoftFloat = false;
517 // Note that SoftFloatABI is initialized in our constructor.
518 HWDiv = 0;
519 DotProd = 0;
520 HasMatMul = 0;
521 HasPAC = 0;
522 HasBTI = 0;
523 HasFloat16 = true;
525 HasBFloat16 = false;
526 HasFullBFloat16 = false;
527 FPRegsDisabled = false;
528
529 // This does not diagnose illegal cases like having both
530 // "+vfpv2" and "+vfpv3" or having "+neon" and "-fp64".
531 for (const auto &Feature : Features) {
532 if (Feature == "+soft-float") {
533 SoftFloat = true;
534 } else if (Feature == "+vfp2sp" || Feature == "+vfp2") {
535 FPU |= VFP2FPU;
536 HW_FP |= HW_FP_SP;
537 if (Feature == "+vfp2")
538 HW_FP |= HW_FP_DP;
539 } else if (Feature == "+vfp3sp" || Feature == "+vfp3d16sp" ||
540 Feature == "+vfp3" || Feature == "+vfp3d16") {
541 FPU |= VFP3FPU;
542 HW_FP |= HW_FP_SP;
543 if (Feature == "+vfp3" || Feature == "+vfp3d16")
544 HW_FP |= HW_FP_DP;
545 } else if (Feature == "+vfp4sp" || Feature == "+vfp4d16sp" ||
546 Feature == "+vfp4" || Feature == "+vfp4d16") {
547 FPU |= VFP4FPU;
548 HW_FP |= HW_FP_SP | HW_FP_HP;
549 if (Feature == "+vfp4" || Feature == "+vfp4d16")
550 HW_FP |= HW_FP_DP;
551 } else if (Feature == "+fp-armv8sp" || Feature == "+fp-armv8d16sp" ||
552 Feature == "+fp-armv8" || Feature == "+fp-armv8d16") {
553 FPU |= FPARMV8;
554 HW_FP |= HW_FP_SP | HW_FP_HP;
555 if (Feature == "+fp-armv8" || Feature == "+fp-armv8d16")
556 HW_FP |= HW_FP_DP;
557 } else if (Feature == "+neon") {
558 FPU |= NeonFPU;
559 HW_FP |= HW_FP_SP;
560 } else if (Feature == "+hwdiv") {
561 HWDiv |= HWDivThumb;
562 } else if (Feature == "+hwdiv-arm") {
563 HWDiv |= HWDivARM;
564 } else if (Feature == "+crc") {
565 CRC = 1;
566 } else if (Feature == "+crypto") {
567 Crypto = 1;
568 } else if (Feature == "+sha2") {
569 SHA2 = 1;
570 } else if (Feature == "+aes") {
571 AES = 1;
572 } else if (Feature == "+dsp") {
573 DSP = 1;
574 } else if (Feature == "+fp64") {
575 HW_FP |= HW_FP_DP;
576 } else if (Feature == "+8msecext") {
577 if (CPUProfile != "M" || ArchVersion != 8) {
578 Diags.Report(diag::err_target_unsupported_mcmse) << CPU;
579 return false;
580 }
581 } else if (Feature == "+strict-align") {
582 HasUnalignedAccess = false;
583 } else if (Feature == "+fp16") {
584 HW_FP |= HW_FP_HP;
585 } else if (Feature == "+fullfp16") {
586 HasLegalHalfType = true;
587 } else if (Feature == "+dotprod") {
588 DotProd = true;
589 } else if (Feature == "+mve") {
590 MVE |= MVE_INT;
591 } else if (Feature == "+mve.fp") {
592 HasLegalHalfType = true;
593 FPU |= FPARMV8;
594 MVE |= MVE_INT | MVE_FP;
595 HW_FP |= HW_FP_SP | HW_FP_HP;
596 } else if (Feature == "+i8mm") {
597 HasMatMul = 1;
598 } else if (Feature.size() == strlen("+cdecp0") && Feature >= "+cdecp0" &&
599 Feature <= "+cdecp7") {
600 unsigned Coproc = Feature.back() - '0';
601 ARMCDECoprocMask |= (1U << Coproc);
602 } else if (Feature == "+bf16") {
603 HasBFloat16 = true;
604 } else if (Feature == "-fpregs") {
605 FPRegsDisabled = true;
606 } else if (Feature == "+pacbti") {
607 HasPAC = 1;
608 HasBTI = 1;
609 } else if (Feature == "+fullbf16") {
610 HasFullBFloat16 = true;
611 }
612 }
613
614 HalfArgsAndReturns = true;
615
616 switch (ArchVersion) {
617 case 6:
618 if (ArchProfile == llvm::ARM::ProfileKind::M)
619 LDREX = 0;
620 else if (ArchKind == llvm::ARM::ArchKind::ARMV6K)
621 LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
622 else
623 LDREX = LDREX_W;
624 break;
625 case 7:
626 if (ArchProfile == llvm::ARM::ProfileKind::M)
627 LDREX = LDREX_W | LDREX_H | LDREX_B;
628 else
629 LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
630 break;
631 case 8:
632 case 9:
633 LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
634 }
635
636 if (!(FPU & NeonFPU) && FPMath == FP_Neon) {
637 Diags.Report(diag::err_target_unsupported_fpmath) << "neon";
638 return false;
639 }
640
641 if (FPMath == FP_Neon)
642 Features.push_back("+neonfp");
643 else if (FPMath == FP_VFP)
644 Features.push_back("-neonfp");
645
646 return true;
647}
648
649bool ARMTargetInfo::hasFeature(StringRef Feature) const {
650 return llvm::StringSwitch<bool>(Feature)
651 .Case("arm", true)
652 .Case("aarch32", true)
653 .Case("softfloat", SoftFloat)
654 .Case("thumb", isThumb())
655 .Case("neon", (FPU & NeonFPU) && !SoftFloat)
656 .Case("vfp", FPU && !SoftFloat)
657 .Case("hwdiv", HWDiv & HWDivThumb)
658 .Case("hwdiv-arm", HWDiv & HWDivARM)
659 .Case("mve", hasMVE())
660 .Default(false);
661}
662
664 // The __bf16 type is generally available so long as we have any fp registers.
665 return HasBFloat16 || (FPU && !SoftFloat);
666}
667
668bool ARMTargetInfo::isValidCPUName(StringRef Name) const {
669 return Name == "generic" ||
670 llvm::ARM::parseCPUArch(Name) != llvm::ARM::ArchKind::INVALID;
671}
672
674 llvm::ARM::fillValidCPUArchList(Values);
675}
676
677bool ARMTargetInfo::setCPU(const std::string &Name) {
678 if (Name != "generic")
679 setArchInfo(llvm::ARM::parseCPUArch(Name));
680
681 if (ArchKind == llvm::ARM::ArchKind::INVALID)
682 return false;
683 setAtomic();
684 CPU = Name;
685 return true;
686}
687
688bool ARMTargetInfo::setFPMath(StringRef Name) {
689 if (Name == "neon") {
690 FPMath = FP_Neon;
691 return true;
692 } else if (Name == "vfp" || Name == "vfp2" || Name == "vfp3" ||
693 Name == "vfp4") {
694 FPMath = FP_VFP;
695 return true;
696 }
697 return false;
698}
699
701 MacroBuilder &Builder) const {
702 Builder.defineMacro("__ARM_FEATURE_QRDMX", "1");
703}
704
706 MacroBuilder &Builder) const {
707 // Also include the ARMv8.1-A defines
708 getTargetDefinesARMV81A(Opts, Builder);
709}
710
712 MacroBuilder &Builder) const {
713 // Also include the ARMv8.2-A defines
714 Builder.defineMacro("__ARM_FEATURE_COMPLEX", "1");
715 getTargetDefinesARMV82A(Opts, Builder);
716}
717
719 MacroBuilder &Builder) const {
720 // Target identification.
721 Builder.defineMacro("__arm");
722 Builder.defineMacro("__arm__");
723 // For bare-metal none-eabi.
724 if (getTriple().getOS() == llvm::Triple::UnknownOS &&
725 (getTriple().getEnvironment() == llvm::Triple::EABI ||
726 getTriple().getEnvironment() == llvm::Triple::EABIHF) &&
727 Opts.CPlusPlus) {
728 Builder.defineMacro("_GNU_SOURCE");
729 }
730
731 // Target properties.
732 Builder.defineMacro("__REGISTER_PREFIX__", "");
733
734 // Unfortunately, __ARM_ARCH_7K__ is now more of an ABI descriptor. The CPU
735 // happens to be Cortex-A7 though, so it should still get __ARM_ARCH_7A__.
736 if (getTriple().isWatchABI())
737 Builder.defineMacro("__ARM_ARCH_7K__", "2");
738
739 if (!CPUAttr.empty())
740 Builder.defineMacro("__ARM_ARCH_" + CPUAttr + "__");
741
742 // ACLE 6.4.1 ARM/Thumb instruction set architecture
743 // __ARM_ARCH is defined as an integer value indicating the current ARM ISA
744 Builder.defineMacro("__ARM_ARCH", Twine(ArchVersion));
745
746 if (ArchVersion >= 8) {
747 // ACLE 6.5.7 Crypto Extension
748 // The __ARM_FEATURE_CRYPTO is deprecated in favor of finer grained
749 // feature macros for AES and SHA2
750 if (SHA2 && AES)
751 Builder.defineMacro("__ARM_FEATURE_CRYPTO", "1");
752 if (SHA2)
753 Builder.defineMacro("__ARM_FEATURE_SHA2", "1");
754 if (AES)
755 Builder.defineMacro("__ARM_FEATURE_AES", "1");
756 // ACLE 6.5.8 CRC32 Extension
757 if (CRC)
758 Builder.defineMacro("__ARM_FEATURE_CRC32", "1");
759 // ACLE 6.5.10 Numeric Maximum and Minimum
760 Builder.defineMacro("__ARM_FEATURE_NUMERIC_MAXMIN", "1");
761 // ACLE 6.5.9 Directed Rounding
762 Builder.defineMacro("__ARM_FEATURE_DIRECTED_ROUNDING", "1");
763 }
764
765 // __ARM_ARCH_ISA_ARM is defined to 1 if the core supports the ARM ISA. It
766 // is not defined for the M-profile.
767 // NOTE that the default profile is assumed to be 'A'
768 if (CPUProfile.empty() || ArchProfile != llvm::ARM::ProfileKind::M)
769 Builder.defineMacro("__ARM_ARCH_ISA_ARM", "1");
770
771 // __ARM_ARCH_ISA_THUMB is defined to 1 if the core supports the original
772 // Thumb ISA (including v6-M and v8-M Baseline). It is set to 2 if the
773 // core supports the Thumb-2 ISA as found in the v6T2 architecture and all
774 // v7 and v8 architectures excluding v8-M Baseline.
775 if (supportsThumb2())
776 Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "2");
777 else if (supportsThumb())
778 Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "1");
779
780 // __ARM_32BIT_STATE is defined to 1 if code is being generated for a 32-bit
781 // instruction set such as ARM or Thumb.
782 Builder.defineMacro("__ARM_32BIT_STATE", "1");
783
784 // ACLE 6.4.2 Architectural Profile (A, R, M or pre-Cortex)
785
786 // __ARM_ARCH_PROFILE is defined as 'A', 'R', 'M' or 'S', or unset.
787 if (!CPUProfile.empty())
788 Builder.defineMacro("__ARM_ARCH_PROFILE", "'" + CPUProfile + "'");
789
790 // ACLE 6.4.3 Unaligned access supported in hardware
792 Builder.defineMacro("__ARM_FEATURE_UNALIGNED", "1");
793
794 // ACLE 6.4.4 LDREX/STREX
795 if (LDREX)
796 Builder.defineMacro("__ARM_FEATURE_LDREX", "0x" + Twine::utohexstr(LDREX));
797
798 // ACLE 6.4.5 CLZ
799 if (ArchVersion == 5 || (ArchVersion == 6 && CPUProfile != "M") ||
800 ArchVersion > 6)
801 Builder.defineMacro("__ARM_FEATURE_CLZ", "1");
802
803 // ACLE 6.5.1 Hardware Floating Point
804 if (HW_FP)
805 Builder.defineMacro("__ARM_FP", "0x" + Twine::utohexstr(HW_FP));
806
807 // ACLE predefines.
808 Builder.defineMacro("__ARM_ACLE", "200");
809
810 // FP16 support (we currently only support IEEE format).
811 Builder.defineMacro("__ARM_FP16_FORMAT_IEEE", "1");
812 Builder.defineMacro("__ARM_FP16_ARGS", "1");
813
814 // ACLE 6.5.3 Fused multiply-accumulate (FMA)
815 if (ArchVersion >= 7 && (FPU & VFP4FPU))
816 Builder.defineMacro("__ARM_FEATURE_FMA", "1");
817
818 // Subtarget options.
819
820 // FIXME: It's more complicated than this and we don't really support
821 // interworking.
822 // Windows on ARM does not "support" interworking
823 if (5 <= ArchVersion && ArchVersion <= 8 && !getTriple().isOSWindows())
824 Builder.defineMacro("__THUMB_INTERWORK__");
825
826 if (ABI == "aapcs" || ABI == "aapcs-linux" || ABI == "aapcs-vfp") {
827 // Embedded targets on Darwin follow AAPCS, but not EABI.
828 // Windows on ARM follows AAPCS VFP, but does not conform to EABI.
829 if (!getTriple().isOSBinFormatMachO() && !getTriple().isOSWindows())
830 Builder.defineMacro("__ARM_EABI__");
831 Builder.defineMacro("__ARM_PCS", "1");
832 }
833
834 if ((!SoftFloat && !SoftFloatABI) || ABI == "aapcs-vfp" || ABI == "aapcs16")
835 Builder.defineMacro("__ARM_PCS_VFP", "1");
836
837 if (SoftFloat || (SoftFloatABI && !FPU))
838 Builder.defineMacro("__SOFTFP__");
839
840 // ACLE position independent code macros.
841 if (Opts.ROPI)
842 Builder.defineMacro("__ARM_ROPI", "1");
843 if (Opts.RWPI)
844 Builder.defineMacro("__ARM_RWPI", "1");
845
846 // Macros for enabling co-proc intrinsics
847 uint64_t FeatureCoprocBF = 0;
848 switch (ArchKind) {
849 default:
850 break;
851 case llvm::ARM::ArchKind::ARMV4:
852 case llvm::ARM::ArchKind::ARMV4T:
853 // Filter __arm_ldcl and __arm_stcl in acle.h
854 FeatureCoprocBF = isThumb() ? 0 : FEATURE_COPROC_B1;
855 break;
856 case llvm::ARM::ArchKind::ARMV5T:
857 FeatureCoprocBF = isThumb() ? 0 : FEATURE_COPROC_B1 | FEATURE_COPROC_B2;
858 break;
859 case llvm::ARM::ArchKind::ARMV5TE:
860 case llvm::ARM::ArchKind::ARMV5TEJ:
861 if (!isThumb())
862 FeatureCoprocBF =
863 FEATURE_COPROC_B1 | FEATURE_COPROC_B2 | FEATURE_COPROC_B3;
864 break;
865 case llvm::ARM::ArchKind::ARMV6:
866 case llvm::ARM::ArchKind::ARMV6K:
867 case llvm::ARM::ArchKind::ARMV6KZ:
868 case llvm::ARM::ArchKind::ARMV6T2:
869 if (!isThumb() || ArchKind == llvm::ARM::ArchKind::ARMV6T2)
870 FeatureCoprocBF = FEATURE_COPROC_B1 | FEATURE_COPROC_B2 |
871 FEATURE_COPROC_B3 | FEATURE_COPROC_B4;
872 break;
873 case llvm::ARM::ArchKind::ARMV7A:
874 case llvm::ARM::ArchKind::ARMV7R:
875 case llvm::ARM::ArchKind::ARMV7M:
876 case llvm::ARM::ArchKind::ARMV7S:
877 case llvm::ARM::ArchKind::ARMV7EM:
878 FeatureCoprocBF = FEATURE_COPROC_B1 | FEATURE_COPROC_B2 |
879 FEATURE_COPROC_B3 | FEATURE_COPROC_B4;
880 break;
881 case llvm::ARM::ArchKind::ARMV8A:
882 case llvm::ARM::ArchKind::ARMV8R:
883 case llvm::ARM::ArchKind::ARMV8_1A:
884 case llvm::ARM::ArchKind::ARMV8_2A:
885 case llvm::ARM::ArchKind::ARMV8_3A:
886 case llvm::ARM::ArchKind::ARMV8_4A:
887 case llvm::ARM::ArchKind::ARMV8_5A:
888 case llvm::ARM::ArchKind::ARMV8_6A:
889 case llvm::ARM::ArchKind::ARMV8_7A:
890 case llvm::ARM::ArchKind::ARMV8_8A:
891 case llvm::ARM::ArchKind::ARMV8_9A:
892 case llvm::ARM::ArchKind::ARMV9A:
893 case llvm::ARM::ArchKind::ARMV9_1A:
894 case llvm::ARM::ArchKind::ARMV9_2A:
895 case llvm::ARM::ArchKind::ARMV9_3A:
896 case llvm::ARM::ArchKind::ARMV9_4A:
897 case llvm::ARM::ArchKind::ARMV9_5A:
898 case llvm::ARM::ArchKind::ARMV9_6A:
899 // Filter __arm_cdp, __arm_ldcl, __arm_stcl in arm_acle.h
900 FeatureCoprocBF = FEATURE_COPROC_B1 | FEATURE_COPROC_B3;
901 break;
902 case llvm::ARM::ArchKind::ARMV8MMainline:
903 case llvm::ARM::ArchKind::ARMV8_1MMainline:
904 FeatureCoprocBF = FEATURE_COPROC_B1 | FEATURE_COPROC_B2 |
905 FEATURE_COPROC_B3 | FEATURE_COPROC_B4;
906 break;
907 }
908 Builder.defineMacro("__ARM_FEATURE_COPROC",
909 "0x" + Twine::utohexstr(FeatureCoprocBF));
910
911 if (ArchKind == llvm::ARM::ArchKind::XSCALE)
912 Builder.defineMacro("__XSCALE__");
913
914 if (isThumb()) {
915 Builder.defineMacro("__THUMBEL__");
916 Builder.defineMacro("__thumb__");
917 if (supportsThumb2())
918 Builder.defineMacro("__thumb2__");
919 }
920
921 // ACLE 6.4.9 32-bit SIMD instructions
922 if ((CPUProfile != "M" && ArchVersion >= 6) || (CPUProfile == "M" && DSP))
923 Builder.defineMacro("__ARM_FEATURE_SIMD32", "1");
924
925 // ACLE 6.4.10 Hardware Integer Divide
926 if (((HWDiv & HWDivThumb) && isThumb()) ||
927 ((HWDiv & HWDivARM) && !isThumb())) {
928 Builder.defineMacro("__ARM_FEATURE_IDIV", "1");
929 Builder.defineMacro("__ARM_ARCH_EXT_IDIV__", "1");
930 }
931
932 // Note, this is always on in gcc, even though it doesn't make sense.
933 Builder.defineMacro("__APCS_32__");
934
935 // __VFP_FP__ means that the floating-point format is VFP, not that a hardware
936 // FPU is present. Moreover, the VFP format is the only one supported by
937 // clang. For these reasons, this macro is always defined.
938 Builder.defineMacro("__VFP_FP__");
939
940 if (FPUModeIsVFP((FPUMode)FPU)) {
941 if (FPU & VFP2FPU)
942 Builder.defineMacro("__ARM_VFPV2__");
943 if (FPU & VFP3FPU)
944 Builder.defineMacro("__ARM_VFPV3__");
945 if (FPU & VFP4FPU)
946 Builder.defineMacro("__ARM_VFPV4__");
947 if (FPU & FPARMV8)
948 Builder.defineMacro("__ARM_FPV5__");
949 }
950
951 // This only gets set when Neon instructions are actually available, unlike
952 // the VFP define, hence the soft float and arch check. This is subtly
953 // different from gcc, we follow the intent which was that it should be set
954 // when Neon instructions are actually available.
955 if ((FPU & NeonFPU) && !SoftFloat && ArchVersion >= 7) {
956 Builder.defineMacro("__ARM_NEON", "1");
957 Builder.defineMacro("__ARM_NEON__");
958 // current AArch32 NEON implementations do not support double-precision
959 // floating-point even when it is present in VFP.
960 Builder.defineMacro("__ARM_NEON_FP",
961 "0x" + Twine::utohexstr(HW_FP & ~HW_FP_DP));
962 }
963
964 if (hasMVE()) {
965 Builder.defineMacro("__ARM_FEATURE_MVE", hasMVEFloat() ? "3" : "1");
966 }
967
968 if (hasCDE()) {
969 Builder.defineMacro("__ARM_FEATURE_CDE", "1");
970 Builder.defineMacro("__ARM_FEATURE_CDE_COPROC",
971 "0x" + Twine::utohexstr(getARMCDECoprocMask()));
972 }
973
974 Builder.defineMacro("__ARM_SIZEOF_WCHAR_T",
975 Twine(Opts.WCharSize ? Opts.WCharSize : 4));
976
977 Builder.defineMacro("__ARM_SIZEOF_MINIMAL_ENUM", Opts.ShortEnums ? "1" : "4");
978
979 // CMSE
980 if (ArchVersion == 8 && ArchProfile == llvm::ARM::ProfileKind::M)
981 Builder.defineMacro("__ARM_FEATURE_CMSE", Opts.Cmse ? "3" : "1");
982
983 if (ArchVersion >= 6 && CPUAttr != "6M" && CPUAttr != "8M_BASE") {
984 Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
985 Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
986 Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
987 Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
988 }
989
990 // ACLE 6.4.7 DSP instructions
991 if (DSP) {
992 Builder.defineMacro("__ARM_FEATURE_DSP", "1");
993 }
994
995 // ACLE 6.4.8 Saturation instructions
996 bool SAT = false;
997 if ((ArchVersion == 6 && CPUProfile != "M") || ArchVersion > 6) {
998 Builder.defineMacro("__ARM_FEATURE_SAT", "1");
999 SAT = true;
1000 }
1001
1002 // ACLE 6.4.6 Q (saturation) flag
1003 if (DSP || SAT)
1004 Builder.defineMacro("__ARM_FEATURE_QBIT", "1");
1005
1006 if (Opts.UnsafeFPMath)
1007 Builder.defineMacro("__ARM_FP_FAST", "1");
1008
1009 // Armv8.2-A FP16 vector intrinsic
1010 if ((FPU & NeonFPU) && HasLegalHalfType)
1011 Builder.defineMacro("__ARM_FEATURE_FP16_VECTOR_ARITHMETIC", "1");
1012
1013 // Armv8.2-A FP16 scalar intrinsics
1014 if (HasLegalHalfType)
1015 Builder.defineMacro("__ARM_FEATURE_FP16_SCALAR_ARITHMETIC", "1");
1016
1017 // Armv8.2-A dot product intrinsics
1018 if (DotProd)
1019 Builder.defineMacro("__ARM_FEATURE_DOTPROD", "1");
1020
1021 if (HasMatMul)
1022 Builder.defineMacro("__ARM_FEATURE_MATMUL_INT8", "1");
1023
1024 if (HasPAC)
1025 Builder.defineMacro("__ARM_FEATURE_PAUTH", "1");
1026
1027 if (HasBTI)
1028 Builder.defineMacro("__ARM_FEATURE_BTI", "1");
1029
1030 if (HasBFloat16) {
1031 Builder.defineMacro("__ARM_FEATURE_BF16", "1");
1032 Builder.defineMacro("__ARM_FEATURE_BF16_VECTOR_ARITHMETIC", "1");
1033 Builder.defineMacro("__ARM_BF16_FORMAT_ALTERNATIVE", "1");
1034 }
1035
1036 if (Opts.BranchTargetEnforcement)
1037 Builder.defineMacro("__ARM_FEATURE_BTI_DEFAULT", "1");
1038
1039 if (Opts.hasSignReturnAddress()) {
1040 unsigned Value = 1;
1041 if (Opts.isSignReturnAddressScopeAll())
1042 Value |= 1 << 2;
1043 Builder.defineMacro("__ARM_FEATURE_PAC_DEFAULT", Twine(Value));
1044 }
1045
1046 switch (ArchKind) {
1047 default:
1048 break;
1049 case llvm::ARM::ArchKind::ARMV8_1A:
1050 getTargetDefinesARMV81A(Opts, Builder);
1051 break;
1052 case llvm::ARM::ArchKind::ARMV8_2A:
1053 getTargetDefinesARMV82A(Opts, Builder);
1054 break;
1055 case llvm::ARM::ArchKind::ARMV8_3A:
1056 case llvm::ARM::ArchKind::ARMV8_4A:
1057 case llvm::ARM::ArchKind::ARMV8_5A:
1058 case llvm::ARM::ArchKind::ARMV8_6A:
1059 case llvm::ARM::ArchKind::ARMV8_7A:
1060 case llvm::ARM::ArchKind::ARMV8_8A:
1061 case llvm::ARM::ArchKind::ARMV8_9A:
1062 case llvm::ARM::ArchKind::ARMV9A:
1063 case llvm::ARM::ArchKind::ARMV9_1A:
1064 case llvm::ARM::ArchKind::ARMV9_2A:
1065 case llvm::ARM::ArchKind::ARMV9_3A:
1066 case llvm::ARM::ArchKind::ARMV9_4A:
1067 case llvm::ARM::ArchKind::ARMV9_5A:
1068 case llvm::ARM::ArchKind::ARMV9_6A:
1069 getTargetDefinesARMV83A(Opts, Builder);
1070 break;
1071 }
1072}
1073
1074static constexpr Builtin::Info BuiltinInfo[] = {
1075#define BUILTIN(ID, TYPE, ATTRS) \
1076 {#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
1077#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) \
1078 {#ID, TYPE, ATTRS, nullptr, HeaderDesc::HEADER, ALL_LANGUAGES},
1079#define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \
1080 {#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
1081#include "clang/Basic/BuiltinsNEON.def"
1082
1083#define BUILTIN(ID, TYPE, ATTRS) \
1084 {#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
1085#define LANGBUILTIN(ID, TYPE, ATTRS, LANG) \
1086 {#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, LANG},
1087#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) \
1088 {#ID, TYPE, ATTRS, nullptr, HeaderDesc::HEADER, ALL_LANGUAGES},
1089#define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \
1090 {#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
1091#define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE) \
1092 {#ID, TYPE, ATTRS, FEATURE, HeaderDesc::HEADER, LANGS},
1093#include "clang/Basic/BuiltinsARM.def"
1094};
1095
1099}
1100
1101bool ARMTargetInfo::isCLZForZeroUndef() const { return false; }
1103 return IsAAPCS
1107}
1108
1109const char *const ARMTargetInfo::GCCRegNames[] = {
1110 // Integer registers
1111 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
1112 "r12", "sp", "lr", "pc",
1113
1114 // Float registers
1115 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11",
1116 "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21", "s22",
1117 "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
1118
1119 // Double registers
1120 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11",
1121 "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22",
1122 "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
1123
1124 // Quad registers
1125 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9", "q10", "q11",
1126 "q12", "q13", "q14", "q15"};
1127
1129 return llvm::ArrayRef(GCCRegNames);
1130}
1131
1132const TargetInfo::GCCRegAlias ARMTargetInfo::GCCRegAliases[] = {
1133 {{"a1"}, "r0"}, {{"a2"}, "r1"}, {{"a3"}, "r2"}, {{"a4"}, "r3"},
1134 {{"v1"}, "r4"}, {{"v2"}, "r5"}, {{"v3"}, "r6"}, {{"v4"}, "r7"},
1135 {{"v5"}, "r8"}, {{"v6", "rfp"}, "r9"}, {{"sl"}, "r10"}, {{"fp"}, "r11"},
1136 {{"ip"}, "r12"}, {{"r13"}, "sp"}, {{"r14"}, "lr"}, {{"r15"}, "pc"},
1137 // The S, D and Q registers overlap, but aren't really aliases; we
1138 // don't want to substitute one of these for a different-sized one.
1139};
1140
1142 return llvm::ArrayRef(GCCRegAliases);
1143}
1144
1146 const char *&Name, TargetInfo::ConstraintInfo &Info) const {
1147 switch (*Name) {
1148 default:
1149 break;
1150 case 'l': // r0-r7 if thumb, r0-r15 if ARM
1151 Info.setAllowsRegister();
1152 return true;
1153 case 'h': // r8-r15, thumb only
1154 if (isThumb()) {
1155 Info.setAllowsRegister();
1156 return true;
1157 }
1158 break;
1159 case 's': // An integer constant, but allowing only relocatable values.
1160 return true;
1161 case 't': // s0-s31, d0-d31, or q0-q15
1162 case 'w': // s0-s15, d0-d7, or q0-q3
1163 case 'x': // s0-s31, d0-d15, or q0-q7
1164 if (FPRegsDisabled)
1165 return false;
1166 Info.setAllowsRegister();
1167 return true;
1168 case 'j': // An immediate integer between 0 and 65535 (valid for MOVW)
1169 // only available in ARMv6T2 and above
1170 if (CPUAttr == "6T2" || ArchVersion >= 7) {
1171 Info.setRequiresImmediate(0, 65535);
1172 return true;
1173 }
1174 break;
1175 case 'I':
1176 if (isThumb()) {
1177 if (!supportsThumb2())
1178 Info.setRequiresImmediate(0, 255);
1179 else
1180 // FIXME: should check if immediate value would be valid for a Thumb2
1181 // data-processing instruction
1182 Info.setRequiresImmediate();
1183 } else
1184 // FIXME: should check if immediate value would be valid for an ARM
1185 // data-processing instruction
1186 Info.setRequiresImmediate();
1187 return true;
1188 case 'J':
1189 if (isThumb() && !supportsThumb2())
1190 Info.setRequiresImmediate(-255, -1);
1191 else
1192 Info.setRequiresImmediate(-4095, 4095);
1193 return true;
1194 case 'K':
1195 if (isThumb()) {
1196 if (!supportsThumb2())
1197 // FIXME: should check if immediate value can be obtained from shifting
1198 // a value between 0 and 255 left by any amount
1199 Info.setRequiresImmediate();
1200 else
1201 // FIXME: should check if immediate value would be valid for a Thumb2
1202 // data-processing instruction when inverted
1203 Info.setRequiresImmediate();
1204 } else
1205 // FIXME: should check if immediate value would be valid for an ARM
1206 // data-processing instruction when inverted
1207 Info.setRequiresImmediate();
1208 return true;
1209 case 'L':
1210 if (isThumb()) {
1211 if (!supportsThumb2())
1212 Info.setRequiresImmediate(-7, 7);
1213 else
1214 // FIXME: should check if immediate value would be valid for a Thumb2
1215 // data-processing instruction when negated
1216 Info.setRequiresImmediate();
1217 } else
1218 // FIXME: should check if immediate value would be valid for an ARM
1219 // data-processing instruction when negated
1220 Info.setRequiresImmediate();
1221 return true;
1222 case 'M':
1223 if (isThumb() && !supportsThumb2())
1224 // FIXME: should check if immediate value is a multiple of 4 between 0 and
1225 // 1020
1226 Info.setRequiresImmediate();
1227 else
1228 // FIXME: should check if immediate value is a power of two or a integer
1229 // between 0 and 32
1230 Info.setRequiresImmediate();
1231 return true;
1232 case 'N':
1233 // Thumb1 only
1234 if (isThumb() && !supportsThumb2()) {
1235 Info.setRequiresImmediate(0, 31);
1236 return true;
1237 }
1238 break;
1239 case 'O':
1240 // Thumb1 only
1241 if (isThumb() && !supportsThumb2()) {
1242 // FIXME: should check if immediate value is a multiple of 4 between -508
1243 // and 508
1244 Info.setRequiresImmediate();
1245 return true;
1246 }
1247 break;
1248 case 'Q': // A memory address that is a single base register.
1249 Info.setAllowsMemory();
1250 return true;
1251 case 'T':
1252 switch (Name[1]) {
1253 default:
1254 break;
1255 case 'e': // Even general-purpose register
1256 case 'o': // Odd general-purpose register
1257 Info.setAllowsRegister();
1258 Name++;
1259 return true;
1260 }
1261 break;
1262 case 'U': // a memory reference...
1263 switch (Name[1]) {
1264 case 'q': // ...ARMV4 ldrsb
1265 case 'v': // ...VFP load/store (reg+constant offset)
1266 case 'y': // ...iWMMXt load/store
1267 case 't': // address valid for load/store opaque types wider
1268 // than 128-bits
1269 case 'n': // valid address for Neon doubleword vector load/store
1270 case 'm': // valid address for Neon element and structure load/store
1271 case 's': // valid address for non-offset loads/stores of quad-word
1272 // values in four ARM registers
1273 Info.setAllowsMemory();
1274 Name++;
1275 return true;
1276 }
1277 break;
1278 }
1279 return false;
1280}
1281
1282std::string ARMTargetInfo::convertConstraint(const char *&Constraint) const {
1283 std::string R;
1284 switch (*Constraint) {
1285 case 'U': // Two-character constraint; add "^" hint for later parsing.
1286 case 'T':
1287 R = std::string("^") + std::string(Constraint, 2);
1288 Constraint++;
1289 break;
1290 case 'p': // 'p' should be translated to 'r' by default.
1291 R = std::string("r");
1292 break;
1293 default:
1294 return std::string(1, *Constraint);
1295 }
1296 return R;
1297}
1298
1300 StringRef Constraint, char Modifier, unsigned Size,
1301 std::string &SuggestedModifier) const {
1302 bool isOutput = (Constraint[0] == '=');
1303 bool isInOut = (Constraint[0] == '+');
1304
1305 // Strip off constraint modifiers.
1306 Constraint = Constraint.ltrim("=+&");
1307
1308 switch (Constraint[0]) {
1309 default:
1310 break;
1311 case 'r': {
1312 switch (Modifier) {
1313 default:
1314 return (isInOut || isOutput || Size <= 64);
1315 case 'q':
1316 // A register of size 32 cannot fit a vector type.
1317 return false;
1318 }
1319 }
1320 }
1321
1322 return true;
1323}
1324std::string_view ARMTargetInfo::getClobbers() const {
1325 // FIXME: Is this really right?
1326 return "";
1327}
1328
1331 switch (CC) {
1332 case CC_AAPCS:
1333 case CC_AAPCS_VFP:
1334 case CC_Swift:
1335 case CC_SwiftAsync:
1336 case CC_OpenCLKernel:
1337 return CCCR_OK;
1338 default:
1339 return CCCR_Warning;
1340 }
1341}
1342
1344 if (RegNo == 0)
1345 return 0;
1346 if (RegNo == 1)
1347 return 1;
1348 return -1;
1349}
1350
1351bool ARMTargetInfo::hasSjLjLowering() const { return true; }
1352
1353ARMleTargetInfo::ARMleTargetInfo(const llvm::Triple &Triple,
1354 const TargetOptions &Opts)
1355 : ARMTargetInfo(Triple, Opts) {}
1356
1358 MacroBuilder &Builder) const {
1359 Builder.defineMacro("__ARMEL__");
1360 ARMTargetInfo::getTargetDefines(Opts, Builder);
1361}
1362
1363ARMbeTargetInfo::ARMbeTargetInfo(const llvm::Triple &Triple,
1364 const TargetOptions &Opts)
1365 : ARMTargetInfo(Triple, Opts) {}
1366
1368 MacroBuilder &Builder) const {
1369 Builder.defineMacro("__ARMEB__");
1370 Builder.defineMacro("__ARM_BIG_ENDIAN");
1371 ARMTargetInfo::getTargetDefines(Opts, Builder);
1372}
1373
1375 const TargetOptions &Opts)
1376 : WindowsTargetInfo<ARMleTargetInfo>(Triple, Opts), Triple(Triple) {
1377}
1378
1380 MacroBuilder &Builder) const {
1381 // FIXME: this is invalid for WindowsCE
1382 Builder.defineMacro("_M_ARM_NT", "1");
1383 Builder.defineMacro("_M_ARMT", "_M_ARM");
1384 Builder.defineMacro("_M_THUMB", "_M_ARM");
1385
1386 assert((Triple.getArch() == llvm::Triple::arm ||
1387 Triple.getArch() == llvm::Triple::thumb) &&
1388 "invalid architecture for Windows ARM target info");
1389 unsigned Offset = Triple.getArch() == llvm::Triple::arm ? 4 : 6;
1390 Builder.defineMacro("_M_ARM", Triple.getArchName().substr(Offset));
1391
1392 // TODO map the complete set of values
1393 // 31: VFPv3 40: VFPv4
1394 Builder.defineMacro("_M_ARM_FP", "31");
1395}
1396
1400}
1401
1404 switch (CC) {
1405 case CC_X86StdCall:
1406 case CC_X86ThisCall:
1407 case CC_X86FastCall:
1408 case CC_X86VectorCall:
1409 return CCCR_Ignore;
1410 case CC_C:
1411 case CC_OpenCLKernel:
1412 case CC_PreserveMost:
1413 case CC_PreserveAll:
1414 case CC_Swift:
1415 case CC_SwiftAsync:
1416 return CCCR_OK;
1417 default:
1418 return CCCR_Warning;
1419 }
1420}
1421
1422// Windows ARM + Itanium C++ ABI Target
1424 const llvm::Triple &Triple, const TargetOptions &Opts)
1425 : WindowsARMTargetInfo(Triple, Opts) {
1426 TheCXXABI.set(TargetCXXABI::GenericARM);
1427}
1428
1430 const LangOptions &Opts, MacroBuilder &Builder) const {
1432
1433 if (Opts.MSVCCompat)
1435}
1436
1437// Windows ARM, MS (C++) ABI
1439 const TargetOptions &Opts)
1440 : WindowsARMTargetInfo(Triple, Opts) {
1441 TheCXXABI.set(TargetCXXABI::Microsoft);
1442}
1443
1445 MacroBuilder &Builder) const {
1448}
1449
1451 const TargetOptions &Opts)
1452 : WindowsARMTargetInfo(Triple, Opts) {
1453 TheCXXABI.set(TargetCXXABI::GenericARM);
1454}
1455
1457 MacroBuilder &Builder) const {
1459 Builder.defineMacro("_ARM_");
1460}
1461
1463 const TargetOptions &Opts)
1464 : ARMleTargetInfo(Triple, Opts) {
1466 TLSSupported = false;
1468 resetDataLayout("e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64");
1469}
1470
1472 MacroBuilder &Builder) const {
1473 ARMleTargetInfo::getTargetDefines(Opts, Builder);
1474 Builder.defineMacro("_ARM_");
1475 Builder.defineMacro("__CYGWIN__");
1476 Builder.defineMacro("__CYGWIN32__");
1477 DefineStd(Builder, "unix", Opts);
1478 if (Opts.CPlusPlus)
1479 Builder.defineMacro("_GNU_SOURCE");
1480}
1481
1483 const TargetOptions &Opts)
1484 : DarwinTargetInfo<ARMleTargetInfo>(Triple, Opts) {
1485 HasAlignMac68kSupport = true;
1486 if (Triple.isWatchABI()) {
1487 // Darwin on iOS uses a variant of the ARM C++ ABI.
1488 TheCXXABI.set(TargetCXXABI::WatchOS);
1489
1490 // BOOL should be a real boolean on the new ABI
1491 UseSignedCharForObjCBool = false;
1492 } else
1493 TheCXXABI.set(TargetCXXABI::iOS);
1494}
1495
1497 const llvm::Triple &Triple,
1498 MacroBuilder &Builder) const {
1499 getDarwinDefines(Builder, Opts, Triple, PlatformName, PlatformMinVersion);
1500}
Defines the Diagnostic-related interfaces.
static constexpr Builtin::Info BuiltinInfo[]
Definition: Builtins.cpp:32
Defines enum values for all the target-independent builtin functions.
Enumerates target-specific builtins in their own namespaces within namespace clang.
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:231
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1493
@ NonLeaf
Sign the return address of functions that spill LR.
@ All
Sign the return address of all functions,.
@ AKey
Return address signing uses APIA key.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:499
bool hasSignReturnAddress() const
Check if return address signing is enabled.
Definition: LangOptions.h:741
bool isSignReturnAddressScopeAll() const
Check if leaf functions are also signed.
Definition: LangOptions.h:751
void set(Kind kind)
Definition: TargetCXXABI.h:76
LangOptions::SignReturnAddressScopeKind SignReturnAddr
Definition: TargetInfo.h:1411
LangOptions::SignReturnAddressKeyKind SignKey
Definition: TargetInfo.h:1412
Exposes information about the current target.
Definition: TargetInfo.h:220
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1262
void resetDataLayout(StringRef DL, const char *UserLabelPrefix="")
Definition: TargetInfo.cpp:190
BuiltinVaListKind
The different kinds of __builtin_va_list types defined by the target implementation.
Definition: TargetInfo.h:318
@ AAPCSABIBuiltinVaList
__builtin_va_list as defined by ARM AAPCS ABI http://infocenter.arm.com
Definition: TargetInfo.h:345
@ CharPtrBuiltinVaList
typedef char* __builtin_va_list;
Definition: TargetInfo.h:320
@ VoidPtrBuiltinVaList
typedef void* __builtin_va_list;
Definition: TargetInfo.h:323
const char * MCountName
Definition: TargetInfo.h:247
unsigned HasUnalignedAccess
Definition: TargetInfo.h:275
unsigned char MaxAtomicPromoteWidth
Definition: TargetInfo.h:244
uint32_t getARMCDECoprocMask() const
For ARM targets returns a mask defining which coprocessors are configured as Custom Datapath.
Definition: TargetInfo.h:1058
virtual bool initFeatureMap(llvm::StringMap< bool > &Features, DiagnosticsEngine &Diags, StringRef CPU, const std::vector< std::string > &FeatureVec) const
Initialize the map with the default set of target features for the CPU this should include all legal ...
Definition: TargetInfo.cpp:549
unsigned char MaxAtomicInlineWidth
Definition: TargetInfo.h:244
TargetCXXABI TheCXXABI
Definition: TargetInfo.h:249
unsigned ARMCDECoprocMask
Definition: TargetInfo.h:277
Options for controlling the target.
Definition: TargetOptions.h:26
llvm::EABI EABIVersion
The EABI version to use.
Definition: TargetOptions.h:48
std::vector< std::string > FeaturesAsWritten
The list of target specific features to enable or disable, as written on the command line.
Definition: TargetOptions.h:54
std::string_view getClobbers() const override
Returns a string of target-specific clobbers, in LLVM format.
Definition: ARM.cpp:1324
void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override
===-— Other target property query methods -----------------------—===//
Definition: ARM.cpp:718
CallingConvCheckResult checkCallingConvention(CallingConv CC) const override
Determines whether a given calling convention is valid for the target.
Definition: ARM.cpp:1330
ArrayRef< Builtin::Info > getTargetBuiltins() const override
Return information about target-specific builtins for the current primary target, and info about whic...
Definition: ARM.cpp:1096
void getTargetDefinesARMV83A(const LangOptions &Opts, MacroBuilder &Builder) const
Definition: ARM.cpp:711
bool isValidCPUName(StringRef Name) const override
Determine whether this TargetInfo supports the given CPU name.
Definition: ARM.cpp:668
BuiltinVaListKind getBuiltinVaListKind() const override
Returns the kind of __builtin_va_list type that should be used with this target.
Definition: ARM.cpp:1102
bool initFeatureMap(llvm::StringMap< bool > &Features, DiagnosticsEngine &Diags, StringRef CPU, const std::vector< std::string > &FeaturesVec) const override
Initialize the map with the default set of target features for the CPU this should include all legal ...
Definition: ARM.cpp:433
bool handleTargetFeatures(std::vector< std::string > &Features, DiagnosticsEngine &Diags) override
Perform initialization based on the user configured set of features (e.g., +sse4).
Definition: ARM.cpp:506
bool setABI(const std::string &Name) override
Use the specified ABI.
Definition: ARM.cpp:370
StringRef getABI() const override
Get the ABI currently in use.
Definition: ARM.cpp:368
bool setCPU(const std::string &Name) override
Target the specified CPU.
Definition: ARM.cpp:677
bool hasFeature(StringRef Feature) const override
Determine whether the given target has the given feature.
Definition: ARM.cpp:649
void getTargetDefinesARMV81A(const LangOptions &Opts, MacroBuilder &Builder) const
Definition: ARM.cpp:700
bool validateConstraintModifier(StringRef Constraint, char Modifier, unsigned Size, std::string &SuggestedModifier) const override
Definition: ARM.cpp:1299
ArrayRef< const char * > getGCCRegNames() const override
Definition: ARM.cpp:1128
bool validateBranchProtection(StringRef Spec, StringRef Arch, BranchProtectionInfo &BPI, StringRef &Err) const override
Determine if this TargetInfo supports the given branch protection specification.
Definition: ARM.cpp:406
bool setFPMath(StringRef Name) override
Use the specified unit for FP math.
Definition: ARM.cpp:688
std::string convertConstraint(const char *&Constraint) const override
Definition: ARM.cpp:1282
bool validateAsmConstraint(const char *&Name, TargetInfo::ConstraintInfo &Info) const override
Definition: ARM.cpp:1145
void getTargetDefinesARMV82A(const LangOptions &Opts, MacroBuilder &Builder) const
Definition: ARM.cpp:705
ARMTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
Definition: ARM.cpp:257
bool hasSjLjLowering() const override
Controls if __builtin_longjmp / __builtin_setjmp can be lowered to llvm.eh.sjlj.longjmp / llvm....
Definition: ARM.cpp:1351
void fillValidCPUList(SmallVectorImpl< StringRef > &Values) const override
Fill a SmallVectorImpl with the valid values to setCPU.
Definition: ARM.cpp:673
int getEHDataRegisterNumber(unsigned RegNo) const override
Return the register number that __builtin_eh_return_regno would return with the specified argument.
Definition: ARM.cpp:1343
bool hasBFloat16Type() const override
Determine whether the _BFloat16 type is supported on this target.
Definition: ARM.cpp:663
bool isCLZForZeroUndef() const override
The __builtin_clz* and __builtin_ctz* built-in functions are specified to have undefined results for ...
Definition: ARM.cpp:1101
ArrayRef< TargetInfo::GCCRegAlias > getGCCRegAliases() const override
Definition: ARM.cpp:1141
bool isBranchProtectionSupportedArch(StringRef Arch) const override
Determine if the Architecture in this TargetInfo supports branch protection.
Definition: ARM.cpp:388
void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override
===-— Other target property query methods -----------------------—===//
Definition: ARM.cpp:1367
ARMbeTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
Definition: ARM.cpp:1363
ARMleTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
Definition: ARM.cpp:1353
void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override
===-— Other target property query methods -----------------------—===//
Definition: ARM.cpp:1357
void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override
===-— Other target property query methods -----------------------—===//
Definition: ARM.cpp:1471
CygwinARMTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
Definition: ARM.cpp:1462
DarwinARMTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
Definition: ARM.cpp:1482
void getOSDefines(const LangOptions &Opts, const llvm::Triple &Triple, MacroBuilder &Builder) const override
Definition: ARM.cpp:1496
void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override
Definition: ARM.cpp:1429
ItaniumWindowsARMleTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
Definition: ARM.cpp:1423
void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override
Definition: ARM.cpp:1444
MicrosoftARMleTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
Definition: ARM.cpp:1438
MinGWARMTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
Definition: ARM.cpp:1450
void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override
Definition: ARM.cpp:1456
void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override
Definition: OSTargets.h:30
CallingConvCheckResult checkCallingConvention(CallingConv CC) const override
Definition: ARM.cpp:1403
BuiltinVaListKind getBuiltinVaListKind() const override
Definition: ARM.cpp:1398
void getVisualStudioDefines(const LangOptions &Opts, MacroBuilder &Builder) const
Definition: ARM.cpp:1379
WindowsARMTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
Definition: ARM.cpp:1374
LLVM_LIBRARY_VISIBILITY void DefineStd(clang::MacroBuilder &Builder, llvm::StringRef MacroName, const clang::LangOptions &Opts)
Define a macro name and standard variants.
void getDarwinDefines(MacroBuilder &Builder, const LangOptions &Opts, const llvm::Triple &Triple, StringRef &PlatformName, VersionTuple &PlatformMinVersion)
Definition: OSTargets.cpp:22
The JSON file list parser is used to communicate input to InstallAPI.
const FunctionProtoType * T
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:278
@ CC_Swift
Definition: Specifiers.h:293
@ CC_OpenCLKernel
Definition: Specifiers.h:292
@ CC_PreserveMost
Definition: Specifiers.h:295
@ CC_X86ThisCall
Definition: Specifiers.h:282
@ CC_AAPCS
Definition: Specifiers.h:288
@ CC_C
Definition: Specifiers.h:279
@ CC_SwiftAsync
Definition: Specifiers.h:294
@ CC_X86VectorCall
Definition: Specifiers.h:283
@ CC_X86StdCall
Definition: Specifiers.h:280
@ CC_PreserveAll
Definition: Specifiers.h:296
@ CC_X86FastCall
Definition: Specifiers.h:281
@ CC_AAPCS_VFP
Definition: Specifiers.h:289
#define true
Definition: stdbool.h:25
void setRequiresImmediate(int Min, int Max)
Definition: TargetInfo.h:1159
unsigned UseZeroLengthBitfieldAlignment
Whether zero length bitfields (e.g., int : 0;) force alignment of the next bitfield.
Definition: TargetInfo.h:185
unsigned ZeroLengthBitfieldBoundary
If non-zero, specifies a fixed alignment value for bitfields that follow zero length bitfield,...
Definition: TargetInfo.h:198
unsigned UseBitFieldTypeAlignment
Control whether the alignment of bit-field types is respected when laying out structures.
Definition: TargetInfo.h:176
const llvm::fltSemantics * BFloat16Format
Definition: TargetInfo.h:140
unsigned char DefaultAlignForAttributeAligned
Definition: TargetInfo.h:132