clang 19.0.0git
BugReporterVisitors.cpp
Go to the documentation of this file.
1//===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a set of BugReporter "visitors" which can be used to
10// enhance the diagnostics reported for a bug.
11//
12//===----------------------------------------------------------------------===//
13
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclBase.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/Type.h"
27#include "clang/Analysis/CFG.h"
32#include "clang/Basic/LLVM.h"
35#include "clang/Lex/Lexer.h"
48#include "llvm/ADT/ArrayRef.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SmallPtrSet.h"
51#include "llvm/ADT/SmallString.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/ADT/StringRef.h"
55#include "llvm/Support/Casting.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/raw_ostream.h"
58#include <cassert>
59#include <deque>
60#include <memory>
61#include <optional>
62#include <string>
63#include <utility>
64
65using namespace clang;
66using namespace ento;
67using namespace bugreporter;
68
69//===----------------------------------------------------------------------===//
70// Utility functions.
71//===----------------------------------------------------------------------===//
72
74 if (B->isAdditiveOp() && B->getType()->isPointerType()) {
75 if (B->getLHS()->getType()->isPointerType()) {
76 return B->getLHS();
77 } else if (B->getRHS()->getType()->isPointerType()) {
78 return B->getRHS();
79 }
80 }
81 return nullptr;
82}
83
84/// \return A subexpression of @c Ex which represents the
85/// expression-of-interest.
86static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N);
87
88/// Given that expression S represents a pointer that would be dereferenced,
89/// try to find a sub-expression from which the pointer came from.
90/// This is used for tracking down origins of a null or undefined value:
91/// "this is null because that is null because that is null" etc.
92/// We wipe away field and element offsets because they merely add offsets.
93/// We also wipe away all casts except lvalue-to-rvalue casts, because the
94/// latter represent an actual pointer dereference; however, we remove
95/// the final lvalue-to-rvalue cast before returning from this function
96/// because it demonstrates more clearly from where the pointer rvalue was
97/// loaded. Examples:
98/// x->y.z ==> x (lvalue)
99/// foo()->y.z ==> foo() (rvalue)
101 const auto *E = dyn_cast<Expr>(S);
102 if (!E)
103 return nullptr;
104
105 while (true) {
106 if (const auto *CE = dyn_cast<CastExpr>(E)) {
107 if (CE->getCastKind() == CK_LValueToRValue) {
108 // This cast represents the load we're looking for.
109 break;
110 }
111 E = CE->getSubExpr();
112 } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
113 // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
114 if (const Expr *Inner = peelOffPointerArithmetic(B)) {
115 E = Inner;
116 } else if (B->isAssignmentOp()) {
117 // Follow LHS of assignments: '*p = 404' -> 'p'.
118 E = B->getLHS();
119 } else {
120 // Probably more arithmetic can be pattern-matched here,
121 // but for now give up.
122 break;
123 }
124 } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
125 if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
126 (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
127 // Operators '*' and '&' don't actually mean anything.
128 // We look at casts instead.
129 E = U->getSubExpr();
130 } else {
131 // Probably more arithmetic can be pattern-matched here,
132 // but for now give up.
133 break;
134 }
135 }
136 // Pattern match for a few useful cases: a[0], p->f, *p etc.
137 else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
138 // This handles the case when the dereferencing of a member reference
139 // happens. This is needed, because the AST for dereferencing a
140 // member reference looks like the following:
141 // |-MemberExpr
142 // `-DeclRefExpr
143 // Without this special case the notes would refer to the whole object
144 // (struct, class or union variable) instead of just the relevant member.
145
146 if (ME->getMemberDecl()->getType()->isReferenceType())
147 break;
148 E = ME->getBase();
149 } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
150 E = IvarRef->getBase();
151 } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
152 E = AE->getBase();
153 } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
154 E = PE->getSubExpr();
155 } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
156 E = FE->getSubExpr();
157 } else {
158 // Other arbitrary stuff.
159 break;
160 }
161 }
162
163 // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
164 // deeper into the sub-expression. This way we return the lvalue from which
165 // our pointer rvalue was loaded.
166 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
167 if (CE->getCastKind() == CK_LValueToRValue)
168 E = CE->getSubExpr();
169
170 return E;
171}
172
173static const VarDecl *getVarDeclForExpression(const Expr *E) {
174 if (const auto *DR = dyn_cast<DeclRefExpr>(E))
175 return dyn_cast<VarDecl>(DR->getDecl());
176 return nullptr;
177}
178
179static const MemRegion *
181 bool LookingForReference = true) {
182 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
183 // This handles null references from FieldRegions, for example:
184 // struct Wrapper { int &ref; };
185 // Wrapper w = { *(int *)0 };
186 // w.ref = 1;
187 const Expr *Base = ME->getBase();
189 if (!VD)
190 return nullptr;
191
192 const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
193 if (!FD)
194 return nullptr;
195
196 if (FD->getType()->isReferenceType()) {
197 SVal StructSVal = N->getState()->getLValue(VD, N->getLocationContext());
198 return N->getState()->getLValue(FD, StructSVal).getAsRegion();
199 }
200 return nullptr;
201 }
202
203 const VarDecl *VD = getVarDeclForExpression(E);
204 if (!VD)
205 return nullptr;
206 if (LookingForReference && !VD->getType()->isReferenceType())
207 return nullptr;
208 return N->getState()->getLValue(VD, N->getLocationContext()).getAsRegion();
209}
210
211/// Comparing internal representations of symbolic values (via
212/// SVal::operator==()) is a valid way to check if the value was updated,
213/// unless it's a LazyCompoundVal that may have a different internal
214/// representation every time it is loaded from the state. In this function we
215/// do an approximate comparison for lazy compound values, checking that they
216/// are the immediate snapshots of the tracked region's bindings within the
217/// node's respective states but not really checking that these snapshots
218/// actually contain the same set of bindings.
219static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
220 const ExplodedNode *RightNode, SVal RightVal) {
221 if (LeftVal == RightVal)
222 return true;
223
224 const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
225 if (!LLCV)
226 return false;
227
228 const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
229 if (!RLCV)
230 return false;
231
232 return LLCV->getRegion() == RLCV->getRegion() &&
233 LLCV->getStore() == LeftNode->getState()->getStore() &&
234 RLCV->getStore() == RightNode->getState()->getStore();
235}
236
237static std::optional<SVal> getSValForVar(const Expr *CondVarExpr,
238 const ExplodedNode *N) {
239 ProgramStateRef State = N->getState();
240 const LocationContext *LCtx = N->getLocationContext();
241
242 assert(CondVarExpr);
243 CondVarExpr = CondVarExpr->IgnoreImpCasts();
244
245 // The declaration of the value may rely on a pointer so take its l-value.
246 // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
247 // evaluate to a FieldRegion when it refers to a declaration of a lambda
248 // capture variable. We most likely need to duplicate that logic here.
249 if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
250 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
251 return State->getSVal(State->getLValue(VD, LCtx));
252
253 if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
254 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
255 if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
256 return State->getRawSVal(*FieldL, FD->getType());
257
258 return std::nullopt;
259}
260
261static std::optional<const llvm::APSInt *>
262getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
263
264 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
265 if (auto CI = V->getAs<nonloc::ConcreteInt>())
266 return &CI->getValue();
267 return std::nullopt;
268}
269
270static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
271 const ExplodedNode *N,
272 const PathSensitiveBugReport *B) {
273 // Even if this condition is marked as interesting, it isn't *that*
274 // interesting if it didn't happen in a nested stackframe, the user could just
275 // follow the arrows.
277 return false;
278
279 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
280 if (std::optional<bugreporter::TrackingKind> K =
282 return *K == bugreporter::TrackingKind::Condition;
283
284 return false;
285}
286
287static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
288 const PathSensitiveBugReport *B) {
289 if (std::optional<SVal> V = getSValForVar(E, N))
290 return B->getInterestingnessKind(*V).has_value();
291 return false;
292}
293
294/// \return name of the macro inside the location \p Loc.
296 BugReporterContext &BRC) {
298 Loc,
299 BRC.getSourceManager(),
300 BRC.getASTContext().getLangOpts());
301}
302
303/// \return Whether given spelling location corresponds to an expansion
304/// of a function-like macro.
306 const SourceManager &SM) {
307 if (!Loc.isMacroID())
308 return false;
309 while (SM.isMacroArgExpansion(Loc))
310 Loc = SM.getImmediateExpansionRange(Loc).getBegin();
311 std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
312 SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
313 const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
314 return EInfo.isFunctionMacroExpansion();
315}
316
317/// \return Whether \c RegionOfInterest was modified at \p N,
318/// where \p ValueAfter is \c RegionOfInterest's value at the end of the
319/// stack frame.
320static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
321 const ExplodedNode *N,
322 SVal ValueAfter) {
323 ProgramStateRef State = N->getState();
324 ProgramStateManager &Mgr = N->getState()->getStateManager();
325
327 !N->getLocationAs<PostStmt>())
328 return false;
329
330 // Writing into region of interest.
331 if (auto PS = N->getLocationAs<PostStmt>())
332 if (auto *BO = PS->getStmtAs<BinaryOperator>())
333 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
334 N->getSVal(BO->getLHS()).getAsRegion()))
335 return true;
336
337 // SVal after the state is possibly different.
338 SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
339 if (!Mgr.getSValBuilder()
340 .areEqual(State, ValueAtN, ValueAfter)
342 (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
343 return true;
344
345 return false;
346}
347
348//===----------------------------------------------------------------------===//
349// Implementation of BugReporterVisitor.
350//===----------------------------------------------------------------------===//
351
353 const ExplodedNode *,
355 return nullptr;
356}
357
359 const ExplodedNode *,
361
364 const ExplodedNode *EndPathNode,
365 const PathSensitiveBugReport &BR) {
367 const auto &Ranges = BR.getRanges();
368
369 // Only add the statement itself as a range if we didn't specify any
370 // special ranges for this report.
371 auto P = std::make_shared<PathDiagnosticEventPiece>(
372 L, BR.getDescription(), Ranges.begin() == Ranges.end());
373 for (SourceRange Range : Ranges)
374 P->addRange(Range);
375
376 return P;
377}
378
379//===----------------------------------------------------------------------===//
380// Implementation of NoStateChangeFuncVisitor.
381//===----------------------------------------------------------------------===//
382
383bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
384 const LocationContext *Ctx = N->getLocationContext();
385 const StackFrameContext *SCtx = Ctx->getStackFrame();
386 if (!FramesModifyingCalculated.count(SCtx))
387 findModifyingFrames(N);
388 return FramesModifying.count(SCtx);
389}
390
391void NoStateChangeFuncVisitor::markFrameAsModifying(
392 const StackFrameContext *SCtx) {
393 while (!SCtx->inTopFrame()) {
394 auto p = FramesModifying.insert(SCtx);
395 if (!p.second)
396 break; // Frame and all its parents already inserted.
397
398 SCtx = SCtx->getParent()->getStackFrame();
399 }
400}
401
403 assert(N->getLocationAs<CallEnter>());
404 // The stackframe of the callee is only found in the nodes succeeding
405 // the CallEnter node. CallEnter's stack frame refers to the caller.
406 const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
407
408 // Similarly, the nodes preceding CallExitEnd refer to the callee's stack
409 // frame.
410 auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
411 return N->getLocationAs<CallExitEnd>() &&
412 OrigSCtx == N->getFirstPred()->getStackFrame();
413 };
414 while (N && !IsMatchingCallExitEnd(N)) {
415 assert(N->succ_size() <= 1 &&
416 "This function is to be used on the trimmed ExplodedGraph!");
417 N = N->getFirstSucc();
418 }
419 return N;
420}
421
422void NoStateChangeFuncVisitor::findModifyingFrames(
423 const ExplodedNode *const CallExitBeginN) {
424
425 assert(CallExitBeginN->getLocationAs<CallExitBegin>());
426
427 const StackFrameContext *const OriginalSCtx =
428 CallExitBeginN->getLocationContext()->getStackFrame();
429
430 const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
431 const StackFrameContext *CurrentSCtx = OriginalSCtx;
432
433 for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
434 CurrN = CurrN->getFirstPred()) {
435 // Found a new inlined call.
436 if (CurrN->getLocationAs<CallExitBegin>()) {
437 CurrCallExitBeginN = CurrN;
438 CurrentSCtx = CurrN->getStackFrame();
439 FramesModifyingCalculated.insert(CurrentSCtx);
440 // We won't see a change in between two identical exploded nodes: skip.
441 continue;
442 }
443
444 if (auto CE = CurrN->getLocationAs<CallEnter>()) {
445 if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
446 if (wasModifiedInFunction(CurrN, CallExitEndN))
447 markFrameAsModifying(CurrentSCtx);
448
449 // We exited this inlined call, lets actualize the stack frame.
450 CurrentSCtx = CurrN->getStackFrame();
451
452 // Stop calculating at the current function, but always regard it as
453 // modifying, so we can avoid notes like this:
454 // void f(Foo &F) {
455 // F.field = 0; // note: 0 assigned to 'F.field'
456 // // note: returning without writing to 'F.field'
457 // }
458 if (CE->getCalleeContext() == OriginalSCtx) {
459 markFrameAsModifying(CurrentSCtx);
460 break;
461 }
462 }
463
464 if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
465 markFrameAsModifying(CurrentSCtx);
466 }
467}
468
471
472 const LocationContext *Ctx = N->getLocationContext();
473 const StackFrameContext *SCtx = Ctx->getStackFrame();
474 ProgramStateRef State = N->getState();
475 auto CallExitLoc = N->getLocationAs<CallExitBegin>();
476
477 // No diagnostic if region was modified inside the frame.
478 if (!CallExitLoc || isModifiedInFrame(N))
479 return nullptr;
480
483
484 // Optimistically suppress uninitialized value bugs that result
485 // from system headers having a chance to initialize the value
486 // but failing to do so. It's too unlikely a system header's fault.
487 // It's much more likely a situation in which the function has a failure
488 // mode that the user decided not to check. If we want to hunt such
489 // omitted checks, we should provide an explicit function-specific note
490 // describing the precondition under which the function isn't supposed to
491 // initialize its out-parameter, and additionally check that such
492 // precondition can actually be fulfilled on the current path.
493 if (Call->isInSystemHeader()) {
494 // We make an exception for system header functions that have no branches.
495 // Such functions unconditionally fail to initialize the variable.
496 // If they call other functions that have more paths within them,
497 // this suppression would still apply when we visit these inner functions.
498 // One common example of a standard function that doesn't ever initialize
499 // its out parameter is operator placement new; it's up to the follow-up
500 // constructor (if any) to initialize the memory.
501 if (!N->getStackFrame()->getCFG()->isLinear()) {
502 static int i = 0;
503 R.markInvalid(&i, nullptr);
504 }
505 return nullptr;
506 }
507
508 if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
509 // If we failed to construct a piece for self, we still want to check
510 // whether the entity of interest is in a parameter.
512 return Piece;
513 }
514
515 if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
516 // Do not generate diagnostics for not modified parameters in
517 // constructors.
518 return maybeEmitNoteForCXXThis(R, *CCall, N);
519 }
520
521 return maybeEmitNoteForParameters(R, *Call, N);
522}
523
524//===----------------------------------------------------------------------===//
525// Implementation of NoStoreFuncVisitor.
526//===----------------------------------------------------------------------===//
527
528namespace {
529/// Put a diagnostic on return statement of all inlined functions
530/// for which the region of interest \p RegionOfInterest was passed into,
531/// but not written inside, and it has caused an undefined read or a null
532/// pointer dereference outside.
533class NoStoreFuncVisitor final : public NoStateChangeFuncVisitor {
534 const SubRegion *RegionOfInterest;
535 MemRegionManager &MmrMgr;
536 const SourceManager &SM;
537 const PrintingPolicy &PP;
538
539 /// Recursion limit for dereferencing fields when looking for the
540 /// region of interest.
541 /// The limit of two indicates that we will dereference fields only once.
542 static const unsigned DEREFERENCE_LIMIT = 2;
543
544 using RegionVector = SmallVector<const MemRegion *, 5>;
545
546public:
547 NoStoreFuncVisitor(const SubRegion *R, bugreporter::TrackingKind TKind)
548 : NoStateChangeFuncVisitor(TKind), RegionOfInterest(R),
549 MmrMgr(R->getMemRegionManager()),
550 SM(MmrMgr.getContext().getSourceManager()),
551 PP(MmrMgr.getContext().getPrintingPolicy()) {}
552
553 void Profile(llvm::FoldingSetNodeID &ID) const override {
554 static int Tag = 0;
555 ID.AddPointer(&Tag);
556 ID.AddPointer(RegionOfInterest);
557 }
558
559private:
560 /// \return Whether \c RegionOfInterest was modified at \p CurrN compared to
561 /// the value it holds in \p CallExitBeginN.
562 bool wasModifiedBeforeCallExit(const ExplodedNode *CurrN,
563 const ExplodedNode *CallExitBeginN) override;
564
565 /// Attempts to find the region of interest in a given record decl,
566 /// by either following the base classes or fields.
567 /// Dereferences fields up to a given recursion limit.
568 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
569 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
570 /// \return A chain fields leading to the region of interest or std::nullopt.
571 const std::optional<RegionVector>
572 findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State,
573 const MemRegion *R, const RegionVector &Vec = {},
574 int depth = 0);
575
576 // Region of interest corresponds to an IVar, exiting a method
577 // which could have written into that IVar, but did not.
578 PathDiagnosticPieceRef maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
579 const ObjCMethodCall &Call,
580 const ExplodedNode *N) final;
581
582 PathDiagnosticPieceRef maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
584 const ExplodedNode *N) final;
585
587 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call,
588 const ExplodedNode *N) final;
589
590 /// Consume the information on the no-store stack frame in order to
591 /// either emit a note or suppress the report enirely.
592 /// \return Diagnostics piece for region not modified in the current function,
593 /// if it decides to emit one.
595 maybeEmitNote(PathSensitiveBugReport &R, const CallEvent &Call,
596 const ExplodedNode *N, const RegionVector &FieldChain,
597 const MemRegion *MatchedRegion, StringRef FirstElement,
598 bool FirstIsReferenceType, unsigned IndirectionLevel);
599
600 bool prettyPrintRegionName(const RegionVector &FieldChain,
601 const MemRegion *MatchedRegion,
602 StringRef FirstElement, bool FirstIsReferenceType,
603 unsigned IndirectionLevel,
604 llvm::raw_svector_ostream &os);
605
606 StringRef prettyPrintFirstElement(StringRef FirstElement,
607 bool MoreItemsExpected,
608 int IndirectionLevel,
609 llvm::raw_svector_ostream &os);
610};
611} // namespace
612
613/// \return Whether the method declaration \p Parent
614/// syntactically has a binary operation writing into the ivar \p Ivar.
616 const ObjCIvarDecl *Ivar) {
617 using namespace ast_matchers;
618 const char *IvarBind = "Ivar";
619 if (!Parent || !Parent->hasBody())
620 return false;
621 StatementMatcher WriteIntoIvarM = binaryOperator(
622 hasOperatorName("="),
623 hasLHS(ignoringParenImpCasts(
624 objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
625 StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
626 auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
627 for (BoundNodes &Match : Matches) {
628 auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
629 if (IvarRef->isFreeIvar())
630 return true;
631
632 const Expr *Base = IvarRef->getBase();
633 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
634 Base = ICE->getSubExpr();
635
636 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
637 if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
638 if (ID->getParameterKind() == ImplicitParamKind::ObjCSelf)
639 return true;
640
641 return false;
642 }
643 return false;
644}
645
646/// Attempts to find the region of interest in a given CXX decl,
647/// by either following the base classes or fields.
648/// Dereferences fields up to a given recursion limit.
649/// Note that \p Vec is passed by value, leading to quadratic copying cost,
650/// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
651/// \return A chain fields leading to the region of interest or std::nullopt.
652const std::optional<NoStoreFuncVisitor::RegionVector>
653NoStoreFuncVisitor::findRegionOfInterestInRecord(
654 const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
655 const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
656 int depth /* = 0 */) {
657
658 if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
659 return std::nullopt;
660
661 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
662 if (!RDX->hasDefinition())
663 return std::nullopt;
664
665 // Recursively examine the base classes.
666 // Note that following base classes does not increase the recursion depth.
667 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
668 for (const auto &II : RDX->bases())
669 if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
670 if (std::optional<RegionVector> Out =
671 findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
672 return Out;
673
674 for (const FieldDecl *I : RD->fields()) {
675 QualType FT = I->getType();
676 const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
677 const SVal V = State->getSVal(FR);
678 const MemRegion *VR = V.getAsRegion();
679
680 RegionVector VecF = Vec;
681 VecF.push_back(FR);
682
683 if (RegionOfInterest == VR)
684 return VecF;
685
686 if (const RecordDecl *RRD = FT->getAsRecordDecl())
687 if (auto Out =
688 findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
689 return Out;
690
691 QualType PT = FT->getPointeeType();
692 if (PT.isNull() || PT->isVoidType() || !VR)
693 continue;
694
695 if (const RecordDecl *RRD = PT->getAsRecordDecl())
696 if (std::optional<RegionVector> Out =
697 findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
698 return Out;
699 }
700
701 return std::nullopt;
702}
703
705NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
706 const ObjCMethodCall &Call,
707 const ExplodedNode *N) {
708 if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
709 const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
710 if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
711 potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
712 IvarR->getDecl()))
713 return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
714 /*FirstIsReferenceType=*/false, 1);
715 }
716 return nullptr;
717}
718
720NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
722 const ExplodedNode *N) {
723 const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
724 if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
725 return maybeEmitNote(R, Call, N, {}, ThisR, "this",
726 /*FirstIsReferenceType=*/false, 1);
727
728 // Do not generate diagnostics for not modified parameters in
729 // constructors.
730 return nullptr;
731}
732
733/// \return whether \p Ty points to a const type, or is a const reference.
734static bool isPointerToConst(QualType Ty) {
735 return !Ty->getPointeeType().isNull() &&
737}
738
739PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
740 PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
742 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
743 const ParmVarDecl *PVD = Parameters[I];
744 SVal V = Call.getArgSVal(I);
745 bool ParamIsReferenceType = PVD->getType()->isReferenceType();
746 std::string ParamName = PVD->getNameAsString();
747
748 unsigned IndirectionLevel = 1;
749 QualType T = PVD->getType();
750 while (const MemRegion *MR = V.getAsRegion()) {
751 if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
752 return maybeEmitNote(R, Call, N, {}, MR, ParamName,
753 ParamIsReferenceType, IndirectionLevel);
754
755 QualType PT = T->getPointeeType();
756 if (PT.isNull() || PT->isVoidType())
757 break;
758
759 ProgramStateRef State = N->getState();
760
761 if (const RecordDecl *RD = PT->getAsRecordDecl())
762 if (std::optional<RegionVector> P =
763 findRegionOfInterestInRecord(RD, State, MR))
764 return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
765 ParamIsReferenceType, IndirectionLevel);
766
767 V = State->getSVal(MR, PT);
768 T = PT;
769 IndirectionLevel++;
770 }
771 }
772
773 return nullptr;
774}
775
776bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
777 const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
778 return ::wasRegionOfInterestModifiedAt(
779 RegionOfInterest, CurrN,
780 CallExitBeginN->getState()->getSVal(RegionOfInterest));
781}
782
783static llvm::StringLiteral WillBeUsedForACondition =
784 ", which participates in a condition later";
785
786PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
788 const RegionVector &FieldChain, const MemRegion *MatchedRegion,
789 StringRef FirstElement, bool FirstIsReferenceType,
790 unsigned IndirectionLevel) {
791
794
795 // For now this shouldn't trigger, but once it does (as we add more
796 // functions to the body farm), we'll need to decide if these reports
797 // are worth suppressing as well.
798 if (!L.hasValidLocation())
799 return nullptr;
800
801 SmallString<256> sbuf;
802 llvm::raw_svector_ostream os(sbuf);
803 os << "Returning without writing to '";
804
805 // Do not generate the note if failed to pretty-print.
806 if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
807 FirstIsReferenceType, IndirectionLevel, os))
808 return nullptr;
809
810 os << "'";
813 return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
814}
815
816bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
817 const MemRegion *MatchedRegion,
818 StringRef FirstElement,
819 bool FirstIsReferenceType,
820 unsigned IndirectionLevel,
821 llvm::raw_svector_ostream &os) {
822
823 if (FirstIsReferenceType)
824 IndirectionLevel--;
825
826 RegionVector RegionSequence;
827
828 // Add the regions in the reverse order, then reverse the resulting array.
829 assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
830 const MemRegion *R = RegionOfInterest;
831 while (R != MatchedRegion) {
832 RegionSequence.push_back(R);
833 R = cast<SubRegion>(R)->getSuperRegion();
834 }
835 std::reverse(RegionSequence.begin(), RegionSequence.end());
836 RegionSequence.append(FieldChain.begin(), FieldChain.end());
837
838 StringRef Sep;
839 for (const MemRegion *R : RegionSequence) {
840
841 // Just keep going up to the base region.
842 // Element regions may appear due to casts.
843 if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
844 continue;
845
846 if (Sep.empty())
847 Sep = prettyPrintFirstElement(FirstElement,
848 /*MoreItemsExpected=*/true,
849 IndirectionLevel, os);
850
851 os << Sep;
852
853 // Can only reasonably pretty-print DeclRegions.
854 if (!isa<DeclRegion>(R))
855 return false;
856
857 const auto *DR = cast<DeclRegion>(R);
858 Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
859 DR->getDecl()->getDeclName().print(os, PP);
860 }
861
862 if (Sep.empty())
863 prettyPrintFirstElement(FirstElement,
864 /*MoreItemsExpected=*/false, IndirectionLevel, os);
865 return true;
866}
867
868StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
869 StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
870 llvm::raw_svector_ostream &os) {
871 StringRef Out = ".";
872
873 if (IndirectionLevel > 0 && MoreItemsExpected) {
874 IndirectionLevel--;
875 Out = "->";
876 }
877
878 if (IndirectionLevel > 0 && MoreItemsExpected)
879 os << "(";
880
881 for (int i = 0; i < IndirectionLevel; i++)
882 os << "*";
883 os << FirstElement;
884
885 if (IndirectionLevel > 0 && MoreItemsExpected)
886 os << ")";
887
888 return Out;
889}
890
891//===----------------------------------------------------------------------===//
892// Implementation of MacroNullReturnSuppressionVisitor.
893//===----------------------------------------------------------------------===//
894
895namespace {
896
897/// Suppress null-pointer-dereference bugs where dereferenced null was returned
898/// the macro.
899class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
900 const SubRegion *RegionOfInterest;
901 const SVal ValueAtDereference;
902
903 // Do not invalidate the reports where the value was modified
904 // after it got assigned to from the macro.
905 bool WasModified = false;
906
907public:
908 MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
909 : RegionOfInterest(R), ValueAtDereference(V) {}
910
911 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
913 PathSensitiveBugReport &BR) override {
914 if (WasModified)
915 return nullptr;
916
917 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
918 if (!BugPoint)
919 return nullptr;
920
921 const SourceManager &SMgr = BRC.getSourceManager();
922 if (auto Loc = matchAssignment(N)) {
923 if (isFunctionMacroExpansion(*Loc, SMgr)) {
924 std::string MacroName = std::string(getMacroName(*Loc, BRC));
925 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
926 if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
927 BR.markInvalid(getTag(), MacroName.c_str());
928 }
929 }
930
931 if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
932 WasModified = true;
933
934 return nullptr;
935 }
936
937 static void addMacroVisitorIfNecessary(
938 const ExplodedNode *N, const MemRegion *R,
939 bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
940 const SVal V) {
941 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
942 if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
943 isa<Loc>(V))
944 BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
945 V);
946 }
947
948 void* getTag() const {
949 static int Tag = 0;
950 return static_cast<void *>(&Tag);
951 }
952
953 void Profile(llvm::FoldingSetNodeID &ID) const override {
954 ID.AddPointer(getTag());
955 }
956
957private:
958 /// \return Source location of right hand side of an assignment
959 /// into \c RegionOfInterest, empty optional if none found.
960 std::optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
961 const Stmt *S = N->getStmtForDiagnostics();
962 ProgramStateRef State = N->getState();
963 auto *LCtx = N->getLocationContext();
964 if (!S)
965 return std::nullopt;
966
967 if (const auto *DS = dyn_cast<DeclStmt>(S)) {
968 if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
969 if (const Expr *RHS = VD->getInit())
970 if (RegionOfInterest->isSubRegionOf(
971 State->getLValue(VD, LCtx).getAsRegion()))
972 return RHS->getBeginLoc();
973 } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
974 const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
975 const Expr *RHS = BO->getRHS();
976 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
977 return RHS->getBeginLoc();
978 }
979 }
980 return std::nullopt;
981 }
982};
983
984} // end of anonymous namespace
985
986namespace {
987
988/// Emits an extra note at the return statement of an interesting stack frame.
989///
990/// The returned value is marked as an interesting value, and if it's null,
991/// adds a visitor to track where it became null.
992///
993/// This visitor is intended to be used when another visitor discovers that an
994/// interesting value comes from an inlined function call.
995class ReturnVisitor : public TrackingBugReporterVisitor {
996 const StackFrameContext *CalleeSFC;
997 enum {
998 Initial,
999 MaybeUnsuppress,
1000 Satisfied
1001 } Mode = Initial;
1002
1003 bool EnableNullFPSuppression;
1004 bool ShouldInvalidate = true;
1005 AnalyzerOptions& Options;
1007
1008public:
1009 ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
1010 bool Suppressed, AnalyzerOptions &Options,
1012 : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
1013 EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
1014
1015 static void *getTag() {
1016 static int Tag = 0;
1017 return static_cast<void *>(&Tag);
1018 }
1019
1020 void Profile(llvm::FoldingSetNodeID &ID) const override {
1021 ID.AddPointer(ReturnVisitor::getTag());
1022 ID.AddPointer(CalleeSFC);
1023 ID.AddBoolean(EnableNullFPSuppression);
1024 }
1025
1026 PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
1027 BugReporterContext &BRC,
1029 // Only print a message at the interesting return statement.
1030 if (N->getLocationContext() != CalleeSFC)
1031 return nullptr;
1032
1033 std::optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
1034 if (!SP)
1035 return nullptr;
1036
1037 const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
1038 if (!Ret)
1039 return nullptr;
1040
1041 // Okay, we're at the right return statement, but do we have the return
1042 // value available?
1043 ProgramStateRef State = N->getState();
1044 SVal V = State->getSVal(Ret, CalleeSFC);
1045 if (V.isUnknownOrUndef())
1046 return nullptr;
1047
1048 // Don't print any more notes after this one.
1049 Mode = Satisfied;
1050
1051 const Expr *RetE = Ret->getRetValue();
1052 assert(RetE && "Tracking a return value for a void function");
1053
1054 // Handle cases where a reference is returned and then immediately used.
1055 std::optional<Loc> LValue;
1056 if (RetE->isGLValue()) {
1057 if ((LValue = V.getAs<Loc>())) {
1058 SVal RValue = State->getRawSVal(*LValue, RetE->getType());
1059 if (isa<DefinedSVal>(RValue))
1060 V = RValue;
1061 }
1062 }
1063
1064 // Ignore aggregate rvalues.
1065 if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(V))
1066 return nullptr;
1067
1068 RetE = RetE->IgnoreParenCasts();
1069
1070 // Let's track the return value.
1071 getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
1072
1073 // Build an appropriate message based on the return value.
1074 SmallString<64> Msg;
1075 llvm::raw_svector_ostream Out(Msg);
1076
1077 bool WouldEventBeMeaningless = false;
1078
1079 if (State->isNull(V).isConstrainedTrue()) {
1080 if (isa<Loc>(V)) {
1081
1082 // If we have counter-suppression enabled, make sure we keep visiting
1083 // future nodes. We want to emit a path note as well, in case
1084 // the report is resurrected as valid later on.
1085 if (EnableNullFPSuppression &&
1086 Options.ShouldAvoidSuppressingNullArgumentPaths)
1087 Mode = MaybeUnsuppress;
1088
1089 if (RetE->getType()->isObjCObjectPointerType()) {
1090 Out << "Returning nil";
1091 } else {
1092 Out << "Returning null pointer";
1093 }
1094 } else {
1095 Out << "Returning zero";
1096 }
1097
1098 } else {
1099 if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1100 Out << "Returning the value " << CI->getValue();
1101 } else {
1102 // There is nothing interesting about returning a value, when it is
1103 // plain value without any constraints, and the function is guaranteed
1104 // to return that every time. We could use CFG::isLinear() here, but
1105 // constexpr branches are obvious to the compiler, not necesserily to
1106 // the programmer.
1107 if (N->getCFG().size() == 3)
1108 WouldEventBeMeaningless = true;
1109
1110 Out << (isa<Loc>(V) ? "Returning pointer" : "Returning value");
1111 }
1112 }
1113
1114 if (LValue) {
1115 if (const MemRegion *MR = LValue->getAsRegion()) {
1116 if (MR->canPrintPretty()) {
1117 Out << " (reference to ";
1118 MR->printPretty(Out);
1119 Out << ")";
1120 }
1121 }
1122 } else {
1123 // FIXME: We should have a more generalized location printing mechanism.
1124 if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
1125 if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
1126 Out << " (loaded from '" << *DD << "')";
1127 }
1128
1129 PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
1130 if (!L.isValid() || !L.asLocation().isValid())
1131 return nullptr;
1132
1133 if (TKind == bugreporter::TrackingKind::Condition)
1135
1136 auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
1137
1138 // If we determined that the note is meaningless, make it prunable, and
1139 // don't mark the stackframe interesting.
1140 if (WouldEventBeMeaningless)
1141 EventPiece->setPrunable(true);
1142 else
1143 BR.markInteresting(CalleeSFC);
1144
1145 return EventPiece;
1146 }
1147
1148 PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
1149 BugReporterContext &BRC,
1151 assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
1152
1153 // Are we at the entry node for this call?
1154 std::optional<CallEnter> CE = N->getLocationAs<CallEnter>();
1155 if (!CE)
1156 return nullptr;
1157
1158 if (CE->getCalleeContext() != CalleeSFC)
1159 return nullptr;
1160
1161 Mode = Satisfied;
1162
1163 // Don't automatically suppress a report if one of the arguments is
1164 // known to be a null pointer. Instead, start tracking /that/ null
1165 // value back to its origin.
1166 ProgramStateManager &StateMgr = BRC.getStateManager();
1167 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1168
1169 ProgramStateRef State = N->getState();
1170 CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
1171 for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
1172 std::optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
1173 if (!ArgV)
1174 continue;
1175
1176 const Expr *ArgE = Call->getArgExpr(I);
1177 if (!ArgE)
1178 continue;
1179
1180 // Is it possible for this argument to be non-null?
1181 if (!State->isNull(*ArgV).isConstrainedTrue())
1182 continue;
1183
1184 if (getParentTracker()
1185 .track(ArgE, N, {TKind, EnableNullFPSuppression})
1186 .FoundSomethingToTrack)
1187 ShouldInvalidate = false;
1188
1189 // If we /can't/ track the null pointer, we should err on the side of
1190 // false negatives, and continue towards marking this report invalid.
1191 // (We will still look at the other arguments, though.)
1192 }
1193
1194 return nullptr;
1195 }
1196
1197 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1198 BugReporterContext &BRC,
1199 PathSensitiveBugReport &BR) override {
1200 switch (Mode) {
1201 case Initial:
1202 return visitNodeInitial(N, BRC, BR);
1203 case MaybeUnsuppress:
1204 return visitNodeMaybeUnsuppress(N, BRC, BR);
1205 case Satisfied:
1206 return nullptr;
1207 }
1208
1209 llvm_unreachable("Invalid visit mode!");
1210 }
1211
1212 void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1213 PathSensitiveBugReport &BR) override {
1214 if (EnableNullFPSuppression && ShouldInvalidate)
1215 BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
1216 }
1217};
1218
1219//===----------------------------------------------------------------------===//
1220// StoreSiteFinder
1221//===----------------------------------------------------------------------===//
1222
1223/// Finds last store into the given region,
1224/// which is different from a given symbolic value.
1225class StoreSiteFinder final : public TrackingBugReporterVisitor {
1226 const MemRegion *R;
1227 SVal V;
1228 bool Satisfied = false;
1229
1230 TrackingOptions Options;
1231 const StackFrameContext *OriginSFC;
1232
1233public:
1234 /// \param V We're searching for the store where \c R received this value.
1235 /// \param R The region we're tracking.
1236 /// \param Options Tracking behavior options.
1237 /// \param OriginSFC Only adds notes when the last store happened in a
1238 /// different stackframe to this one. Disregarded if the tracking kind
1239 /// is thorough.
1240 /// This is useful, because for non-tracked regions, notes about
1241 /// changes to its value in a nested stackframe could be pruned, and
1242 /// this visitor can prevent that without polluting the bugpath too
1243 /// much.
1244 StoreSiteFinder(bugreporter::TrackerRef ParentTracker, SVal V,
1245 const MemRegion *R, TrackingOptions Options,
1246 const StackFrameContext *OriginSFC = nullptr)
1247 : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
1248 OriginSFC(OriginSFC) {
1249 assert(R);
1250 }
1251
1252 void Profile(llvm::FoldingSetNodeID &ID) const override;
1253
1254 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1255 BugReporterContext &BRC,
1256 PathSensitiveBugReport &BR) override;
1257};
1258} // namespace
1259
1260void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
1261 static int tag = 0;
1262 ID.AddPointer(&tag);
1263 ID.AddPointer(R);
1264 ID.Add(V);
1265 ID.AddInteger(static_cast<int>(Options.Kind));
1266 ID.AddBoolean(Options.EnableNullFPSuppression);
1267}
1268
1269/// Returns true if \p N represents the DeclStmt declaring and initializing
1270/// \p VR.
1271static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1272 std::optional<PostStmt> P = N->getLocationAs<PostStmt>();
1273 if (!P)
1274 return false;
1275
1276 const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1277 if (!DS)
1278 return false;
1279
1280 if (DS->getSingleDecl() != VR->getDecl())
1281 return false;
1282
1283 const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1284 const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1285 if (!FrameSpace) {
1286 // If we ever directly evaluate global DeclStmts, this assertion will be
1287 // invalid, but this still seems preferable to silently accepting an
1288 // initialization that may be for a path-sensitive variable.
1289 assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1290 return true;
1291 }
1292
1293 assert(VR->getDecl()->hasLocalStorage());
1294 const LocationContext *LCtx = N->getLocationContext();
1295 return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1296}
1297
1298static bool isObjCPointer(const MemRegion *R) {
1299 if (R->isBoundable())
1300 if (const auto *TR = dyn_cast<TypedValueRegion>(R))
1301 return TR->getValueType()->isObjCObjectPointerType();
1302
1303 return false;
1304}
1305
1306static bool isObjCPointer(const ValueDecl *D) {
1307 return D->getType()->isObjCObjectPointerType();
1308}
1309
1310/// Show diagnostics for initializing or declaring a region \p R with a bad value.
1311static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
1312 const bool HasPrefix = SI.Dest->canPrintPretty();
1313
1314 if (HasPrefix) {
1315 SI.Dest->printPretty(OS);
1316 OS << " ";
1317 }
1318
1319 const char *Action = nullptr;
1320
1321 switch (SI.StoreKind) {
1323 Action = HasPrefix ? "initialized to " : "Initializing to ";
1324 break;
1326 Action = HasPrefix ? "captured by block as " : "Captured by block as ";
1327 break;
1328 default:
1329 llvm_unreachable("Unexpected store kind");
1330 }
1331
1332 if (isa<loc::ConcreteInt>(SI.Value)) {
1333 OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
1334
1335 } else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
1336 OS << Action << CVal->getValue();
1337
1338 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1339 OS << Action << "the value of ";
1340 SI.Origin->printPretty(OS);
1341
1342 } else if (SI.StoreKind == StoreInfo::Initialization) {
1343 // We don't need to check here, all these conditions were
1344 // checked by StoreSiteFinder, when it figured out that it is
1345 // initialization.
1346 const auto *DS =
1347 cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
1348
1349 if (SI.Value.isUndef()) {
1350 if (isa<VarRegion>(SI.Dest)) {
1351 const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1352
1353 if (VD->getInit()) {
1354 OS << (HasPrefix ? "initialized" : "Initializing")
1355 << " to a garbage value";
1356 } else {
1357 OS << (HasPrefix ? "declared" : "Declaring")
1358 << " without an initial value";
1359 }
1360 }
1361 } else {
1362 OS << (HasPrefix ? "initialized" : "Initialized") << " here";
1363 }
1364 }
1365}
1366
1367/// Display diagnostics for passing bad region as a parameter.
1368static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
1369 StoreInfo SI) {
1370 const auto *VR = cast<VarRegion>(SI.Dest);
1371 const auto *D = VR->getDecl();
1372
1373 OS << "Passing ";
1374
1375 if (isa<loc::ConcreteInt>(SI.Value)) {
1376 OS << (isObjCPointer(D) ? "nil object reference" : "null pointer value");
1377
1378 } else if (SI.Value.isUndef()) {
1379 OS << "uninitialized value";
1380
1381 } else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
1382 OS << "the value " << CI->getValue();
1383
1384 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1385 SI.Origin->printPretty(OS);
1386
1387 } else {
1388 OS << "value";
1389 }
1390
1391 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1392 // Printed parameter indexes are 1-based, not 0-based.
1393 unsigned Idx = Param->getFunctionScopeIndex() + 1;
1394 OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1395 if (VR->canPrintPretty()) {
1396 OS << " ";
1397 VR->printPretty(OS);
1398 }
1399 } else if (const auto *ImplParam = dyn_cast<ImplicitParamDecl>(D)) {
1400 if (ImplParam->getParameterKind() == ImplicitParamKind::ObjCSelf) {
1401 OS << " via implicit parameter 'self'";
1402 }
1403 }
1404}
1405
1406/// Show default diagnostics for storing bad region.
1407static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
1408 StoreInfo SI) {
1409 const bool HasSuffix = SI.Dest->canPrintPretty();
1410
1411 if (isa<loc::ConcreteInt>(SI.Value)) {
1412 OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
1413 : (HasSuffix ? "Null pointer value stored"
1414 : "Storing null pointer value"));
1415
1416 } else if (SI.Value.isUndef()) {
1417 OS << (HasSuffix ? "Uninitialized value stored"
1418 : "Storing uninitialized value");
1419
1420 } else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
1421 if (HasSuffix)
1422 OS << "The value " << CV->getValue() << " is assigned";
1423 else
1424 OS << "Assigning " << CV->getValue();
1425
1426 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1427 if (HasSuffix) {
1428 OS << "The value of ";
1429 SI.Origin->printPretty(OS);
1430 OS << " is assigned";
1431 } else {
1432 OS << "Assigning the value of ";
1433 SI.Origin->printPretty(OS);
1434 }
1435
1436 } else {
1437 OS << (HasSuffix ? "Value assigned" : "Assigning value");
1438 }
1439
1440 if (HasSuffix) {
1441 OS << " to ";
1442 SI.Dest->printPretty(OS);
1443 }
1444}
1445
1447 if (!CE)
1448 return false;
1449
1450 const auto *CtorDecl = CE->getConstructor();
1451
1452 return CtorDecl->isCopyOrMoveConstructor() && CtorDecl->isTrivial();
1453}
1454
1456 const MemRegion *R) {
1457
1458 const auto *TVR = dyn_cast_or_null<TypedValueRegion>(R);
1459
1460 if (!TVR)
1461 return nullptr;
1462
1463 const auto ITy = ILE->getType().getCanonicalType();
1464
1465 // Push each sub-region onto the stack.
1466 std::stack<const TypedValueRegion *> TVRStack;
1467 while (isa<FieldRegion>(TVR) || isa<ElementRegion>(TVR)) {
1468 // We found a region that matches the type of the init list,
1469 // so we assume this is the outer-most region. This can happen
1470 // if the initializer list is inside a class. If our assumption
1471 // is wrong, we return a nullptr in the end.
1472 if (ITy == TVR->getValueType().getCanonicalType())
1473 break;
1474
1475 TVRStack.push(TVR);
1476 TVR = cast<TypedValueRegion>(TVR->getSuperRegion());
1477 }
1478
1479 // If the type of the outer most region doesn't match the type
1480 // of the ILE, we can't match the ILE and the region.
1481 if (ITy != TVR->getValueType().getCanonicalType())
1482 return nullptr;
1483
1484 const Expr *Init = ILE;
1485 while (!TVRStack.empty()) {
1486 TVR = TVRStack.top();
1487 TVRStack.pop();
1488
1489 // We hit something that's not an init list before
1490 // running out of regions, so we most likely failed.
1491 if (!isa<InitListExpr>(Init))
1492 return nullptr;
1493
1494 ILE = cast<InitListExpr>(Init);
1495 auto NumInits = ILE->getNumInits();
1496
1497 if (const auto *FR = dyn_cast<FieldRegion>(TVR)) {
1498 const auto *FD = FR->getDecl();
1499
1500 if (FD->getFieldIndex() >= NumInits)
1501 return nullptr;
1502
1503 Init = ILE->getInit(FD->getFieldIndex());
1504 } else if (const auto *ER = dyn_cast<ElementRegion>(TVR)) {
1505 const auto Ind = ER->getIndex();
1506
1507 // If index is symbolic, we can't figure out which expression
1508 // belongs to the region.
1509 if (!Ind.isConstant())
1510 return nullptr;
1511
1512 const auto IndVal = Ind.getAsInteger()->getLimitedValue();
1513 if (IndVal >= NumInits)
1514 return nullptr;
1515
1516 Init = ILE->getInit(IndVal);
1517 }
1518 }
1519
1520 return Init;
1521}
1522
1523PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
1524 BugReporterContext &BRC,
1526 if (Satisfied)
1527 return nullptr;
1528
1529 const ExplodedNode *StoreSite = nullptr;
1530 const ExplodedNode *Pred = Succ->getFirstPred();
1531 const Expr *InitE = nullptr;
1532 bool IsParam = false;
1533
1534 // First see if we reached the declaration of the region.
1535 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1536 if (isInitializationOfVar(Pred, VR)) {
1537 StoreSite = Pred;
1538 InitE = VR->getDecl()->getInit();
1539 }
1540 }
1541
1542 // If this is a post initializer expression, initializing the region, we
1543 // should track the initializer expression.
1544 if (std::optional<PostInitializer> PIP =
1545 Pred->getLocationAs<PostInitializer>()) {
1546 const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1547 if (FieldReg == R) {
1548 StoreSite = Pred;
1549 InitE = PIP->getInitializer()->getInit();
1550 }
1551 }
1552
1553 // Otherwise, see if this is the store site:
1554 // (1) Succ has this binding and Pred does not, i.e. this is
1555 // where the binding first occurred.
1556 // (2) Succ has this binding and is a PostStore node for this region, i.e.
1557 // the same binding was re-assigned here.
1558 if (!StoreSite) {
1559 if (Succ->getState()->getSVal(R) != V)
1560 return nullptr;
1561
1562 if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1563 std::optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1564 if (!PS || PS->getLocationValue() != R)
1565 return nullptr;
1566 }
1567
1568 StoreSite = Succ;
1569
1570 if (std::optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) {
1571 // If this is an assignment expression, we can track the value
1572 // being assigned.
1573 if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) {
1574 if (BO->isAssignmentOp())
1575 InitE = BO->getRHS();
1576 }
1577 // If we have a declaration like 'S s{1,2}' that needs special
1578 // handling, we handle it here.
1579 else if (const auto *DS = P->getStmtAs<DeclStmt>()) {
1580 const auto *Decl = DS->getSingleDecl();
1581 if (isa<VarDecl>(Decl)) {
1582 const auto *VD = cast<VarDecl>(Decl);
1583
1584 // FIXME: Here we only track the inner most region, so we lose
1585 // information, but it's still better than a crash or no information
1586 // at all.
1587 //
1588 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y',
1589 // and throw away the rest.
1590 if (const auto *ILE = dyn_cast<InitListExpr>(VD->getInit()))
1591 InitE = tryExtractInitializerFromList(ILE, R);
1592 }
1593 } else if (const auto *CE = P->getStmtAs<CXXConstructExpr>()) {
1594
1595 const auto State = Succ->getState();
1596
1597 if (isTrivialCopyOrMoveCtor(CE) && isa<SubRegion>(R)) {
1598 // Migrate the field regions from the current object to
1599 // the parent object. If we track 'a.y.e' and encounter
1600 // 'S a = b' then we need to track 'b.y.e'.
1601
1602 // Push the regions to a stack, from last to first, so
1603 // considering the example above the stack will look like
1604 // (bottom) 'e' -> 'y' (top).
1605
1606 std::stack<const SubRegion *> SRStack;
1607 const SubRegion *SR = cast<SubRegion>(R);
1608 while (isa<FieldRegion>(SR) || isa<ElementRegion>(SR)) {
1609 SRStack.push(SR);
1610 SR = cast<SubRegion>(SR->getSuperRegion());
1611 }
1612
1613 // Get the region for the object we copied/moved from.
1614 const auto *OriginEx = CE->getArg(0);
1615 const auto OriginVal =
1616 State->getSVal(OriginEx, Succ->getLocationContext());
1617
1618 // Pop the stored field regions and apply them to the origin
1619 // object in the same order we had them on the copy.
1620 // OriginField will evolve like 'b' -> 'b.y' -> 'b.y.e'.
1621 SVal OriginField = OriginVal;
1622 while (!SRStack.empty()) {
1623 const auto *TopR = SRStack.top();
1624 SRStack.pop();
1625
1626 if (const auto *FR = dyn_cast<FieldRegion>(TopR)) {
1627 OriginField = State->getLValue(FR->getDecl(), OriginField);
1628 } else if (const auto *ER = dyn_cast<ElementRegion>(TopR)) {
1629 OriginField = State->getLValue(ER->getElementType(),
1630 ER->getIndex(), OriginField);
1631 } else {
1632 // FIXME: handle other region type
1633 }
1634 }
1635
1636 // Track 'b.y.e'.
1637 getParentTracker().track(V, OriginField.getAsRegion(), Options);
1638 InitE = OriginEx;
1639 }
1640 }
1641 // This branch can occur in cases like `Ctor() : field{ x, y } {}'.
1642 else if (const auto *ILE = P->getStmtAs<InitListExpr>()) {
1643 // FIXME: Here we only track the top level region, so we lose
1644 // information, but it's still better than a crash or no information
1645 // at all.
1646 //
1647 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y', and
1648 // throw away the rest.
1649 InitE = tryExtractInitializerFromList(ILE, R);
1650 }
1651 }
1652
1653 // If this is a call entry, the variable should be a parameter.
1654 // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1655 // 'this' should never be NULL, but this visitor isn't just for NULL and
1656 // UndefinedVal.)
1657 if (std::optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1658 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1659
1660 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1661 ProgramStateManager &StateMgr = BRC.getStateManager();
1662 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1663
1664 CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1665 Succ->getState());
1666 InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1667 } else {
1668 // Handle Objective-C 'self'.
1669 assert(isa<ImplicitParamDecl>(VR->getDecl()));
1670 InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
1671 ->getInstanceReceiver()->IgnoreParenCasts();
1672 }
1673 IsParam = true;
1674 }
1675 }
1676
1677 // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1678 // is wrapped inside of it.
1679 if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1680 InitE = TmpR->getExpr();
1681 }
1682
1683 if (!StoreSite)
1684 return nullptr;
1685
1686 Satisfied = true;
1687
1688 // If we have an expression that provided the value, try to track where it
1689 // came from.
1690 if (InitE) {
1691 if (!IsParam)
1692 InitE = InitE->IgnoreParenCasts();
1693
1694 getParentTracker().track(InitE, StoreSite, Options);
1695 }
1696
1697 // Let's try to find the region where the value came from.
1698 const MemRegion *OldRegion = nullptr;
1699
1700 // If we have init expression, it might be simply a reference
1701 // to a variable, so we can use it.
1702 if (InitE) {
1703 // That region might still be not exactly what we are looking for.
1704 // In situations like `int &ref = val;`, we can't say that
1705 // `ref` is initialized with `val`, rather refers to `val`.
1706 //
1707 // In order, to mitigate situations like this, we check if the last
1708 // stored value in that region is the value that we track.
1709 //
1710 // TODO: support other situations better.
1711 if (const MemRegion *Candidate =
1712 getLocationRegionIfReference(InitE, Succ, false)) {
1714
1715 // Here we traverse the graph up to find the last node where the
1716 // candidate region is still in the store.
1717 for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
1718 if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
1719 // And if it was bound to the target value, we can use it.
1720 if (N->getState()->getSVal(Candidate) == V) {
1721 OldRegion = Candidate;
1722 }
1723 break;
1724 }
1725 }
1726 }
1727 }
1728
1729 // Otherwise, if the current region does indeed contain the value
1730 // we are looking for, we can look for a region where this value
1731 // was before.
1732 //
1733 // It can be useful for situations like:
1734 // new = identity(old)
1735 // where the analyzer knows that 'identity' returns the value of its
1736 // first argument.
1737 //
1738 // NOTE: If the region R is not a simple var region, it can contain
1739 // V in one of its subregions.
1740 if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
1741 // Let's go up the graph to find the node where the region is
1742 // bound to V.
1743 const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
1744 for (;
1745 NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
1746 NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
1747 }
1748
1749 if (NodeWithoutBinding) {
1750 // Let's try to find a unique binding for the value in that node.
1751 // We want to use this to find unique bindings because of the following
1752 // situations:
1753 // b = a;
1754 // c = identity(b);
1755 //
1756 // Telling the user that the value of 'a' is assigned to 'c', while
1757 // correct, can be confusing.
1758 StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
1759 BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
1760 if (FB)
1761 OldRegion = FB.getRegion();
1762 }
1763 }
1764
1765 if (Options.Kind == TrackingKind::Condition && OriginSFC &&
1766 !OriginSFC->isParentOf(StoreSite->getStackFrame()))
1767 return nullptr;
1768
1769 // Okay, we've found the binding. Emit an appropriate message.
1770 SmallString<256> sbuf;
1771 llvm::raw_svector_ostream os(sbuf);
1772
1773 StoreInfo SI = {StoreInfo::Assignment, // default kind
1774 StoreSite,
1775 InitE,
1776 V,
1777 R,
1778 OldRegion};
1779
1780 if (std::optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1781 const Stmt *S = PS->getStmt();
1782 const auto *DS = dyn_cast<DeclStmt>(S);
1783 const auto *VR = dyn_cast<VarRegion>(R);
1784
1785 if (DS) {
1787 } else if (isa<BlockExpr>(S)) {
1789 if (VR) {
1790 // See if we can get the BlockVarRegion.
1791 ProgramStateRef State = StoreSite->getState();
1792 SVal V = StoreSite->getSVal(S);
1793 if (const auto *BDR =
1794 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1795 if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1796 getParentTracker().track(State->getSVal(OriginalR), OriginalR,
1797 Options, OriginSFC);
1798 }
1799 }
1800 }
1801 }
1802 } else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
1803 isa<VarRegion>(SI.Dest)) {
1805 }
1806
1807 return getParentTracker().handle(SI, BRC, Options);
1808}
1809
1810//===----------------------------------------------------------------------===//
1811// Implementation of TrackConstraintBRVisitor.
1812//===----------------------------------------------------------------------===//
1813
1814void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1815 static int tag = 0;
1816 ID.AddPointer(&tag);
1817 ID.AddString(Message);
1818 ID.AddBoolean(Assumption);
1819 ID.Add(Constraint);
1820}
1821
1822/// Return the tag associated with this visitor. This tag will be used
1823/// to make all PathDiagnosticPieces created by this visitor.
1825 return "TrackConstraintBRVisitor";
1826}
1827
1828bool TrackConstraintBRVisitor::isZeroCheck() const {
1829 return !Assumption && Constraint.getAs<Loc>();
1830}
1831
1832bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1833 if (isZeroCheck())
1834 return N->getState()->isNull(Constraint).isUnderconstrained();
1835 return (bool)N->getState()->assume(Constraint, !Assumption);
1836}
1837
1840 const ExplodedNode *PrevN = N->getFirstPred();
1841 if (IsSatisfied)
1842 return nullptr;
1843
1844 // Start tracking after we see the first state in which the value is
1845 // constrained.
1846 if (!IsTrackingTurnedOn)
1847 if (!isUnderconstrained(N))
1848 IsTrackingTurnedOn = true;
1849 if (!IsTrackingTurnedOn)
1850 return nullptr;
1851
1852 // Check if in the previous state it was feasible for this constraint
1853 // to *not* be true.
1854 if (isUnderconstrained(PrevN)) {
1855 IsSatisfied = true;
1856
1857 // At this point, the negation of the constraint should be infeasible. If it
1858 // is feasible, make sure that the negation of the constrainti was
1859 // infeasible in the current state. If it is feasible, we somehow missed
1860 // the transition point.
1861 assert(!isUnderconstrained(N));
1862
1863 // Construct a new PathDiagnosticPiece.
1864 ProgramPoint P = N->getLocation();
1865
1866 // If this node already have a specialized note, it's probably better
1867 // than our generic note.
1868 // FIXME: This only looks for note tags, not for other ways to add a note.
1869 if (isa_and_nonnull<NoteTag>(P.getTag()))
1870 return nullptr;
1871
1874 if (!L.isValid())
1875 return nullptr;
1876
1877 auto X = std::make_shared<PathDiagnosticEventPiece>(L, Message);
1878 X->setTag(getTag());
1879 return std::move(X);
1880 }
1881
1882 return nullptr;
1883}
1884
1885//===----------------------------------------------------------------------===//
1886// Implementation of SuppressInlineDefensiveChecksVisitor.
1887//===----------------------------------------------------------------------===//
1888
1891 : V(Value) {
1892 // Check if the visitor is disabled.
1893 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1894 if (!Options.ShouldSuppressInlinedDefensiveChecks)
1895 IsSatisfied = true;
1896}
1897
1899 llvm::FoldingSetNodeID &ID) const {
1900 static int id = 0;
1901 ID.AddPointer(&id);
1902 ID.Add(V);
1903}
1904
1906 return "IDCVisitor";
1907}
1908
1911 BugReporterContext &BRC,
1913 const ExplodedNode *Pred = Succ->getFirstPred();
1914 if (IsSatisfied)
1915 return nullptr;
1916
1917 // Start tracking after we see the first state in which the value is null.
1918 if (!IsTrackingTurnedOn)
1919 if (Succ->getState()->isNull(V).isConstrainedTrue())
1920 IsTrackingTurnedOn = true;
1921 if (!IsTrackingTurnedOn)
1922 return nullptr;
1923
1924 // Check if in the previous state it was feasible for this value
1925 // to *not* be null.
1926 if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
1927 Succ->getState()->isNull(V).isConstrainedTrue()) {
1928 IsSatisfied = true;
1929
1930 // Check if this is inlined defensive checks.
1931 const LocationContext *CurLC = Succ->getLocationContext();
1932 const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1933 if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1934 BR.markInvalid("Suppress IDC", CurLC);
1935 return nullptr;
1936 }
1937
1938 // Treat defensive checks in function-like macros as if they were an inlined
1939 // defensive check. If the bug location is not in a macro and the
1940 // terminator for the current location is in a macro then suppress the
1941 // warning.
1942 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1943
1944 if (!BugPoint)
1945 return nullptr;
1946
1947 ProgramPoint CurPoint = Succ->getLocation();
1948 const Stmt *CurTerminatorStmt = nullptr;
1949 if (auto BE = CurPoint.getAs<BlockEdge>()) {
1950 CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1951 } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1952 const Stmt *CurStmt = SP->getStmt();
1953 if (!CurStmt->getBeginLoc().isMacroID())
1954 return nullptr;
1955
1957 CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
1958 } else {
1959 return nullptr;
1960 }
1961
1962 if (!CurTerminatorStmt)
1963 return nullptr;
1964
1965 SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1966 if (TerminatorLoc.isMacroID()) {
1967 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1968
1969 // Suppress reports unless we are in that same macro.
1970 if (!BugLoc.isMacroID() ||
1971 getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1972 BR.markInvalid("Suppress Macro IDC", CurLC);
1973 }
1974 return nullptr;
1975 }
1976 }
1977 return nullptr;
1978}
1979
1980//===----------------------------------------------------------------------===//
1981// TrackControlDependencyCondBRVisitor.
1982//===----------------------------------------------------------------------===//
1983
1984namespace {
1985/// Tracks the expressions that are a control dependency of the node that was
1986/// supplied to the constructor.
1987/// For example:
1988///
1989/// cond = 1;
1990/// if (cond)
1991/// 10 / 0;
1992///
1993/// An error is emitted at line 3. This visitor realizes that the branch
1994/// on line 2 is a control dependency of line 3, and tracks it's condition via
1995/// trackExpressionValue().
1996class TrackControlDependencyCondBRVisitor final
1998 const ExplodedNode *Origin;
1999 ControlDependencyCalculator ControlDeps;
2000 llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
2001
2002public:
2003 TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
2004 const ExplodedNode *O)
2005 : TrackingBugReporterVisitor(ParentTracker), Origin(O),
2006 ControlDeps(&O->getCFG()) {}
2007
2008 void Profile(llvm::FoldingSetNodeID &ID) const override {
2009 static int x = 0;
2010 ID.AddPointer(&x);
2011 }
2012
2013 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
2014 BugReporterContext &BRC,
2015 PathSensitiveBugReport &BR) override;
2016};
2017} // end of anonymous namespace
2018
2019static std::shared_ptr<PathDiagnosticEventPiece>
2021 const ExplodedNode *N,
2022 BugReporterContext &BRC) {
2023
2025 !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
2026 return nullptr;
2027
2028 std::string ConditionText = std::string(Lexer::getSourceText(
2031
2032 return std::make_shared<PathDiagnosticEventPiece>(
2034 Cond, BRC.getSourceManager(), N->getLocationContext()),
2035 (Twine() + "Tracking condition '" + ConditionText + "'").str());
2036}
2037
2038static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
2039 if (B->succ_size() != 2)
2040 return false;
2041
2042 const CFGBlock *Then = B->succ_begin()->getReachableBlock();
2043 const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
2044
2045 if (!Then || !Else)
2046 return false;
2047
2048 if (Then->isInevitablySinking() != Else->isInevitablySinking())
2049 return true;
2050
2051 // For the following condition the following CFG would be built:
2052 //
2053 // ------------->
2054 // / \
2055 // [B1] -> [B2] -> [B3] -> [sink]
2056 // assert(A && B || C); \ \
2057 // -----------> [go on with the execution]
2058 //
2059 // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
2060 // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
2061 // reached the end of the condition!
2062 if (const Stmt *ElseCond = Else->getTerminatorCondition())
2063 if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
2064 if (BinOp->isLogicalOp())
2065 return isAssertlikeBlock(Else, Context);
2066
2067 return false;
2068}
2069
2071TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
2072 BugReporterContext &BRC,
2074 // We can only reason about control dependencies within the same stack frame.
2075 if (Origin->getStackFrame() != N->getStackFrame())
2076 return nullptr;
2077
2078 CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
2079
2080 // Skip if we already inspected this block.
2081 if (!VisitedBlocks.insert(NB).second)
2082 return nullptr;
2083
2084 CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
2085
2086 // TODO: Cache CFGBlocks for each ExplodedNode.
2087 if (!OriginB || !NB)
2088 return nullptr;
2089
2090 if (isAssertlikeBlock(NB, BRC.getASTContext()))
2091 return nullptr;
2092
2093 if (ControlDeps.isControlDependent(OriginB, NB)) {
2094 // We don't really want to explain for range loops. Evidence suggests that
2095 // the only thing that leads to is the addition of calls to operator!=.
2096 if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
2097 return nullptr;
2098
2099 if (const Expr *Condition = NB->getLastCondition()) {
2100
2101 // If we can't retrieve a sensible condition, just bail out.
2102 const Expr *InnerExpr = peelOffOuterExpr(Condition, N);
2103 if (!InnerExpr)
2104 return nullptr;
2105
2106 // If the condition was a function call, we likely won't gain much from
2107 // tracking it either. Evidence suggests that it will mostly trigger in
2108 // scenarios like this:
2109 //
2110 // void f(int *x) {
2111 // x = nullptr;
2112 // if (alwaysTrue()) // We don't need a whole lot of explanation
2113 // // here, the function name is good enough.
2114 // *x = 5;
2115 // }
2116 //
2117 // Its easy to create a counterexample where this heuristic would make us
2118 // lose valuable information, but we've never really seen one in practice.
2119 if (isa<CallExpr>(InnerExpr))
2120 return nullptr;
2121
2122 // Keeping track of the already tracked conditions on a visitor level
2123 // isn't sufficient, because a new visitor is created for each tracked
2124 // expression, hence the BugReport level set.
2125 if (BR.addTrackedCondition(N)) {
2126 getParentTracker().track(InnerExpr, N,
2128 /*EnableNullFPSuppression=*/false});
2130 }
2131 }
2132 }
2133
2134 return nullptr;
2135}
2136
2137//===----------------------------------------------------------------------===//
2138// Implementation of trackExpressionValue.
2139//===----------------------------------------------------------------------===//
2140
2141static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) {
2142
2143 Ex = Ex->IgnoreParenCasts();
2144 if (const auto *FE = dyn_cast<FullExpr>(Ex))
2145 return peelOffOuterExpr(FE->getSubExpr(), N);
2146 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
2147 return peelOffOuterExpr(OVE->getSourceExpr(), N);
2148 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
2149 const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
2150 if (PropRef && PropRef->isMessagingGetter()) {
2151 const Expr *GetterMessageSend =
2152 POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
2153 assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
2154 return peelOffOuterExpr(GetterMessageSend, N);
2155 }
2156 }
2157
2158 // Peel off the ternary operator.
2159 if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
2160 // Find a node where the branching occurred and find out which branch
2161 // we took (true/false) by looking at the ExplodedGraph.
2162 const ExplodedNode *NI = N;
2163 do {
2164 ProgramPoint ProgPoint = NI->getLocation();
2165 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2166 const CFGBlock *srcBlk = BE->getSrc();
2167 if (const Stmt *term = srcBlk->getTerminatorStmt()) {
2168 if (term == CO) {
2169 bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
2170 if (TookTrueBranch)
2171 return peelOffOuterExpr(CO->getTrueExpr(), N);
2172 else
2173 return peelOffOuterExpr(CO->getFalseExpr(), N);
2174 }
2175 }
2176 }
2177 NI = NI->getFirstPred();
2178 } while (NI);
2179 }
2180
2181 if (auto *BO = dyn_cast<BinaryOperator>(Ex))
2182 if (const Expr *SubEx = peelOffPointerArithmetic(BO))
2183 return peelOffOuterExpr(SubEx, N);
2184
2185 if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
2186 if (UO->getOpcode() == UO_LNot)
2187 return peelOffOuterExpr(UO->getSubExpr(), N);
2188
2189 // FIXME: There's a hack in our Store implementation that always computes
2190 // field offsets around null pointers as if they are always equal to 0.
2191 // The idea here is to report accesses to fields as null dereferences
2192 // even though the pointer value that's being dereferenced is actually
2193 // the offset of the field rather than exactly 0.
2194 // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
2195 // This code interacts heavily with this hack; otherwise the value
2196 // would not be null at all for most fields, so we'd be unable to track it.
2197 if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
2198 if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
2199 return peelOffOuterExpr(DerefEx, N);
2200 }
2201
2202 return Ex;
2203}
2204
2205/// Find the ExplodedNode where the lvalue (the value of 'Ex')
2206/// was computed.
2208 const Expr *Inner) {
2209 while (N) {
2210 if (N->getStmtForDiagnostics() == Inner)
2211 return N;
2212 N = N->getFirstPred();
2213 }
2214 return N;
2215}
2216
2217//===----------------------------------------------------------------------===//
2218// Tracker implementation
2219//===----------------------------------------------------------------------===//
2220
2222 BugReporterContext &BRC,
2223 StringRef NodeText) {
2224 // Construct a new PathDiagnosticPiece.
2227 if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
2229 P.getLocationContext());
2230
2231 if (!L.isValid() || !L.asLocation().isValid())
2233
2234 if (!L.isValid() || !L.asLocation().isValid())
2235 return nullptr;
2236
2237 return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
2238}
2239
2240namespace {
2241class DefaultStoreHandler final : public StoreHandler {
2242public:
2244
2246 TrackingOptions Opts) override {
2247 // Okay, we've found the binding. Emit an appropriate message.
2248 SmallString<256> Buffer;
2249 llvm::raw_svector_ostream OS(Buffer);
2250
2251 switch (SI.StoreKind) {
2254 showBRDiagnostics(OS, SI);
2255 break;
2257 showBRParamDiagnostics(OS, SI);
2258 break;
2261 break;
2262 }
2263
2264 if (Opts.Kind == bugreporter::TrackingKind::Condition)
2266
2267 return constructNote(SI, BRC, OS.str());
2268 }
2269};
2270
2271class ControlDependencyHandler final : public ExpressionHandler {
2272public:
2274
2275 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2276 const ExplodedNode *LVNode,
2277 TrackingOptions Opts) override {
2278 PathSensitiveBugReport &Report = getParentTracker().getReport();
2279
2280 // We only track expressions if we believe that they are important. Chances
2281 // are good that control dependencies to the tracking point are also
2282 // important because of this, let's explain why we believe control reached
2283 // this point.
2284 // TODO: Shouldn't we track control dependencies of every bug location,
2285 // rather than only tracked expressions?
2286 if (LVNode->getState()
2287 ->getAnalysisManager()
2288 .getAnalyzerOptions()
2289 .ShouldTrackConditions) {
2290 Report.addVisitor<TrackControlDependencyCondBRVisitor>(
2291 &getParentTracker(), InputNode);
2292 return {/*FoundSomethingToTrack=*/true};
2293 }
2294
2295 return {};
2296 }
2297};
2298
2299class NilReceiverHandler final : public ExpressionHandler {
2300public:
2302
2303 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2304 const ExplodedNode *LVNode,
2305 TrackingOptions Opts) override {
2306 // The message send could be nil due to the receiver being nil.
2307 // At this point in the path, the receiver should be live since we are at
2308 // the message send expr. If it is nil, start tracking it.
2309 if (const Expr *Receiver =
2311 return getParentTracker().track(Receiver, LVNode, Opts);
2312
2313 return {};
2314 }
2315};
2316
2317class ArrayIndexHandler final : public ExpressionHandler {
2318public:
2320
2321 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2322 const ExplodedNode *LVNode,
2323 TrackingOptions Opts) override {
2324 // Track the index if this is an array subscript.
2325 if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
2326 return getParentTracker().track(
2327 Arr->getIdx(), LVNode,
2328 {Opts.Kind, /*EnableNullFPSuppression*/ false});
2329
2330 return {};
2331 }
2332};
2333
2334// TODO: extract it into more handlers
2335class InterestingLValueHandler final : public ExpressionHandler {
2336public:
2338
2339 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2340 const ExplodedNode *LVNode,
2341 TrackingOptions Opts) override {
2342 ProgramStateRef LVState = LVNode->getState();
2343 const StackFrameContext *SFC = LVNode->getStackFrame();
2344 PathSensitiveBugReport &Report = getParentTracker().getReport();
2345 Tracker::Result Result;
2346
2347 // See if the expression we're interested refers to a variable.
2348 // If so, we can track both its contents and constraints on its value.
2350 SVal LVal = LVNode->getSVal(Inner);
2351
2352 const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
2353 bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
2354
2355 // If this is a C++ reference to a null pointer, we are tracking the
2356 // pointer. In addition, we should find the store at which the reference
2357 // got initialized.
2358 if (RR && !LVIsNull)
2359 Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
2360
2361 // In case of C++ references, we want to differentiate between a null
2362 // reference and reference to null pointer.
2363 // If the LVal is null, check if we are dealing with null reference.
2364 // For those, we want to track the location of the reference.
2365 const MemRegion *R =
2366 (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
2367
2368 if (R) {
2369
2370 // Mark both the variable region and its contents as interesting.
2371 SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
2372 Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
2373
2374 // When we got here, we do have something to track, and we will
2375 // interrupt.
2376 Result.FoundSomethingToTrack = true;
2377 Result.WasInterrupted = true;
2378
2379 MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
2380 LVNode, R, Opts.EnableNullFPSuppression, Report, V);
2381
2382 Report.markInteresting(V, Opts.Kind);
2384
2385 // If the contents are symbolic and null, find out when they became
2386 // null.
2387 if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
2388 if (LVState->isNull(V).isConstrainedTrue())
2390 V.castAs<DefinedSVal>(),
2391 /*Assumption=*/false, "Assuming pointer value is null");
2392
2393 // Add visitor, which will suppress inline defensive checks.
2394 if (auto DV = V.getAs<DefinedSVal>())
2395 if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
2396 // Note that LVNode may be too late (i.e., too far from the
2397 // InputNode) because the lvalue may have been computed before the
2398 // inlined call was evaluated. InputNode may as well be too early
2399 // here, because the symbol is already dead; this, however, is fine
2400 // because we can still find the node in which it collapsed to null
2401 // previously.
2403 InputNode);
2404 getParentTracker().track(V, R, Opts, SFC);
2405 }
2406 }
2407
2408 return Result;
2409 }
2410};
2411
2412/// Adds a ReturnVisitor if the given statement represents a call that was
2413/// inlined.
2414///
2415/// This will search back through the ExplodedGraph, starting from the given
2416/// node, looking for when the given statement was processed. If it turns out
2417/// the statement is a call that was inlined, we add the visitor to the
2418/// bug report, so it can print a note later.
2419class InlinedFunctionCallHandler final : public ExpressionHandler {
2421
2422 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2423 const ExplodedNode *ExprNode,
2424 TrackingOptions Opts) override {
2425 if (!CallEvent::isCallStmt(E))
2426 return {};
2427
2428 // First, find when we processed the statement.
2429 // If we work with a 'CXXNewExpr' that is going to be purged away before
2430 // its call take place. We would catch that purge in the last condition
2431 // as a 'StmtPoint' so we have to bypass it.
2432 const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
2433
2434 // This is moving forward when we enter into another context.
2435 const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
2436
2437 do {
2438 // If that is satisfied we found our statement as an inlined call.
2439 if (std::optional<CallExitEnd> CEE =
2440 ExprNode->getLocationAs<CallExitEnd>())
2441 if (CEE->getCalleeContext()->getCallSite() == E)
2442 break;
2443
2444 // Try to move forward to the end of the call-chain.
2445 ExprNode = ExprNode->getFirstPred();
2446 if (!ExprNode)
2447 break;
2448
2449 const StackFrameContext *PredSFC = ExprNode->getStackFrame();
2450
2451 // If that is satisfied we found our statement.
2452 // FIXME: This code currently bypasses the call site for the
2453 // conservatively evaluated allocator.
2454 if (!BypassCXXNewExprEval)
2455 if (std::optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
2456 // See if we do not enter into another context.
2457 if (SP->getStmt() == E && CurrentSFC == PredSFC)
2458 break;
2459
2460 CurrentSFC = PredSFC;
2461 } while (ExprNode->getStackFrame() == CurrentSFC);
2462
2463 // Next, step over any post-statement checks.
2464 while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
2465 ExprNode = ExprNode->getFirstPred();
2466 if (!ExprNode)
2467 return {};
2468
2469 // Finally, see if we inlined the call.
2470 std::optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
2471 if (!CEE)
2472 return {};
2473
2474 const StackFrameContext *CalleeContext = CEE->getCalleeContext();
2475 if (CalleeContext->getCallSite() != E)
2476 return {};
2477
2478 // Check the return value.
2479 ProgramStateRef State = ExprNode->getState();
2480 SVal RetVal = ExprNode->getSVal(E);
2481
2482 // Handle cases where a reference is returned and then immediately used.
2483 if (cast<Expr>(E)->isGLValue())
2484 if (std::optional<Loc> LValue = RetVal.getAs<Loc>())
2485 RetVal = State->getSVal(*LValue);
2486
2487 // See if the return value is NULL. If so, suppress the report.
2488 AnalyzerOptions &Options = State->getAnalysisManager().options;
2489
2490 bool EnableNullFPSuppression = false;
2491 if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
2492 if (std::optional<Loc> RetLoc = RetVal.getAs<Loc>())
2493 EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
2494
2495 PathSensitiveBugReport &Report = getParentTracker().getReport();
2496 Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
2497 EnableNullFPSuppression, Options,
2498 Opts.Kind);
2499 return {true};
2500 }
2501};
2502
2503class DefaultExpressionHandler final : public ExpressionHandler {
2504public:
2506
2507 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2508 const ExplodedNode *LVNode,
2509 TrackingOptions Opts) override {
2510 ProgramStateRef LVState = LVNode->getState();
2511 const StackFrameContext *SFC = LVNode->getStackFrame();
2512 PathSensitiveBugReport &Report = getParentTracker().getReport();
2513 Tracker::Result Result;
2514
2515 // If the expression is not an "lvalue expression", we can still
2516 // track the constraints on its contents.
2517 SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
2518
2519 // Is it a symbolic value?
2520 if (auto L = V.getAs<loc::MemRegionVal>()) {
2521 // FIXME: this is a hack for fixing a later crash when attempting to
2522 // dereference a void* pointer.
2523 // We should not try to dereference pointers at all when we don't care
2524 // what is written inside the pointer.
2525 bool CanDereference = true;
2526 if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
2527 if (SR->getPointeeStaticType()->isVoidType())
2528 CanDereference = false;
2529 } else if (L->getRegionAs<AllocaRegion>())
2530 CanDereference = false;
2531
2532 // At this point we are dealing with the region's LValue.
2533 // However, if the rvalue is a symbolic region, we should track it as
2534 // well. Try to use the correct type when looking up the value.
2535 SVal RVal;
2537 RVal = LVState->getRawSVal(*L, Inner->getType());
2538 else if (CanDereference)
2539 RVal = LVState->getSVal(L->getRegion());
2540
2541 if (CanDereference) {
2542 Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
2543 Result.FoundSomethingToTrack = true;
2544
2545 if (!RVal.isUnknown())
2546 Result.combineWith(
2547 getParentTracker().track(RVal, L->getRegion(), Opts, SFC));
2548 }
2549
2550 const MemRegion *RegionRVal = RVal.getAsRegion();
2551 if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
2552 Report.markInteresting(RegionRVal, Opts.Kind);
2554 loc::MemRegionVal(RegionRVal),
2555 /*Assumption=*/false, "Assuming pointer value is null");
2556 Result.FoundSomethingToTrack = true;
2557 }
2558 }
2559
2560 return Result;
2561 }
2562};
2563
2564/// Attempts to add visitors to track an RValue expression back to its point of
2565/// origin.
2566class PRValueHandler final : public ExpressionHandler {
2567public:
2569
2570 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2571 const ExplodedNode *ExprNode,
2572 TrackingOptions Opts) override {
2573 if (!E->isPRValue())
2574 return {};
2575
2576 const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
2577 if (!RVNode)
2578 return {};
2579
2580 Tracker::Result CombinedResult;
2581 Tracker &Parent = getParentTracker();
2582
2583 const auto track = [&CombinedResult, &Parent, ExprNode,
2584 Opts](const Expr *Inner) {
2585 CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
2586 };
2587
2588 // FIXME: Initializer lists can appear in many different contexts
2589 // and most of them needs a special handling. For now let's handle
2590 // what we can. If the initializer list only has 1 element, we track
2591 // that.
2592 // This snippet even handles nesting, e.g.: int *x{{{{{y}}}}};
2593 if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
2594 if (ILE->getNumInits() == 1) {
2595 track(ILE->getInit(0));
2596
2597 return CombinedResult;
2598 }
2599
2600 return {};
2601 }
2602
2603 ProgramStateRef RVState = RVNode->getState();
2604 SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
2605 const auto *BO = dyn_cast<BinaryOperator>(E);
2606
2607 if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
2608 return {};
2609
2610 SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
2611 SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
2612
2613 // Track both LHS and RHS of a multiplication.
2614 if (BO->getOpcode() == BO_Mul) {
2615 if (LHSV.isZeroConstant())
2616 track(BO->getLHS());
2617 if (RHSV.isZeroConstant())
2618 track(BO->getRHS());
2619 } else { // Track only the LHS of a division or a modulo.
2620 if (LHSV.isZeroConstant())
2621 track(BO->getLHS());
2622 }
2623
2624 return CombinedResult;
2625 }
2626};
2627} // namespace
2628
2629Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) {
2630 // Default expression handlers.
2631 addLowPriorityHandler<ControlDependencyHandler>();
2632 addLowPriorityHandler<NilReceiverHandler>();
2633 addLowPriorityHandler<ArrayIndexHandler>();
2634 addLowPriorityHandler<InterestingLValueHandler>();
2635 addLowPriorityHandler<InlinedFunctionCallHandler>();
2636 addLowPriorityHandler<DefaultExpressionHandler>();
2637 addLowPriorityHandler<PRValueHandler>();
2638 // Default store handlers.
2639 addHighPriorityHandler<DefaultStoreHandler>();
2640}
2641
2643 TrackingOptions Opts) {
2644 if (!E || !N)
2645 return {};
2646
2647 const Expr *Inner = peelOffOuterExpr(E, N);
2648 const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
2649 if (!LVNode)
2650 return {};
2651
2652 Result CombinedResult;
2653 // Iterate through the handlers in the order according to their priorities.
2654 for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
2655 CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
2656 if (CombinedResult.WasInterrupted) {
2657 // There is no need to confuse our users here.
2658 // We got interrupted, but our users don't need to know about it.
2659 CombinedResult.WasInterrupted = false;
2660 break;
2661 }
2662 }
2663
2664 return CombinedResult;
2665}
2666
2668 const StackFrameContext *Origin) {
2669 if (!V.isUnknown()) {
2670 Report.addVisitor<StoreSiteFinder>(this, V, R, Opts, Origin);
2671 return {true};
2672 }
2673 return {};
2674}
2675
2677 TrackingOptions Opts) {
2678 // Iterate through the handlers in the order according to their priorities.
2679 for (StoreHandlerPtr &Handler : StoreHandlers) {
2680 if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
2681 // If the handler produced a non-null piece, return it.
2682 // There is no need in asking other handlers.
2683 return Result;
2684 }
2685 return {};
2686}
2687
2689 const Expr *E,
2690
2691 PathSensitiveBugReport &Report,
2692 TrackingOptions Opts) {
2693 return Tracker::create(Report)
2694 ->track(E, InputNode, Opts)
2695 .FoundSomethingToTrack;
2696}
2697
2699 PathSensitiveBugReport &Report,
2700 TrackingOptions Opts,
2701 const StackFrameContext *Origin) {
2702 Tracker::create(Report)->track(V, R, Opts, Origin);
2703}
2704
2705//===----------------------------------------------------------------------===//
2706// Implementation of NulReceiverBRVisitor.
2707//===----------------------------------------------------------------------===//
2708
2710 const ExplodedNode *N) {
2711 const auto *ME = dyn_cast<ObjCMessageExpr>(S);
2712 if (!ME)
2713 return nullptr;
2714 if (const Expr *Receiver = ME->getInstanceReceiver()) {
2715 ProgramStateRef state = N->getState();
2716 SVal V = N->getSVal(Receiver);
2717 if (state->isNull(V).isConstrainedTrue())
2718 return Receiver;
2719 }
2720 return nullptr;
2721}
2722
2726 std::optional<PreStmt> P = N->getLocationAs<PreStmt>();
2727 if (!P)
2728 return nullptr;
2729
2730 const Stmt *S = P->getStmt();
2731 const Expr *Receiver = getNilReceiver(S, N);
2732 if (!Receiver)
2733 return nullptr;
2734
2736 llvm::raw_svector_ostream OS(Buf);
2737
2738 if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
2739 OS << "'";
2740 ME->getSelector().print(OS);
2741 OS << "' not called";
2742 }
2743 else {
2744 OS << "No method is called";
2745 }
2746 OS << " because the receiver is nil";
2747
2748 // The receiver was nil, and hence the method was skipped.
2749 // Register a BugReporterVisitor to issue a message telling us how
2750 // the receiver was null.
2751 bugreporter::trackExpressionValue(N, Receiver, BR,
2753 /*EnableNullFPSuppression*/ false});
2754 // Issue a message saying that the method was skipped.
2755 PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
2756 N->getLocationContext());
2757 return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
2758}
2759
2760//===----------------------------------------------------------------------===//
2761// Visitor that tries to report interesting diagnostics from conditions.
2762//===----------------------------------------------------------------------===//
2763
2764/// Return the tag associated with this visitor. This tag will be used
2765/// to make all PathDiagnosticPieces created by this visitor.
2766const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
2767
2771 auto piece = VisitNodeImpl(N, BRC, BR);
2772 if (piece) {
2773 piece->setTag(getTag());
2774 if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
2775 ev->setPrunable(true, /* override */ false);
2776 }
2777 return piece;
2778}
2779
2782 BugReporterContext &BRC,
2784 ProgramPoint ProgPoint = N->getLocation();
2785 const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
2787
2788 // If an assumption was made on a branch, it should be caught
2789 // here by looking at the state transition.
2790 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2791 const CFGBlock *SrcBlock = BE->getSrc();
2792 if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
2793 // If the tag of the previous node is 'Eagerly Assume...' the current
2794 // 'BlockEdge' has the same constraint information. We do not want to
2795 // report the value as it is just an assumption on the predecessor node
2796 // which will be caught in the next VisitNode() iteration as a 'PostStmt'.
2797 const ProgramPointTag *PreviousNodeTag =
2799 if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
2800 return nullptr;
2801
2802 return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
2803 }
2804 return nullptr;
2805 }
2806
2807 if (std::optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
2808 const ProgramPointTag *CurrentNodeTag = PS->getTag();
2809 if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
2810 return nullptr;
2811
2812 bool TookTrue = CurrentNodeTag == Tags.first;
2813 return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
2814 }
2815
2816 return nullptr;
2817}
2818
2820 const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
2821 const CFGBlock *dstBlk, PathSensitiveBugReport &R,
2822 BugReporterContext &BRC) {
2823 const Expr *Cond = nullptr;
2824
2825 // In the code below, Term is a CFG terminator and Cond is a branch condition
2826 // expression upon which the decision is made on this terminator.
2827 //
2828 // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
2829 // and "x == 0" is the respective condition.
2830 //
2831 // Another example: in "if (x && y)", we've got two terminators and two
2832 // conditions due to short-circuit nature of operator "&&":
2833 // 1. The "if (x && y)" statement is a terminator,
2834 // and "y" is the respective condition.
2835 // 2. Also "x && ..." is another terminator,
2836 // and "x" is its condition.
2837
2838 switch (Term->getStmtClass()) {
2839 // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
2840 // more tricky because there are more than two branches to account for.
2841 default:
2842 return nullptr;
2843 case Stmt::IfStmtClass:
2844 Cond = cast<IfStmt>(Term)->getCond();
2845 break;
2846 case Stmt::ConditionalOperatorClass:
2847 Cond = cast<ConditionalOperator>(Term)->getCond();
2848 break;
2849 case Stmt::BinaryOperatorClass:
2850 // When we encounter a logical operator (&& or ||) as a CFG terminator,
2851 // then the condition is actually its LHS; otherwise, we'd encounter
2852 // the parent, such as if-statement, as a terminator.
2853 const auto *BO = cast<BinaryOperator>(Term);
2854 assert(BO->isLogicalOp() &&
2855 "CFG terminator is not a short-circuit operator!");
2856 Cond = BO->getLHS();
2857 break;
2858 }
2859
2860 Cond = Cond->IgnoreParens();
2861
2862 // However, when we encounter a logical operator as a branch condition,
2863 // then the condition is actually its RHS, because LHS would be
2864 // the condition for the logical operator terminator.
2865 while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
2866 if (!InnerBO->isLogicalOp())
2867 break;
2868 Cond = InnerBO->getRHS()->IgnoreParens();
2869 }
2870
2871 assert(Cond);
2872 assert(srcBlk->succ_size() == 2);
2873 const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
2874 return VisitTrueTest(Cond, BRC, R, N, TookTrue);
2875}
2876
2880 const ExplodedNode *N, bool TookTrue) {
2881 ProgramStateRef CurrentState = N->getState();
2882 ProgramStateRef PrevState = N->getFirstPred()->getState();
2883 const LocationContext *LCtx = N->getLocationContext();
2884
2885 // If the constraint information is changed between the current and the
2886 // previous program state we assuming the newly seen constraint information.
2887 // If we cannot evaluate the condition (and the constraints are the same)
2888 // the analyzer has no information about the value and just assuming it.
2889 // FIXME: This logic is not entirely correct, because e.g. in code like
2890 // void f(unsigned arg) {
2891 // if (arg >= 0) {
2892 // // ...
2893 // }
2894 // }
2895 // it will say that the "arg >= 0" check is _assuming_ something new because
2896 // the constraint that "$arg >= 0" is 1 was added to the list of known
2897 // constraints. However, the unsigned value is always >= 0 so semantically
2898 // this is not a "real" assumption.
2899 bool IsAssuming =
2900 !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
2901 CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
2902
2903 // These will be modified in code below, but we need to preserve the original
2904 // values in case we want to throw the generic message.
2905 const Expr *CondTmp = Cond;
2906 bool TookTrueTmp = TookTrue;
2907
2908 while (true) {
2909 CondTmp = CondTmp->IgnoreParenCasts();
2910 switch (CondTmp->getStmtClass()) {
2911 default:
2912 break;
2913 case Stmt::BinaryOperatorClass:
2914 if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
2915 BRC, R, N, TookTrueTmp, IsAssuming))
2916 return P;
2917 break;
2918 case Stmt::DeclRefExprClass:
2919 if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
2920 BRC, R, N, TookTrueTmp, IsAssuming))
2921 return P;
2922 break;
2923 case Stmt::MemberExprClass:
2924 if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
2925 BRC, R, N, TookTrueTmp, IsAssuming))
2926 return P;
2927 break;
2928 case Stmt::UnaryOperatorClass: {
2929 const auto *UO = cast<UnaryOperator>(CondTmp);
2930 if (UO->getOpcode() == UO_LNot) {
2931 TookTrueTmp = !TookTrueTmp;
2932 CondTmp = UO->getSubExpr();
2933 continue;
2934 }
2935 break;
2936 }
2937 }
2938 break;
2939 }
2940
2941 // Condition too complex to explain? Just say something so that the user
2942 // knew we've made some path decision at this point.
2943 // If it is too complex and we know the evaluation of the condition do not
2944 // repeat the note from 'BugReporter.cpp'
2945 if (!IsAssuming)
2946 return nullptr;
2947
2948 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2949 if (!Loc.isValid() || !Loc.asLocation().isValid())
2950 return nullptr;
2951
2952 return std::make_shared<PathDiagnosticEventPiece>(
2953 Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
2954}
2955
2956bool ConditionBRVisitor::patternMatch(const Expr *Ex, const Expr *ParentEx,
2957 raw_ostream &Out, BugReporterContext &BRC,
2958 PathSensitiveBugReport &report,
2959 const ExplodedNode *N,
2960 std::optional<bool> &prunable,
2961 bool IsSameFieldName) {
2962 const Expr *OriginalExpr = Ex;
2963 Ex = Ex->IgnoreParenCasts();
2964
2966 FloatingLiteral>(Ex)) {
2967 // Use heuristics to determine if the expression is a macro
2968 // expanding to a literal and if so, use the macro's name.
2969 SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2970 SourceLocation EndLoc = OriginalExpr->getEndLoc();
2971 if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2972 const SourceManager &SM = BRC.getSourceManager();
2973 const LangOptions &LO = BRC.getASTContext().getLangOpts();
2974 if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2975 Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2976 CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2977 Out << Lexer::getSourceText(R, SM, LO);
2978 return false;
2979 }
2980 }
2981 }
2982
2983 if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2984 const bool quotes = isa<VarDecl>(DR->getDecl());
2985 if (quotes) {
2986 Out << '\'';
2987 const LocationContext *LCtx = N->getLocationContext();
2988 const ProgramState *state = N->getState().get();
2989 if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2990 LCtx).getAsRegion()) {
2991 if (report.isInteresting(R))
2992 prunable = false;
2993 else {
2994 const ProgramState *state = N->getState().get();
2995 SVal V = state->getSVal(R);
2996 if (report.isInteresting(V))
2997 prunable = false;
2998 }
2999 }
3000 }
3001 Out << DR->getDecl()->getDeclName().getAsString();
3002 if (quotes)
3003 Out << '\'';
3004 return quotes;
3005 }
3006
3007 if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
3008 QualType OriginalTy = OriginalExpr->getType();
3009 if (OriginalTy->isPointerType()) {
3010 if (IL->getValue() == 0) {
3011 Out << "null";
3012 return false;
3013 }
3014 }
3015 else if (OriginalTy->isObjCObjectPointerType()) {
3016 if (IL->getValue() == 0) {
3017 Out << "nil";
3018 return false;
3019 }
3020 }
3021
3022 Out << IL->getValue();
3023 return false;
3024 }
3025
3026 if (const auto *ME = dyn_cast<MemberExpr>(Ex)) {
3027 if (!IsSameFieldName)
3028 Out << "field '" << ME->getMemberDecl()->getName() << '\'';
3029 else
3030 Out << '\''
3034 nullptr)
3035 << '\'';
3036 }
3037
3038 return false;
3039}
3040
3042 const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC,
3043 PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue,
3044 bool IsAssuming) {
3045 bool shouldInvert = false;
3046 std::optional<bool> shouldPrune;
3047
3048 // Check if the field name of the MemberExprs is ambiguous. Example:
3049 // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'.
3050 bool IsSameFieldName = false;
3051 const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts());
3052 const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts());
3053
3054 if (LhsME && RhsME)
3055 IsSameFieldName =
3056 LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName();
3057
3058 SmallString<128> LhsString, RhsString;
3059 {
3060 llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
3061 const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R,
3062 N, shouldPrune, IsSameFieldName);
3063 const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R,
3064 N, shouldPrune, IsSameFieldName);
3065
3066 shouldInvert = !isVarLHS && isVarRHS;
3067 }
3068
3069 BinaryOperator::Opcode Op = BExpr->getOpcode();
3070
3072 // For assignment operators, all that we care about is that the LHS
3073 // evaluates to "true" or "false".
3074 return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N,
3075 TookTrue);
3076 }
3077
3078 // For non-assignment operations, we require that we can understand
3079 // both the LHS and RHS.
3080 if (LhsString.empty() || RhsString.empty() ||
3081 !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
3082 return nullptr;
3083
3084 // Should we invert the strings if the LHS is not a variable name?
3085 SmallString<256> buf;
3086 llvm::raw_svector_ostream Out(buf);
3087 Out << (IsAssuming ? "Assuming " : "")
3088 << (shouldInvert ? RhsString : LhsString) << " is ";
3089
3090 // Do we need to invert the opcode?
3091 if (shouldInvert)
3092 switch (Op) {
3093 default: break;
3094 case BO_LT: Op = BO_GT; break;
3095 case BO_GT: Op = BO_LT; break;
3096 case BO_LE: Op = BO_GE; break;
3097 case BO_GE: Op = BO_LE; break;
3098 }
3099
3100 if (!TookTrue)
3101 switch (Op) {
3102 case BO_EQ: Op = BO_NE; break;
3103 case BO_NE: Op = BO_EQ; break;
3104 case BO_LT: Op = BO_GE; break;
3105 case BO_GT: Op = BO_LE; break;
3106 case BO_LE: Op = BO_GT; break;
3107 case BO_GE: Op = BO_LT; break;
3108 default:
3109 return nullptr;
3110 }
3111
3112 switch (Op) {
3113 case BO_EQ:
3114 Out << "equal to ";
3115 break;
3116 case BO_NE:
3117 Out << "not equal to ";
3118 break;
3119 default:
3120 Out << BinaryOperator::getOpcodeStr(Op) << ' ';
3121 break;
3122 }
3123
3124 Out << (shouldInvert ? LhsString : RhsString);
3125 const LocationContext *LCtx = N->getLocationContext();
3126 const SourceManager &SM = BRC.getSourceManager();
3127
3128 if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) ||
3129 isVarAnInterestingCondition(BExpr->getRHS(), N, &R))
3131
3132 // Convert 'field ...' to 'Field ...' if it is a MemberExpr.
3133 std::string Message = std::string(Out.str());
3134 Message[0] = toupper(Message[0]);
3135
3136 // If we know the value create a pop-up note to the value part of 'BExpr'.
3137 if (!IsAssuming) {
3139 if (!shouldInvert) {
3140 if (LhsME && LhsME->getMemberLoc().isValid())
3141 Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM);
3142 else
3143 Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx);
3144 } else {
3145 if (RhsME && RhsME->getMemberLoc().isValid())
3146 Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM);
3147 else
3148 Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx);
3149 }
3150
3151 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message);
3152 }
3153
3154 PathDiagnosticLocation Loc(Cond, SM, LCtx);
3155 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message);
3156 if (shouldPrune)
3157 event->setPrunable(*shouldPrune);
3158 return event;
3159}
3160
3162 StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC,
3163 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) {
3164 // FIXME: If there's already a constraint tracker for this variable,
3165 // we shouldn't emit anything here (c.f. the double note in
3166 // test/Analysis/inlining/path-notes.c)
3167 SmallString<256> buf;
3168 llvm::raw_svector_ostream Out(buf);
3169 Out << "Assuming " << LhsString << " is ";
3170
3171 if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true))
3172 return nullptr;
3173
3174 const LocationContext *LCtx = N->getLocationContext();
3175 PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
3176
3177 if (isVarAnInterestingCondition(CondVarExpr, N, &report))
3179
3180 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3181
3182 if (isInterestingExpr(CondVarExpr, N, &report))
3183 event->setPrunable(false);
3184
3185 return event;
3186}
3187
3189 const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC,
3190 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3191 bool IsAssuming) {
3192 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
3193 if (!VD)
3194 return nullptr;
3195
3196 SmallString<256> Buf;
3197 llvm::raw_svector_ostream Out(Buf);
3198
3199 Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is ";
3200
3201 if (!printValue(DRE, Out, N, TookTrue, IsAssuming))
3202 return nullptr;
3203
3204 const LocationContext *LCtx = N->getLocationContext();
3205
3206 if (isVarAnInterestingCondition(DRE, N, &report))
3208
3209 // If we know the value create a pop-up note to the 'DRE'.
3210 if (!IsAssuming) {
3212 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3213 }
3214
3215 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
3216 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3217
3218 if (isInterestingExpr(DRE, N, &report))
3219 event->setPrunable(false);
3220
3221 return std::move(event);
3222}
3223
3225 const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC,
3226 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3227 bool IsAssuming) {
3228 SmallString<256> Buf;
3229 llvm::raw_svector_ostream Out(Buf);
3230
3231 Out << (IsAssuming ? "Assuming field '" : "Field '")
3232 << ME->getMemberDecl()->getName() << "' is ";
3233
3234 if (!printValue(ME, Out, N, TookTrue, IsAssuming))
3235 return nullptr;
3236
3237 const LocationContext *LCtx = N->getLocationContext();
3239
3240 // If we know the value create a pop-up note to the member of the MemberExpr.
3241 if (!IsAssuming && ME->getMemberLoc().isValid())
3243 else
3244 Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx);
3245
3246 if (!Loc.isValid() || !Loc.asLocation().isValid())
3247 return nullptr;
3248
3249 if (isVarAnInterestingCondition(ME, N, &report))
3251
3252 // If we know the value create a pop-up note.
3253 if (!IsAssuming)
3254 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3255
3256 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3257 if (isInterestingExpr(ME, N, &report))
3258 event->setPrunable(false);
3259 return event;
3260}
3261
3262bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out,
3263 const ExplodedNode *N, bool TookTrue,
3264 bool IsAssuming) {
3265 QualType Ty = CondVarExpr->getType();
3266
3267 if (Ty->isPointerType()) {
3268 Out << (TookTrue ? "non-null" : "null");
3269 return true;
3270 }
3271
3272 if (Ty->isObjCObjectPointerType()) {
3273 Out << (TookTrue ? "non-nil" : "nil");
3274 return true;
3275 }
3276
3277 if (!Ty->isIntegralOrEnumerationType())
3278 return false;
3279
3280 std::optional<const llvm::APSInt *> IntValue;
3281 if (!IsAssuming)
3282 IntValue = getConcreteIntegerValue(CondVarExpr, N);
3283
3284 if (IsAssuming || !IntValue) {
3285 if (Ty->isBooleanType())
3286 Out << (TookTrue ? "true" : "false");
3287 else
3288 Out << (TookTrue ? "not equal to 0" : "0");
3289 } else {
3290 if (Ty->isBooleanType())
3291 Out << ((*IntValue)->getBoolValue() ? "true" : "false");
3292 else
3293 Out << **IntValue;
3294 }
3295
3296 return true;
3297}
3298
3299constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage;
3300constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage;
3301
3303 const PathDiagnosticPiece *Piece) {
3304 return Piece->getString() == GenericTrueMessage ||
3305 Piece->getString() == GenericFalseMessage;
3306}
3307
3308//===----------------------------------------------------------------------===//
3309// Implementation of LikelyFalsePositiveSuppressionBRVisitor.
3310//===----------------------------------------------------------------------===//
3311
3313 BugReporterContext &BRC, const ExplodedNode *N,
3315 // Here we suppress false positives coming from system headers. This list is
3316 // based on known issues.
3317 const AnalyzerOptions &Options = BRC.getAnalyzerOptions();
3318 const Decl *D = N->getLocationContext()->getDecl();
3319
3321 // Skip reports within the 'std' namespace. Although these can sometimes be
3322 // the user's fault, we currently don't report them very well, and
3323 // Note that this will not help for any other data structure libraries, like
3324 // TR1, Boost, or llvm/ADT.
3325 if (Options.ShouldSuppressFromCXXStandardLibrary) {
3326 BR.markInvalid(getTag(), nullptr);
3327 return;
3328 } else {
3329 // If the complete 'std' suppression is not enabled, suppress reports
3330 // from the 'std' namespace that are known to produce false positives.
3331
3332 // The analyzer issues a false use-after-free when std::list::pop_front
3333 // or std::list::pop_back are called multiple times because we cannot
3334 // reason about the internal invariants of the data structure.
3335 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3336 const CXXRecordDecl *CD = MD->getParent();
3337 if (CD->getName() == "list") {
3338 BR.markInvalid(getTag(), nullptr);
3339 return;
3340 }
3341 }
3342
3343 // The analyzer issues a false positive when the constructor of
3344 // std::__independent_bits_engine from algorithms is used.
3345 if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
3346 const CXXRecordDecl *CD = MD->getParent();
3347 if (CD->getName() == "__independent_bits_engine") {
3348 BR.markInvalid(getTag(), nullptr);
3349 return;
3350 }
3351 }
3352
3353 for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
3354 LCtx = LCtx->getParent()) {
3355 const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
3356 if (!MD)
3357 continue;
3358
3359 const CXXRecordDecl *CD = MD->getParent();
3360 // The analyzer issues a false positive on
3361 // std::basic_string<uint8_t> v; v.push_back(1);
3362 // and
3363 // std::u16string s; s += u'a';
3364 // because we cannot reason about the internal invariants of the
3365 // data structure.
3366 if (CD->getName() == "basic_string") {
3367 BR.markInvalid(getTag(), nullptr);
3368 return;
3369 }
3370
3371 // The analyzer issues a false positive on
3372 // std::shared_ptr<int> p(new int(1)); p = nullptr;
3373 // because it does not reason properly about temporary destructors.
3374 if (CD->getName() == "shared_ptr") {
3375 BR.markInvalid(getTag(), nullptr);
3376 return;
3377 }
3378 }
3379 }
3380 }
3381
3382 // Skip reports within the sys/queue.h macros as we do not have the ability to
3383 // reason about data structure shapes.
3384 const SourceManager &SM = BRC.getSourceManager();
3386 while (Loc.isMacroID()) {
3387 Loc = Loc.getSpellingLoc();
3388 if (SM.getFilename(Loc).ends_with("sys/queue.h")) {
3389 BR.markInvalid(getTag(), nullptr);
3390 return;
3391 }
3392 }
3393}
3394
3395//===----------------------------------------------------------------------===//
3396// Implementation of UndefOrNullArgVisitor.
3397//===----------------------------------------------------------------------===//
3398
3402 ProgramStateRef State = N->getState();
3403 ProgramPoint ProgLoc = N->getLocation();
3404
3405 // We are only interested in visiting CallEnter nodes.
3406 std::optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
3407 if (!CEnter)
3408 return nullptr;
3409
3410 // Check if one of the arguments is the region the visitor is tracking.
3412 CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
3413 unsigned Idx = 0;
3414 ArrayRef<ParmVarDecl *> parms = Call->parameters();
3415
3416 for (const auto ParamDecl : parms) {
3417 const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
3418 ++Idx;
3419
3420 // Are we tracking the argument or its subregion?
3421 if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
3422 continue;
3423
3424 // Check the function parameter type.
3425 assert(ParamDecl && "Formal parameter has no decl?");
3426 QualType T = ParamDecl->getType();
3427
3428 if (!(T->isAnyPointerType() || T->isReferenceType())) {
3429 // Function can only change the value passed in by address.
3430 continue;
3431 }
3432
3433 // If it is a const pointer value, the function does not intend to
3434 // change the value.
3436 continue;
3437
3438 // Mark the call site (LocationContext) as interesting if the value of the
3439 // argument is undefined or '0'/'NULL'.
3440 SVal BoundVal = State->getSVal(R);
3441 if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
3442 BR.markInteresting(CEnter->getCalleeContext());
3443 return nullptr;
3444 }
3445 }
3446 return nullptr;
3447}
3448
3449//===----------------------------------------------------------------------===//
3450// Implementation of FalsePositiveRefutationBRVisitor.
3451//===----------------------------------------------------------------------===//
3452
3454 : Constraints(ConstraintMap::Factory().getEmptyMap()) {}
3455
3457 BugReporterContext &BRC, const ExplodedNode *EndPathNode,
3459 // Collect new constraints
3460 addConstraints(EndPathNode, /*OverwriteConstraintsOnExistingSyms=*/true);
3461
3462 // Create a refutation manager
3463 llvm::SMTSolverRef RefutationSolver = llvm::CreateZ3Solver();
3464 ASTContext &Ctx = BRC.getASTContext();
3465
3466 // Add constraints to the solver
3467 for (const auto &I : Constraints) {
3468 const SymbolRef Sym = I.first;
3469 auto RangeIt = I.second.begin();
3470
3471 llvm::SMTExprRef SMTConstraints = SMTConv::getRangeExpr(
3472 RefutationSolver, Ctx, Sym, RangeIt->From(), RangeIt->To(),
3473 /*InRange=*/true);
3474 while ((++RangeIt) != I.second.end()) {
3475 SMTConstraints = RefutationSolver->mkOr(
3476 SMTConstraints, SMTConv::getRangeExpr(RefutationSolver, Ctx, Sym,
3477 RangeIt->From(), RangeIt->To(),
3478 /*InRange=*/true));
3479 }
3480
3481 RefutationSolver->addConstraint(SMTConstraints);
3482 }
3483
3484 // And check for satisfiability
3485 std::optional<bool> IsSAT = RefutationSolver->check();
3486 if (!IsSAT)
3487 return;
3488
3489 if (!*IsSAT)
3490 BR.markInvalid("Infeasible constraints", EndPathNode->getLocationContext());
3491}
3492
3494 const ExplodedNode *N, bool OverwriteConstraintsOnExistingSyms) {
3495 // Collect new constraints
3497 ConstraintMap::Factory &CF = N->getState()->get_context<ConstraintMap>();
3498
3499 // Add constraints if we don't have them yet
3500 for (auto const &C : NewCs) {
3501 const SymbolRef &Sym = C.first;
3502 if (!Constraints.contains(Sym)) {
3503 // This symbol is new, just add the constraint.
3504 Constraints = CF.add(Constraints, Sym, C.second);
3505 } else if (OverwriteConstraintsOnExistingSyms) {
3506 // Overwrite the associated constraint of the Symbol.
3507 Constraints = CF.remove(Constraints, Sym);
3508 Constraints = CF.add(Constraints, Sym, C.second);
3509 }
3510 }
3511}
3512
3515 addConstraints(N, /*OverwriteConstraintsOnExistingSyms=*/false);
3516 return nullptr;
3517}
3518
3520 llvm::FoldingSetNodeID &ID) const {
3521 static int Tag = 0;
3522 ID.AddPointer(&Tag);
3523}
3524
3525//===----------------------------------------------------------------------===//
3526// Implementation of TagVisitor.
3527//===----------------------------------------------------------------------===//
3528
3529int NoteTag::Kind = 0;
3530
3531void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
3532 static int Tag = 0;
3533 ID.AddPointer(&Tag);
3534}
3535
3537 BugReporterContext &BRC,
3539 ProgramPoint PP = N->getLocation();
3540 const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
3541 if (!T)
3542 return nullptr;
3543
3544 if (std::optional<std::string> Msg = T->generateMessage(BRC, R)) {
3547 auto Piece = std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
3548 Piece->setPrunable(T->isPrunable());
3549 return Piece;
3550 }
3551
3552 return nullptr;
3553}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3285
NodeId Parent
Definition: ASTDiff.cpp:191
StringRef P
This file defines AnalysisDeclContext, a class that manages the analysis context data for context sen...
static char ID
Definition: Arena.cpp:183
#define SM(sm)
Definition: Cuda.cpp:83
static bool isInterestingExpr(const Expr *E, const ExplodedNode *N, const PathSensitiveBugReport *B)
static const ExplodedNode * findNodeForExpression(const ExplodedNode *N, const Expr *Inner)
Find the ExplodedNode where the lvalue (the value of 'Ex') was computed.
static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI)
Display diagnostics for passing bad region as a parameter.
static const Expr * peelOffPointerArithmetic(const BinaryOperator *B)
static const Expr * tryExtractInitializerFromList(const InitListExpr *ILE, const MemRegion *R)
static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest, const ExplodedNode *N, SVal ValueAfter)
static llvm::StringLiteral WillBeUsedForACondition
static bool isFunctionMacroExpansion(SourceLocation Loc, const SourceManager &SM)
static std::shared_ptr< PathDiagnosticEventPiece > constructDebugPieceForTrackedCondition(const Expr *Cond, const ExplodedNode *N, BugReporterContext &BRC)
static const MemRegion * getLocationRegionIfReference(const Expr *E, const ExplodedNode *N, bool LookingForReference=true)
static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal, const ExplodedNode *RightNode, SVal RightVal)
Comparing internal representations of symbolic values (via SVal::operator==()) is a valid way to chec...
static bool potentiallyWritesIntoIvar(const Decl *Parent, const ObjCIvarDecl *Ivar)
static std::optional< const llvm::APSInt * > getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N)
static bool isVarAnInterestingCondition(const Expr *CondVarExpr, const ExplodedNode *N, const PathSensitiveBugReport *B)
static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI)
Show default diagnostics for storing bad region.
static std::optional< SVal > getSValForVar(const Expr *CondVarExpr, const ExplodedNode *N)
static const Expr * peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N)
static const VarDecl * getVarDeclForExpression(const Expr *E)
static bool isTrivialCopyOrMoveCtor(const CXXConstructExpr *CE)
static StringRef getMacroName(SourceLocation Loc, BugReporterContext &BRC)
static bool isObjCPointer(const MemRegion *R)
static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context)
static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR)
Returns true if N represents the DeclStmt declaring and initializing VR.
static const ExplodedNode * getMatchingCallExitEnd(const ExplodedNode *N)
static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI)
Show diagnostics for initializing or declaring a region R with a bad value.
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the clang::Expr interface and subclasses for C++ expressions.
Defines the clang::IdentifierInfo, clang::IdentifierTable, and clang::Selector interfaces.
#define X(type, name)
Definition: Value.h:143
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified.
Defines the clang::SourceLocation class and associated facilities.
Defines the SourceManager interface.
C Language Family Type Representation.
static bool isPointerToConst(const QualType &QT)
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:182
const LangOptions & getLangOpts() const
Definition: ASTContext.h:775
static bool isInStdNamespace(const Decl *D)
Stores options for the analyzer from the command line.
AnalysisDiagClients AnalysisDiagOpt
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3840
Expr * getLHS() const
Definition: Expr.h:3889
bool isComparisonOp() const
Definition: Expr.h:3940
StringRef getOpcodeStr() const
Definition: Expr.h:3905
Expr * getRHS() const
Definition: Expr.h:3891
static bool isAdditiveOp(Opcode Opc)
Definition: Expr.h:3925
Opcode getOpcode() const
Definition: Expr.h:3884
bool isAssignmentOp() const
Definition: Expr.h:3978
Represents a single basic block in a source-level CFG.
Definition: CFG.h:604
bool isInevitablySinking() const
Returns true if the block would eventually end with a sink (a noreturn node).
Definition: CFG.cpp:6197
succ_iterator succ_begin()
Definition: CFG.h:984
Stmt * getTerminatorStmt()
Definition: CFG.h:1081
const Expr * getLastCondition() const
Definition: CFG.cpp:6235
Stmt * getTerminatorCondition(bool StripParens=true)
Definition: CFG.cpp:6263
unsigned succ_size() const
Definition: CFG.h:1002
CFGBlock * getBlock(Stmt *S)
Returns the CFGBlock the specified Stmt* appears in.
Definition: CFGStmtMap.cpp:27
unsigned size() const
Return the total number of CFGBlocks within the CFG This is simply a renaming of the getNumBlockIDs()...
Definition: CFG.h:1407
bool isLinear() const
Returns true if the CFG has no branches.
Definition: CFG.cpp:5242
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:720
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1542
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1605
bool isCopyOrMoveConstructor(unsigned &TypeQuals) const
Determine whether this is a copy or move constructor.
Definition: DeclCXX.cpp:2773
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
Represents a point when we begin processing an inlined call.
Definition: ProgramPoint.h:628
Represents a point when we start the call exit sequence (for inlined call).
Definition: ProgramPoint.h:666
Represents a point when we finish the call exit sequence (for inlined call).
Definition: ProgramPoint.h:686
Represents a character-granular source range.
static CharSourceRange getTokenRange(SourceRange R)
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:2066
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1260
ValueDecl * getDecl()
Definition: Expr.h:1328
DeclStmt - Adaptor class for mixing declarations with statements and expressions.
Definition: Stmt.h:1497
const Decl * getSingleDecl() const
Definition: Stmt.h:1512
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
This represents one expression.
Definition: Expr.h:110
bool isGLValue() const
Definition: Expr.h:280
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3064
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3055
bool isPRValue() const
Definition: Expr.h:278
Expr * IgnoreImpCasts() LLVM_READONLY
Skip past any implicit casts which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3039
QualType getType() const
Definition: Expr.h:142
Represents a member of a struct/union/class.
Definition: Decl.h:3057
A SourceLocation and its associated SourceManager.
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:4633
Describes an C or C++ initializer list.
Definition: Expr.h:4847
unsigned getNumInits() const
Definition: Expr.h:4877
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4893
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:461
static StringRef getSourceText(CharSourceRange Range, const SourceManager &SM, const LangOptions &LangOpts, bool *Invalid=nullptr)
Returns a string for the source that the range encompasses.
Definition: Lexer.cpp:1024
static StringRef getImmediateMacroName(SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts)
Retrieve the name of the immediate macro expansion.
Definition: Lexer.cpp:1060
static CharSourceRange getAsCharRange(SourceRange Range, const SourceManager &SM, const LangOptions &LangOpts)
Given a token range, produce a corresponding CharSourceRange that is not a token range.
Definition: Lexer.h:430
static bool isAtStartOfMacroExpansion(SourceLocation loc, const SourceManager &SM, const LangOptions &LangOpts, SourceLocation *MacroBegin=nullptr)
Returns true if the given MacroID location points at the first token of the macro expansion.
Definition: Lexer.cpp:872
static bool isAtEndOfMacroExpansion(SourceLocation loc, const SourceManager &SM, const LangOptions &LangOpts, SourceLocation *MacroEnd=nullptr)
Returns true if the given MacroID location points at the last token of the macro expansion.
Definition: Lexer.cpp:894
It wraps the AnalysisDeclContext to represent both the call stack with the help of StackFrameContext ...
bool isParentOf(const LocationContext *LC) const
const Decl * getDecl() const
LLVM_ATTRIBUTE_RETURNS_NONNULL AnalysisDeclContext * getAnalysisDeclContext() const
const LocationContext * getParent() const
It might return null.
const StackFrameContext * getStackFrame() const
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:3172
SourceLocation getMemberLoc() const
getMemberLoc - Return the location of the "member", in X->F, it is the location of 'F'.
Definition: Expr.h:3361
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:3255
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:276
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:292
ObjCBoolLiteralExpr - Objective-C Boolean Literal.
Definition: ExprObjC.h:87
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1950
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:549
Represents a parameter to a function.
Definition: Decl.h:1761
Represents a program point after a store evaluation.
Definition: ProgramPoint.h:426
ProgramPoints can be "tagged" as representing points specific to a given analysis entity.
Definition: ProgramPoint.h:38
const ProgramPointTag * getTag() const
Definition: ProgramPoint.h:173
std::optional< T > getAs() const
Convert to the specified ProgramPoint type, returning std::nullopt if this ProgramPoint is not of the...
Definition: ProgramPoint.h:147
A (possibly-)qualified type.
Definition: Type.h:940
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:1007
QualType getCanonicalType() const
Definition: Type.h:7411
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:7432
Represents a struct/union/class.
Definition: Decl.h:4168
field_range fields() const
Definition: Decl.h:4374
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
This class handles loading and caching of source files into memory.
A trivial tuple used to represent a source range.
Each ExpansionInfo encodes the expansion location - where the token was ultimately expanded,...
bool isFunctionMacroExpansion() const
This is a discriminated union of FileInfo and ExpansionInfo.
const ExpansionInfo & getExpansion() const
It represents a stack frame of the call stack (based on CallEvent).
const Stmt * getCallSite() const
bool inTopFrame() const override
const Stmt * getStmt() const
Definition: ProgramPoint.h:274
Stmt - This represents one statement.
Definition: Stmt.h:84
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:350
StmtClass getStmtClass() const
Definition: Stmt.h:1358
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:326
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:338
bool isVoidType() const
Definition: Type.h:7905
bool isBooleanType() const
Definition: Type.h:8033
bool isPointerType() const
Definition: Type.h:7612
bool isReferenceType() const
Definition: Type.h:7624
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:695
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:8020
bool isObjCObjectPointerType() const
Definition: Type.h:7744
bool isAnyPointerType() const
Definition: Type.h:7616
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition: Type.cpp:1875
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:706
QualType getType() const
Definition: Decl.h:717
Represents a variable declaration or definition.
Definition: Decl.h:918
bool isStaticLocal() const
Returns true if a variable with function scope is a static local variable.
Definition: Decl.h:1195
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1171
Maps string IDs to AST nodes matched by parts of a matcher.
Definition: ASTMatchers.h:109
AllocaRegion - A region that represents an untyped blob of bytes created by a call to 'alloca'.
Definition: MemRegion.h:473
StringRef getDescription() const
A verbose warning message that is appropriate for displaying next to the source code that introduces ...
Definition: BugReporter.h:157
ASTContext & getASTContext() const
Definition: BugReporter.h:733
ProgramStateManager & getStateManager() const
Definition: BugReporter.h:729
const SourceManager & getSourceManager() const
Definition: BugReporter.h:737
const AnalyzerOptions & getAnalyzerOptions() const
Definition: BugReporter.h:741
BugReporterVisitors are used to add custom diagnostics along a path.
static PathDiagnosticPieceRef getDefaultEndPath(const BugReporterContext &BRC, const ExplodedNode *N, const PathSensitiveBugReport &BR)
Generates the default final diagnostic piece.
virtual PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, const ExplodedNode *N, PathSensitiveBugReport &BR)
Provide custom definition for the final diagnostic piece on the path - the piece, which is displayed ...
virtual void finalizeVisitor(BugReporterContext &BRC, const ExplodedNode *EndPathNode, PathSensitiveBugReport &BR)
Last function called on the visitor, no further calls to VisitNode would follow.
Represents a call to a C++ constructor.
Definition: CallEvent.h:979
Manages the lifetime of CallEvent objects.
Definition: CallEvent.h:1356
CallEventRef getCaller(const StackFrameContext *CalleeCtx, ProgramStateRef State)
Gets an outside caller given a callee context.
Definition: CallEvent.cpp:1428
Represents an abstract call to a function or method along a particular path.
Definition: CallEvent.h:153
static bool isCallStmt(const Stmt *S)
Returns true if this is a statement is a function or method call of some kind.
Definition: CallEvent.cpp:347
PathDiagnosticPieceRef VisitTerminator(const Stmt *Term, const ExplodedNode *N, const CFGBlock *SrcBlk, const CFGBlock *DstBlk, PathSensitiveBugReport &R, BugReporterContext &BRC)
bool printValue(const Expr *CondVarExpr, raw_ostream &Out, const ExplodedNode *N, bool TookTrue, bool IsAssuming)
Tries to print the value of the given expression.
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
bool patternMatch(const Expr *Ex, const Expr *ParentEx, raw_ostream &Out, BugReporterContext &BRC, PathSensitiveBugReport &R, const ExplodedNode *N, std::optional< bool > &prunable, bool IsSameFieldName)
static bool isPieceMessageGeneric(const PathDiagnosticPiece *Piece)
PathDiagnosticPieceRef VisitConditionVariable(StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC, PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue)
PathDiagnosticPieceRef VisitTrueTest(const Expr *Cond, BugReporterContext &BRC, PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue)
static const char * getTag()
Return the tag associated with this visitor.
PathDiagnosticPieceRef VisitNodeImpl(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR)
bool isConstrainedTrue() const
Return true if the constraint is perfectly constrained to 'true'.
bool isValid() const =delete
static bool isInterestingLValueExpr(const Expr *Ex)
Returns true if nodes for the given expression kind are always kept around.
const CFGBlock * getCFGBlock() const
const ProgramStateRef & getState() const
const Stmt * getStmtForDiagnostics() const
If the node's program point corresponds to a statement, retrieve that statement.
ProgramPoint getLocation() const
getLocation - Returns the edge associated with the given node.
ExplodedNode * getFirstSucc()
const StackFrameContext * getStackFrame() const
SVal getSVal(const Stmt *S) const
Get the value of an arbitrary expression at this node.
const LocationContext * getLocationContext() const
std::optional< T > getLocationAs() const &
ExplodedNode * getFirstPred()
unsigned succ_size() const
static std::pair< const ProgramPointTag *, const ProgramPointTag * > geteagerlyAssumeBinOpBifurcationTags()
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
void addConstraints(const ExplodedNode *N, bool OverwriteConstraintsOnExistingSyms)
void finalizeVisitor(BugReporterContext &BRC, const ExplodedNode *EndPathNode, PathSensitiveBugReport &BR) override
Last function called on the visitor, no further calls to VisitNode would follow.
void Profile(llvm::FoldingSetNodeID &ID) const override
LLVM_ATTRIBUTE_RETURNS_NONNULL const FieldDecl * getDecl() const override
Definition: MemRegion.h:1120
void finalizeVisitor(BugReporterContext &BRC, const ExplodedNode *N, PathSensitiveBugReport &BR) override
Last function called on the visitor, no further calls to VisitNode would follow.
const FieldRegion * getFieldRegion(const FieldDecl *fd, const SubRegion *superRegion)
getFieldRegion - Retrieve or create the memory region associated with a specified FieldDecl.
Definition: MemRegion.cpp:1204
MemRegion - The root abstract class for all memory regions.
Definition: MemRegion.h:96
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemSpaceRegion * getMemorySpace() const
Definition: MemRegion.cpp:1317
virtual bool isBoundable() const
Definition: MemRegion.h:178
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * StripCasts(bool StripBaseAndDerivedCasts=true) const
Definition: MemRegion.cpp:1378
virtual bool isSubRegionOf(const MemRegion *R) const
Check if the region is a subregion of the given region.
Definition: MemRegion.cpp:1370
virtual void printPretty(raw_ostream &os) const
Print the region for use in diagnostics.
Definition: MemRegion.cpp:633
const RegionTy * getAs() const
Definition: MemRegion.h:1383
virtual bool canPrintPretty() const
Returns true if this region can be printed in a user-friendly way.
Definition: MemRegion.cpp:625
MemSpaceRegion - A memory region that represents a "memory space"; for example, the set of global var...
Definition: MemRegion.h:203
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
static const Expr * getNilReceiver(const Stmt *S, const ExplodedNode *N)
If the statement is a message send expression with nil receiver, returns the receiver expression.
Put a diagnostic on return statement (or on } in its absence) of all inlined functions for which some...
virtual bool wasModifiedBeforeCallExit(const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN)
virtual PathDiagnosticPieceRef maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, const ObjCMethodCall &Call, const ExplodedNode *N)=0
Consume the information on the non-modifying stack frame in order to either emit a note or not.
virtual PathDiagnosticPieceRef maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, const CXXConstructorCall &Call, const ExplodedNode *N)=0
Consume the information on the non-modifying stack frame in order to either emit a note or not.
virtual bool wasModifiedInFunction(const ExplodedNode *CallEnterN, const ExplodedNode *CallExitEndN)
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) final
Return a diagnostic piece which should be associated with the given node.
virtual PathDiagnosticPieceRef maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N)=0
Consume the information on the non-modifying stack frame in order to either emit a note or not.
The tag upon which the TagVisitor reacts.
Definition: BugReporter.h:779
Represents any expression that calls an Objective-C method.
Definition: CallEvent.h:1243
static PathDiagnosticLocation createBegin(const Decl *D, const SourceManager &SM)
Create a location for the beginning of the declaration.
static PathDiagnosticLocation create(const Decl *D, const SourceManager &SM)
Create a location corresponding to the given declaration.
void markInteresting(SymbolRef sym, bugreporter::TrackingKind TKind=bugreporter::TrackingKind::Thorough)
Marks a symbol as interesting.
PathDiagnosticLocation getLocation() const override
The primary location of the bug report that points at the undesirable behavior in the code.
ArrayRef< SourceRange > getRanges() const override
Get the SourceRanges associated with the report.
const ExplodedNode * getErrorNode() const
Definition: BugReporter.h:402
bool addTrackedCondition(const ExplodedNode *Cond)
Notes that the condition of the CFGBlock associated with Cond is being tracked.
Definition: BugReporter.h:515
void markInvalid(const void *Tag, const void *Data)
Marks the current report as invalid, meaning that it is probably a false positive and should not be r...
Definition: BugReporter.h:481
void addVisitor(std::unique_ptr< BugReporterVisitor > visitor)
Add custom or predefined bug report visitors to this report.
std::optional< bugreporter::TrackingKind > getInterestingnessKind(SymbolRef sym) const
bool isInteresting(SymbolRef sym) const
CallEventManager & getCallEventManager()
Definition: ProgramState.h:579
bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const
Definition: ProgramState.h:610
void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler &F)
Definition: ProgramState.h:602
ProgramState - This class encapsulates:
Definition: ProgramState.h:71
Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const
Get the lvalue for a base class object reference.
Definition: ProgramState.h:757
SVal getSVal(const Stmt *S, const LocationContext *LCtx) const
Returns the SVal bound to the statement 'S' in the state's environment.
Definition: ProgramState.h:793
A Range represents the closed range [from, to].
static llvm::SMTExprRef getRangeExpr(llvm::SMTSolverRef &Solver, ASTContext &Ctx, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, bool InRange)
Definition: SMTConv.h:532
ConditionTruthVal areEqual(ProgramStateRef state, SVal lhs, SVal rhs)
SVal - This represents a symbolic expression, which can be either an L-value or an R-value.
Definition: SVals.h:55
bool isUndef() const
Definition: SVals.h:104
bool isZeroConstant() const
Definition: SVals.cpp:258
std::optional< T > getAs() const
Convert to the specified SVal type, returning std::nullopt if this SVal is not of the desired type.
Definition: SVals.h:86
const MemRegion * getAsRegion() const
Definition: SVals.cpp:120
bool isUnknown() const
Definition: SVals.h:102
SubRegion - A region that subsets another larger region.
Definition: MemRegion.h:441
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * getSuperRegion() const
Definition: MemRegion.h:454
bool isSubRegionOf(const MemRegion *R) const override
Check if the region is a subregion of the given region.
Definition: MemRegion.cpp:132
PathDiagnosticPieceRef VisitNode(const ExplodedNode *Succ, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
SuppressInlineDefensiveChecksVisitor(DefinedSVal Val, const ExplodedNode *N)
static const char * getTag()
Return the tag associated with this visitor.
void Profile(llvm::FoldingSetNodeID &ID) const override
Symbolic value.
Definition: SymExpr.h:30
SymbolicRegion - A special, "non-concrete" region.
Definition: MemRegion.h:775
void Profile(llvm::FoldingSetNodeID &ID) const override
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &R) override
Return a diagnostic piece which should be associated with the given node.
void Profile(llvm::FoldingSetNodeID &ID) const override
static const char * getTag()
Return the tag associated with this visitor.
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
When a region containing undefined value or '0' value is passed as an argument in a call,...
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override
Return a diagnostic piece which should be associated with the given node.
const VarDecl * getDecl() const override=0
Handles expressions during the tracking.
Handles stores during the tracking.
PathDiagnosticPieceRef constructNote(StoreInfo SI, BugReporterContext &BRC, StringRef NodeText)
A generalized component for tracking expressions, values, and stores.
static TrackerRef create(PathSensitiveBugReport &Report)
virtual PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC, TrackingOptions Opts)
Handle the store operation and produce the note.
Tracker(PathSensitiveBugReport &Report)
virtual Result track(const Expr *E, const ExplodedNode *N, TrackingOptions Opts={})
Track expression value back to its point of origin.
Visitor that tracks expressions and values.
Value representing integer constant.
Definition: SVals.h:297
LLVM_ATTRIBUTE_RETURNS_NONNULL const TypedValueRegion * getRegion() const
Definition: SVals.cpp:194
const internal::VariadicDynCastAllOfMatcher< Stmt, ObjCIvarRefExpr > objcIvarRefExpr
Matches a reference to an ObjCIvar.
const internal::ArgumentAdaptingMatcherFunc< internal::HasDescendantMatcher > hasDescendant
Matches AST nodes that have descendant AST nodes that match the provided matcher.
SmallVector< BoundNodes, 1 > match(MatcherT Matcher, const NodeT &Node, ASTContext &Context)
Returns the results of matching Matcher on Node.
const internal::VariadicDynCastAllOfMatcher< Stmt, BinaryOperator > binaryOperator
Matches binary operator expressions.
internal::Matcher< Stmt > StatementMatcher
Definition: ASTMatchers.h:144
static std::string getMacroName(MacroType Macro, GtestCmp Cmp)
internal::PolymorphicMatcher< internal::HasDeclarationMatcher, void(internal::HasDeclarationSupportedTypes), internal::Matcher< Decl > > hasDeclaration(const internal::Matcher< Decl > &InnerMatcher)
Matches a node if the declaration associated with that node matches the given matcher.
Definition: ASTMatchers.h:3653
const internal::VariadicAllOfMatcher< Stmt > stmt
Matches statements.
const Expr * getDerefExpr(const Stmt *S)
Given that expression S represents a pointer that would be dereferenced, try to find a sub-expression...
bool trackExpressionValue(const ExplodedNode *N, const Expr *E, PathSensitiveBugReport &R, TrackingOptions Opts={})
Attempts to add visitors to track expression value back to its point of origin.
void trackStoredValue(SVal V, const MemRegion *R, PathSensitiveBugReport &Report, TrackingOptions Opts={}, const StackFrameContext *Origin=nullptr)
Track how the value got stored into the given region and where it came from.
TrackingKind
Specifies the type of tracking for an expression.
@ Thorough
Default tracking kind – specifies that as much information should be gathered about the tracked expre...
@ Condition
Specifies that a more moderate tracking should be used for the expression value.
llvm::ImmutableMap< SymbolRef, RangeSet > ConstraintMap
@ OS
Indicates that the tracking object is a descendant of a referenced-counted OSObject,...
@ CF
Indicates that the tracked object is a CF object.
std::shared_ptr< PathDiagnosticPiece > PathDiagnosticPieceRef
ConstraintMap getConstraintMap(ProgramStateRef State)
bool Ret(InterpState &S, CodePtr &PC, APValue &Result)
Definition: Interp.h:217
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
Definition: Address.h:294
BinaryOperatorKind
const FunctionProtoType * T
@ ObjCSelf
Parameter for Objective-C 'self' argument.
Describes how types, statements, expressions, and declarations should be printed.
Definition: PrettyPrinter.h:57
Describes an event when the value got stored into a memory region.
@ Assignment
The value got stored into the region during assignment: int x; x = 42;.
@ CallArgument
The value got stored into the parameter region as the result of a call.
@ BlockCapture
The value got stored into the region as block capture.
@ Initialization
The value got stored into the region during initialization: int x = 42;.
const Expr * SourceOfTheValue
The expression where the value comes from.
const ExplodedNode * StoreSite
The node where the store happened.
Kind StoreKind
The type of store operation.
SVal Value
Symbolic value that is being stored.
const MemRegion * Dest
Memory regions involved in the store operation.
Describes a tracking result with the most basic information of what was actually done (or not done).
void combineWith(const Result &Other)
Combines the current result with the given result.
bool WasInterrupted
Signifies that the tracking was interrupted at some point.
Defines a set of options altering tracking behavior.
bool EnableNullFPSuppression
Specifies whether we should employ false positive suppression (inlined defensive checks,...
TrackingKind Kind
Specifies the kind of tracking.