AST Matcher Reference
This document shows all currently implemented matchers. The matchers are grouped by category and node type they match. You can click on matcher names to show the matcher's source documentation.
There are three different basic categories of matchers:
- Node Matchers: Matchers that match a specific type of AST node.
- Narrowing Matchers: Matchers that match attributes on AST nodes.
- Traversal Matchers: Matchers that allow traversal between AST nodes.
Within each category the matchers are ordered by node type they match on. Note that if a matcher can match multiple node types, it will appear multiple times. This means that by searching for Matcher<Stmt> you can find all matchers that can be used to match on Stmt nodes.
The exception to that rule are matchers that can match on any node. Those are marked with a * and are listed in the beginning of each category.
Note that the categorization of matchers is a great help when you combine them into matcher expressions. You will usually want to form matcher expressions that read like english sentences by alternating between node matchers and narrowing or traversal matchers, like this:
recordDecl(hasDescendant( ifStmt(hasTrueExpression( expr(hasDescendant( ifStmt()))))))
Traverse Mode
The default mode of operation of AST Matchers visits all nodes in the AST, even if they are not spelled in the source. This is AsIs mode. This mode requires writing AST matchers that explicitly traverse or ignore implicit nodes, such as parentheses surrounding an expression or expressions with cleanups. These implicit nodes are not always obvious from the syntax of the source code, and so this mode requires careful consideration and testing to get the desired behavior from an AST matcher.
In addition, because template instantiations are matched in the default mode, transformations can be accidentally made to template declarations. Finally, because implicit nodes are matched by default, transformations can be made on entirely incorrect places in the code.
For these reasons, it is possible to ignore AST nodes which are not spelled in the source using the IgnoreUnlessSpelledInSource mode. This is likely to be far less error-prone for users who are not already very familiar with where implicit nodes appear in the AST. It is also likely to be less error-prone for experienced AST users, as difficult cases do not need to be encountered and matcher expressions adjusted for these cases.
In clang-query, the mode can be changed with
set traversal IgnoreUnlessSpelledInSourceThis affects both matchers and AST dump output in results.
When using the C++ API such as in clang-tidy checks, the traverse() matcher is used to set the mode:
Finder->addMatcher(traverse(TK_IgnoreUnlessSpelledInSource, returnStmt(hasReturnValue(integerLiteral(equals(0)))) ), this);
The following table compares the AsIs mode with the IgnoreUnlessSpelledInSource mode:
AsIs | IgnoreUnlessSpelledInSource | |
---|---|---|
AST dump of func1:
struct B { B(int); }; B func1() { return 42; } |
C++98 dialect:
FunctionDecl `-CompoundStmt `-ReturnStmt `-ExprWithCleanups `-CXXConstructExpr `-MaterializeTemporaryExpr `-ImplicitCastExpr `-ImplicitCastExpr `-CXXConstructExpr `-IntegerLiteral 'int' 42C++11, C++14 dialect: FunctionDecl `-CompoundStmt `-ReturnStmt `-ExprWithCleanups `-CXXConstructExpr `-MaterializeTemporaryExpr `-ImplicitCastExpr `-CXXConstructExpr `-IntegerLiteral 'int' 42C++17, C++20 dialect: FunctionDecl `-CompoundStmt `-ReturnStmt `-ImplicitCastExpr `-CXXConstructExpr `-IntegerLiteral 'int' 42 |
All dialects:
FunctionDecl `-CompoundStmt `-ReturnStmt `-IntegerLiteral 'int' 42 |
Matcher for returned 42:
struct B { B(int); }; B func1() { return 42; } |
All dialects:
returnStmt(hasReturnValue( ignoringImplicit( ignoringElidableConstructorCall( ignoringImplicit( cxxConstructExpr(hasArgument(0, ignoringImplicit( integerLiteral().bind("returnVal") ) )) ) ) ) )) |
All dialects:
returnStmt(hasReturnValue( integerLiteral().bind("returnVal") )) |
Match result for
implicitCastExpr()given: struct B { B(int); }; B func1() { return 42; } |
Match found. | No match. |
Match result for:
cxxConstructorDecl( isCopyConstructor() ).bind("prepend_explicit")given: struct Other {}; struct Copyable { Other m_o; Copyable(); }; |
Match found. Insertion produces incorrect output:
struct Other {}; struct explicit Copyable { Other m_o; Copyable(); }; |
No match found. Incorrect replacement not possible. |
Replacement of begin()
with cbegin():
cxxMemberCallExpr( on(ConstContainerExpr), callee(cxxMethodDecl(hasName("begin"))) ).bind("replace_with_cbegin")given: void foo() { const Container c; c.begin(); for (auto i : c) { } } |
2 matches found. Replacement produces incorrect output:
void foo() { const Container c; c.cbegin(); for (auto i :.cbegin() c) { } } |
1 match found. Replacement produces correct output:
void foo() { const Container c; c.cbegin(); for (auto i : c) { } } |
Replacement of int member
with safe_int:
fieldDecl( hasType(asString("int")) ).bind("use_safe_int")given: struct S { int m_i; }; template <typename T> struct TemplStruct { TemplStruct() {} ~TemplStruct() {} private: T m_t; }; void instantiate() { TemplStruct<int> ti; } |
2 matches found. Replacement produces incorrect output:
struct S { safe_int m_i; }; template <typename T> struct TemplStruct { TemplStruct() {} ~TemplStruct() {} private: safe_int m_t; }; void instantiate() { TemplStruct<int> ti; } |
1 match found. Replacement produces correct output:
struct S { safe_int m_i; }; template <typename T> struct TemplStruct { TemplStruct() {} ~TemplStruct() {} private: T m_t; }; void instantiate() { TemplStruct<int> ti; } |
Add prefix to member initializer
cxxCtorInitializer( forField(fieldDecl()) ).bind("add_prefix")given: struct Simple {}; struct Record { Record() : i(42) {} private: int i; Simple s; }; |
2 matches found. Replacement produces incorrect output:
struct Simple {}; struct Record { m_Record() : m_i(42) {} private: int i; Simple s; }; |
1 match found. Replacement produces correct output:
struct Simple {}; struct Record { Record() : m_i(42) {} private: int i; Simple s; }; |
Ignored default arguments
callExpr( callee(functionDecl( hasName("hasDefaultArg") )), argumentCountIs(1) ).bind("add_prefix")given: void hasDefaultArg(int i, int j = 0) {} void callDefaultArg() { hasDefaultArg(42); } |
No match. | 1 match found. |
Lambda fields
fieldDecl( hasType(asString("int")) ).bind("make_safe")given: struct S { int m_i; }; void func() { int a = 0; int c = 0; auto l = [a, b = c](int d) { int e = d; }; l(43); } |
2 matches found. Replacement produces incorrect output:
struct S { safe_int m_i; }; void func() { int a = 0; int c = 0; auto l = [safe_a, safe_b = c](int d) { int e = d; }; l(43); } |
1 match found. Replacement produces correct output:
struct S { safe_int m_i; }; void func() { int a = 0; int c = 0; auto l = [a, b = c](int d) { int e = d; }; l(43); } |
Rewritten binary operators
binaryOperator( hasOperatorName("<"), hasRHS(hasDescendant(integerLiteral(equals(0)))) )given: #include <compare> class HasSpaceship { public: int x; bool operator==(const HasSpaceship&) const = default; std::strong_ordering operator<=>(const HasSpaceship&) const = default; }; bool isLess(const HasSpaceship& a, const HasSpaceship& b) { return a < b; } |
1 match found.
return a < b; ^~~~~ |
No match found. |
Node Matchers
Node matchers are at the core of matcher expressions - they specify the type of node that is expected. Every match expression starts with a node matcher, which can then be further refined with a narrowing or traversal matcher. All traversal matchers take node matchers as their arguments.
For convenience, all node matchers take an arbitrary number of arguments and implicitly act as allOf matchers.
Node matchers are the only matchers that support the bind("id") call to bind the matched node to the given string, to be later retrieved from the match callback.
It is important to remember that the arguments to node matchers are predicates on the same node, just with additional information about the type. This is often useful to make matcher expression more readable by inlining bind calls into redundant node matchers inside another node matcher:
// This binds the CXXRecordDecl to "id", as the decl() matcher will stay on // the same node. recordDecl(decl().bind("id"), hasName("::MyClass"))
Return type | Name | Parameters | |
---|---|---|---|
Matcher<Attr> | attr | Matcher<Attr>... | |
Matches attributes. Attributes may be attached with a variety of different syntaxes (including keywords, C++11 attributes, GNU ``__attribute``` and MSVC `__declspec``, and ``#pragma``s). They may also be implicit. Given struct [[nodiscard]] Foo{}; void bar(int * __attribute__((nonnull)) ); __declspec(noinline) void baz(); #pragma omp declare simd int min(); attr() matches "nodiscard", "nonnull", "noinline", and the whole "#pragma" line. | |||
Matcher<CXXBaseSpecifier> | cxxBaseSpecifier | Matcher<CXXBaseSpecifier>... | |
Matches class bases. Examples matches public virtual B. class B {}; class C : public virtual B {}; | |||
Matcher<CXXCtorInitializer> | cxxCtorInitializer | Matcher<CXXCtorInitializer>... | |
Matches constructor initializers. Examples matches i(42). class C { C() : i(42) {} int i; }; | |||
Matcher<Decl> | accessSpecDecl | Matcher<AccessSpecDecl>... | |
Matches C++ access specifier declarations. Given class C { public: int a; }; accessSpecDecl() matches 'public:' | |||
Matcher<Decl> | bindingDecl | Matcher<BindingDecl>... | |
Matches binding declarations Example matches foo and bar (matcher = bindingDecl() auto [foo, bar] = std::make_pair{42, 42}; | |||
Matcher<Decl> | blockDecl | Matcher<BlockDecl>... | |
Matches block declarations. Example matches the declaration of the nameless block printing an input integer. myFunc(^(int p) { printf("%d", p); }) | |||
Matcher<Decl> | classTemplateDecl | Matcher<ClassTemplateDecl>... | |
Matches C++ class template declarations. Example matches Z template<class T> class Z {}; | |||
Matcher<Decl> | classTemplatePartialSpecializationDecl | Matcher<ClassTemplatePartialSpecializationDecl>... | |
Matches C++ class template partial specializations. Given template<class T1, class T2, int I> class A {}; template<class T, int I> class A<T, T*, I> {}; template<> class A<int, int, 1> {}; classTemplatePartialSpecializationDecl() matches the specialization A<T,T*,I> but not A<int,int,1> | |||
Matcher<Decl> | classTemplateSpecializationDecl | Matcher<ClassTemplateSpecializationDecl>... | |
Matches C++ class template specializations. Given template<typename T> class A {}; template<> class A<double> {}; A<int> a; classTemplateSpecializationDecl() matches the specializations A<int> and A<double> | |||
Matcher<Decl> | conceptDecl | Matcher<ConceptDecl>... | |
Matches concept declarations. Example matches integral template<typename T> concept integral = std::is_integral_v<T>; | |||
Matcher<Decl> | cxxConstructorDecl | Matcher<CXXConstructorDecl>... | |
Matches C++ constructor declarations. Example matches Foo::Foo() and Foo::Foo(int) class Foo { public: Foo(); Foo(int); int DoSomething(); }; | |||
Matcher<Decl> | cxxConversionDecl | Matcher<CXXConversionDecl>... | |
Matches conversion operator declarations. Example matches the operator. class X { operator int() const; }; | |||
Matcher<Decl> | cxxDeductionGuideDecl | Matcher<CXXDeductionGuideDecl>... | |
Matches user-defined and implicitly generated deduction guide. Example matches the deduction guide. template<typename T> class X { X(int) }; X(int) -> X<int>; | |||
Matcher<Decl> | cxxDestructorDecl | Matcher<CXXDestructorDecl>... | |
Matches explicit C++ destructor declarations. Example matches Foo::~Foo() class Foo { public: virtual ~Foo(); }; | |||
Matcher<Decl> | cxxMethodDecl | Matcher<CXXMethodDecl>... | |
Matches method declarations. Example matches y class X { void y(); }; | |||
Matcher<Decl> | cxxRecordDecl | Matcher<CXXRecordDecl>... | |
Matches C++ class declarations. Example matches X, Z class X; template<class T> class Z {}; | |||
Matcher<Decl> | decl | Matcher<Decl>... | |
Matches declarations. Examples matches X, C, and the friend declaration inside C; void X(); class C { friend X; }; | |||
Matcher<Decl> | declaratorDecl | Matcher<DeclaratorDecl>... | |
Matches declarator declarations (field, variable, function and non-type template parameter declarations). Given class X { int y; }; declaratorDecl() matches int y. | |||
Matcher<Decl> | decompositionDecl | Matcher<DecompositionDecl>... | |
Matches decomposition-declarations. Examples matches the declaration node with foo and bar, but not number. (matcher = declStmt(has(decompositionDecl()))) int number = 42; auto [foo, bar] = std::make_pair{42, 42}; | |||
Matcher<Decl> | enumConstantDecl | Matcher<EnumConstantDecl>... | |
Matches enum constants. Example matches A, B, C enum X { A, B, C }; | |||
Matcher<Decl> | enumDecl | Matcher<EnumDecl>... | |
Matches enum declarations. Example matches X enum X { A, B, C }; | |||
Matcher<Decl> | fieldDecl | Matcher<FieldDecl>... | |
Matches field declarations. Given class X { int m; }; fieldDecl() matches 'm'. | |||
Matcher<Decl> | friendDecl | Matcher<FriendDecl>... | |
Matches friend declarations. Given class X { friend void foo(); }; friendDecl() matches 'friend void foo()'. | |||
Matcher<Decl> | functionDecl | Matcher<FunctionDecl>... | |
Matches function declarations. Example matches f void f(); | |||
Matcher<Decl> | functionTemplateDecl | Matcher<FunctionTemplateDecl>... | |
Matches C++ function template declarations. Example matches f template<class T> void f(T t) {} | |||
Matcher<Decl> | indirectFieldDecl | Matcher<IndirectFieldDecl>... | |
Matches indirect field declarations. Given struct X { struct { int a; }; }; indirectFieldDecl() matches 'a'. | |||
Matcher<Decl> | labelDecl | Matcher<LabelDecl>... | |
Matches a declaration of label. Given goto FOO; FOO: bar(); labelDecl() matches 'FOO:' | |||
Matcher<Decl> | linkageSpecDecl | Matcher<LinkageSpecDecl>... | |
Matches a declaration of a linkage specification. Given extern "C" {} linkageSpecDecl() matches "extern "C" {}" | |||
Matcher<Decl> | namedDecl | Matcher<NamedDecl>... | |
Matches a declaration of anything that could have a name. Example matches X, S, the anonymous union type, i, and U; typedef int X; struct S { union { int i; } U; }; | |||
Matcher<Decl> | namespaceAliasDecl | Matcher<NamespaceAliasDecl>... | |
Matches a declaration of a namespace alias. Given namespace test {} namespace alias = ::test; namespaceAliasDecl() matches "namespace alias" but not "namespace test" | |||
Matcher<Decl> | namespaceDecl | Matcher<NamespaceDecl>... | |
Matches a declaration of a namespace. Given namespace {} namespace test {} namespaceDecl() matches "namespace {}" and "namespace test {}" | |||
Matcher<Decl> | nonTypeTemplateParmDecl | Matcher<NonTypeTemplateParmDecl>... | |
Matches non-type template parameter declarations. Given template <typename T, int N> struct C {}; nonTypeTemplateParmDecl() matches 'N', but not 'T'. | |||
Matcher<Decl> | objcCategoryDecl | Matcher<ObjCCategoryDecl>... | |
Matches Objective-C category declarations. Example matches Foo (Additions) @interface Foo (Additions) @end | |||
Matcher<Decl> | objcCategoryImplDecl | Matcher<ObjCCategoryImplDecl>... | |
Matches Objective-C category definitions. Example matches Foo (Additions) @implementation Foo (Additions) @end | |||
Matcher<Decl> | objcImplementationDecl | Matcher<ObjCImplementationDecl>... | |
Matches Objective-C implementation declarations. Example matches Foo @implementation Foo @end | |||
Matcher<Decl> | objcInterfaceDecl | Matcher<ObjCInterfaceDecl>... | |
Matches Objective-C interface declarations. Example matches Foo @interface Foo @end | |||
Matcher<Decl> | objcIvarDecl | Matcher<ObjCIvarDecl>... | |
Matches Objective-C instance variable declarations. Example matches _enabled @implementation Foo { BOOL _enabled; } @end | |||
Matcher<Decl> | objcMethodDecl | Matcher<ObjCMethodDecl>... | |
Matches Objective-C method declarations. Example matches both declaration and definition of -[Foo method] @interface Foo - (void)method; @end @implementation Foo - (void)method {} @end | |||
Matcher<Decl> | objcPropertyDecl | Matcher<ObjCPropertyDecl>... | |
Matches Objective-C property declarations. Example matches enabled @interface Foo @property BOOL enabled; @end | |||
Matcher<Decl> | objcProtocolDecl | Matcher<ObjCProtocolDecl>... | |
Matches Objective-C protocol declarations. Example matches FooDelegate @protocol FooDelegate @end | |||
Matcher<Decl> | parmVarDecl | Matcher<ParmVarDecl>... | |
Matches parameter variable declarations. Given void f(int x); parmVarDecl() matches int x. | |||
Matcher<Decl> | recordDecl | Matcher<RecordDecl>... | |
Matches class, struct, and union declarations. Example matches X, Z, U, and S class X; template<class T> class Z {}; struct S {}; union U {}; | |||
Matcher<Decl> | staticAssertDecl | Matcher<StaticAssertDecl>... | |
Matches a C++ static_assert declaration. Example: staticAssertDecl() matches static_assert(sizeof(S) == sizeof(int)) in struct S { int x; }; static_assert(sizeof(S) == sizeof(int)); | |||
Matcher<Decl> | tagDecl | Matcher<TagDecl>... | |
Matches tag declarations. Example matches X, Z, U, S, E class X; template<class T> class Z {}; struct S {}; union U {}; enum E { A, B, C }; | |||
Matcher<Decl> | templateTemplateParmDecl | Matcher<TemplateTemplateParmDecl>... | |
Matches template template parameter declarations. Given template <template <typename> class Z, int N> struct C {}; templateTypeParmDecl() matches 'Z', but not 'N'. | |||
Matcher<Decl> | templateTypeParmDecl | Matcher<TemplateTypeParmDecl>... | |
Matches template type parameter declarations. Given template <typename T, int N> struct C {}; templateTypeParmDecl() matches 'T', but not 'N'. | |||
Matcher<Decl> | translationUnitDecl | Matcher<TranslationUnitDecl>... | |
Matches the top declaration context. Given int X; namespace NS { int Y; } // namespace NS decl(hasDeclContext(translationUnitDecl())) matches "int X", but not "int Y". | |||
Matcher<Decl> | typeAliasDecl | Matcher<TypeAliasDecl>... | |
Matches type alias declarations. Given typedef int X; using Y = int; typeAliasDecl() matches "using Y = int", but not "typedef int X" | |||
Matcher<Decl> | typeAliasTemplateDecl | Matcher<TypeAliasTemplateDecl>... | |
Matches type alias template declarations. typeAliasTemplateDecl() matches template <typename T> using Y = X<T>; | |||
Matcher<Decl> | typedefDecl | Matcher<TypedefDecl>... | |
Matches typedef declarations. Given typedef int X; using Y = int; typedefDecl() matches "typedef int X", but not "using Y = int" | |||
Matcher<Decl> | typedefNameDecl | Matcher<TypedefNameDecl>... | |
Matches typedef name declarations. Given typedef int X; using Y = int; typedefNameDecl() matches "typedef int X" and "using Y = int" | |||
Matcher<Decl> | unresolvedUsingTypenameDecl | Matcher<UnresolvedUsingTypenameDecl>... | |
Matches unresolved using value declarations that involve the typename. Given template <typename T> struct Base { typedef T Foo; }; template<typename T> struct S : private Base<T> { using typename Base<T>::Foo; }; unresolvedUsingTypenameDecl() matches using Base<T>::Foo | |||
Matcher<Decl> | unresolvedUsingValueDecl | Matcher<UnresolvedUsingValueDecl>... | |
Matches unresolved using value declarations. Given template<typename X> class C : private X { using X::x; }; unresolvedUsingValueDecl() matches using X::x | |||
Matcher<Decl> | usingDecl | Matcher<UsingDecl>... | |
Matches using declarations. Given namespace X { int x; } using X::x; usingDecl() matches using X::x | |||
Matcher<Decl> | usingDirectiveDecl | Matcher<UsingDirectiveDecl>... | |
Matches using namespace declarations. Given namespace X { int x; } using namespace X; usingDirectiveDecl() matches using namespace X | |||
Matcher<Decl> | usingEnumDecl | Matcher<UsingEnumDecl>... | |
Matches using-enum declarations. Given namespace X { enum x {...}; } using enum X::x; usingEnumDecl() matches using enum X::x | |||
Matcher<Decl> | valueDecl | Matcher<ValueDecl>... | |
Matches any value declaration. Example matches A, B, C and F enum X { A, B, C }; void F(); | |||
Matcher<Decl> | varDecl | Matcher<VarDecl>... | |
Matches variable declarations. Note: this does not match declarations of member variables, which are "field" declarations in Clang parlance. Example matches a int a; | |||
Matcher<LambdaCapture> | lambdaCapture | Matcher<LambdaCapture>... | |
Matches lambda captures. Given int main() { int x; auto f = [x](){}; auto g = [x = 1](){}; } In the matcher `lambdaExpr(hasAnyCapture(lambdaCapture()))`, `lambdaCapture()` matches `x` and `x=1`. | |||
Matcher<NestedNameSpecifierLoc> | nestedNameSpecifierLoc | Matcher<NestedNameSpecifierLoc>... | |
Same as nestedNameSpecifier but matches NestedNameSpecifierLoc. | |||
Matcher<NestedNameSpecifier> | nestedNameSpecifier | Matcher<NestedNameSpecifier>... | |
Matches nested name specifiers. Given namespace ns { struct A { static void f(); }; void A::f() {} void g() { A::f(); } } ns::A a; nestedNameSpecifier() matches "ns::" and both "A::" | |||
Matcher<OMPClause> | ompDefaultClause | Matcher<OMPDefaultClause>... | |
Matches OpenMP ``default`` clause. Given #pragma omp parallel default(none) #pragma omp parallel default(shared) #pragma omp parallel default(private) #pragma omp parallel default(firstprivate) #pragma omp parallel ``ompDefaultClause()`` matches ``default(none)``, ``default(shared)``, `` default(private)`` and ``default(firstprivate)`` | |||
Matcher<QualType> | qualType | Matcher<QualType>... | |
Matches QualTypes in the clang AST. | |||
Matcher<Stmt> | addrLabelExpr | Matcher<AddrLabelExpr>... | |
Matches address of label statements (GNU extension). Given FOO: bar(); void *ptr = &&FOO; goto *bar; addrLabelExpr() matches '&&FOO' | |||
Matcher<Stmt> | arrayInitIndexExpr | Matcher<ArrayInitIndexExpr>... | |
The arrayInitIndexExpr consists of two subexpressions: a common expression (the source array) that is evaluated once up-front, and a per-element initializer that runs once for each array element. Within the per-element initializer, the current index may be obtained via an ArrayInitIndexExpr. Given void testStructBinding() { int a[2] = {1, 2}; auto [x, y] = a; } arrayInitIndexExpr() matches the array index that implicitly iterates over the array `a` to copy each element to the anonymous array that backs the structured binding `[x, y]` elements of which are referred to by their aliases `x` and `y`. | |||
Matcher<Stmt> | arrayInitLoopExpr | Matcher<ArrayInitLoopExpr>... | |
Matches a loop initializing the elements of an array in a number of contexts: * in the implicit copy/move constructor for a class with an array member * when a lambda-expression captures an array by value * when a decomposition declaration decomposes an array Given void testLambdaCapture() { int a[10]; auto Lam1 = [a]() { return; }; } arrayInitLoopExpr() matches the implicit loop that initializes each element of the implicit array field inside the lambda object, that represents the array `a` captured by value. | |||
Matcher<Stmt> | arraySubscriptExpr | Matcher<ArraySubscriptExpr>... | |
Matches array subscript expressions. Given int i = a[1]; arraySubscriptExpr() matches "a[1]" | |||
Matcher<Stmt> | asmStmt | Matcher<AsmStmt>... | |
Matches asm statements. int i = 100; __asm("mov al, 2"); asmStmt() matches '__asm("mov al, 2")' | |||
Matcher<Stmt> | atomicExpr | Matcher<AtomicExpr>... | |
Matches atomic builtins. Example matches __atomic_load_n(ptr, 1) void foo() { int *ptr; __atomic_load_n(ptr, 1); } | |||
Matcher<Stmt> | autoreleasePoolStmt | Matcher<ObjCAutoreleasePoolStmt>... | |
Matches an Objective-C autorelease pool statement. Given @autoreleasepool { int x = 0; } autoreleasePoolStmt(stmt()) matches the declaration of "x" inside the autorelease pool. | |||
Matcher<Stmt> | binaryConditionalOperator | Matcher<BinaryConditionalOperator>... | |
Matches binary conditional operator expressions (GNU extension). Example matches a ?: b (a ?: b) + 42; | |||
Matcher<Stmt> | binaryOperator | Matcher<BinaryOperator>... | |
Matches binary operator expressions. Example matches a || b !(a || b) See also the binaryOperation() matcher for more-general matching. | |||
Matcher<Stmt> | blockExpr | Matcher<BlockExpr>... | |
Matches a reference to a block. Example: matches "^{}": void f() { ^{}(); } | |||
Matcher<Stmt> | breakStmt | Matcher<BreakStmt>... | |
Matches break statements. Given while (true) { break; } breakStmt() matches 'break' | |||
Matcher<Stmt> | cStyleCastExpr | Matcher<CStyleCastExpr>... | |
Matches a C-style cast expression. Example: Matches (int) 2.2f in int i = (int) 2.2f; | |||
Matcher<Stmt> | callExpr | Matcher<CallExpr>... | |
Matches call expressions. Example matches x.y() and y() X x; x.y(); y(); | |||
Matcher<Stmt> | caseStmt | Matcher<CaseStmt>... | |
Matches case statements inside switch statements. Given switch(a) { case 42: break; default: break; } caseStmt() matches 'case 42:'. | |||
Matcher<Stmt> | castExpr | Matcher<CastExpr>... | |
Matches any cast nodes of Clang's AST. Example: castExpr() matches each of the following: (int) 3; const_cast<Expr *>(SubExpr); char c = 0; but does not match int i = (0); int k = 0; | |||
Matcher<Stmt> | characterLiteral | Matcher<CharacterLiteral>... | |
Matches character literals (also matches wchar_t). Not matching Hex-encoded chars (e.g. 0x1234, which is a IntegerLiteral), though. Example matches 'a', L'a' char ch = 'a'; wchar_t chw = L'a'; | |||
Matcher<Stmt> | chooseExpr | Matcher<ChooseExpr>... | |
Matches GNU __builtin_choose_expr. | |||
Matcher<Stmt> | coawaitExpr | Matcher<CoawaitExpr>... | |
Matches co_await expressions. Given co_await 1; coawaitExpr() matches 'co_await 1' | |||
Matcher<Stmt> | compoundLiteralExpr | Matcher<CompoundLiteralExpr>... | |
Matches compound (i.e. non-scalar) literals Example match: {1}, (1, 2) int array[4] = {1}; vector int myvec = (vector int)(1, 2); | |||
Matcher<Stmt> | compoundStmt | Matcher<CompoundStmt>... | |
Matches compound statements. Example matches '{}' and '{{}}' in 'for (;;) {{}}' for (;;) {{}} | |||
Matcher<Stmt> | conditionalOperator | Matcher<ConditionalOperator>... | |
Matches conditional operator expressions. Example matches a ? b : c (a ? b : c) + 42 | |||
Matcher<Stmt> | constantExpr | Matcher<ConstantExpr>... | |
Matches a constant expression wrapper. Example matches the constant in the case statement: (matcher = constantExpr()) switch (a) { case 37: break; } | |||
Matcher<Stmt> | continueStmt | Matcher<ContinueStmt>... | |
Matches continue statements. Given while (true) { continue; } continueStmt() matches 'continue' | |||
Matcher<Stmt> | convertVectorExpr | Matcher<ConvertVectorExpr>... | |
Matches builtin function __builtin_convertvector. | |||
Matcher<Stmt> | coreturnStmt | Matcher<CoreturnStmt>... | |
Matches co_return statements. Given while (true) { co_return; } coreturnStmt() matches 'co_return' | |||
Matcher<Stmt> | coroutineBodyStmt | Matcher<CoroutineBodyStmt>... | |
Matches coroutine body statements. coroutineBodyStmt() matches the coroutine below generator<int> gen() { co_return; } | |||
Matcher<Stmt> | coyieldExpr | Matcher<CoyieldExpr>... | |
Matches co_yield expressions. Given co_yield 1; coyieldExpr() matches 'co_yield 1' | |||
Matcher<Stmt> | cudaKernelCallExpr | Matcher<CUDAKernelCallExpr>... | |
Matches CUDA kernel call expression. Example matches, kernel<<<i,j>>>(); | |||
Matcher<Stmt> | cxxBindTemporaryExpr | Matcher<CXXBindTemporaryExpr>... | |
Matches nodes where temporaries are created. Example matches FunctionTakesString(GetStringByValue()) (matcher = cxxBindTemporaryExpr()) FunctionTakesString(GetStringByValue()); FunctionTakesStringByPointer(GetStringPointer()); | |||
Matcher<Stmt> | cxxBoolLiteral | Matcher<CXXBoolLiteralExpr>... | |
Matches bool literals. Example matches true true | |||
Matcher<Stmt> | cxxCatchStmt | Matcher<CXXCatchStmt>... | |
Matches catch statements. try {} catch(int i) {} cxxCatchStmt() matches 'catch(int i)' | |||
Matcher<Stmt> | cxxConstCastExpr | Matcher<CXXConstCastExpr>... | |
Matches a const_cast expression. Example: Matches const_cast<int*>(&r) in int n = 42; const int &r(n); int* p = const_cast<int*>(&r); | |||
Matcher<Stmt> | cxxConstructExpr | Matcher<CXXConstructExpr>... | |
Matches constructor call expressions (including implicit ones). Example matches string(ptr, n) and ptr within arguments of f (matcher = cxxConstructExpr()) void f(const string &a, const string &b); char *ptr; int n; f(string(ptr, n), ptr); | |||
Matcher<Stmt> | cxxDefaultArgExpr | Matcher<CXXDefaultArgExpr>... | |
Matches the value of a default argument at the call site. Example matches the CXXDefaultArgExpr placeholder inserted for the default value of the second parameter in the call expression f(42) (matcher = cxxDefaultArgExpr()) void f(int x, int y = 0); f(42); | |||
Matcher<Stmt> | cxxDeleteExpr | Matcher<CXXDeleteExpr>... | |
Matches delete expressions. Given delete X; cxxDeleteExpr() matches 'delete X'. | |||
Matcher<Stmt> | cxxDependentScopeMemberExpr | Matcher<CXXDependentScopeMemberExpr>... | |
Matches member expressions where the actual member referenced could not be resolved because the base expression or the member name was dependent. Given template <class T> void f() { T t; t.g(); } cxxDependentScopeMemberExpr() matches t.g | |||
Matcher<Stmt> | cxxDynamicCastExpr | Matcher<CXXDynamicCastExpr>... | |
Matches a dynamic_cast expression. Example: cxxDynamicCastExpr() matches dynamic_cast<D*>(&b); in struct B { virtual ~B() {} }; struct D : B {}; B b; D* p = dynamic_cast<D*>(&b); | |||
Matcher<Stmt> | cxxFoldExpr | Matcher<CXXFoldExpr>... | |
Matches C++17 fold expressions. Example matches `(0 + ... + args)`: template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } | |||
Matcher<Stmt> | cxxForRangeStmt | Matcher<CXXForRangeStmt>... | |
Matches range-based for statements. cxxForRangeStmt() matches 'for (auto a : i)' int i[] = {1, 2, 3}; for (auto a : i); for(int j = 0; j < 5; ++j); | |||
Matcher<Stmt> | cxxFunctionalCastExpr | Matcher<CXXFunctionalCastExpr>... | |
Matches functional cast expressions Example: Matches Foo(bar); Foo f = bar; Foo g = (Foo) bar; Foo h = Foo(bar); | |||
Matcher<Stmt> | cxxMemberCallExpr | Matcher<CXXMemberCallExpr>... | |
Matches member call expressions. Example matches x.y() X x; x.y(); | |||
Matcher<Stmt> | cxxNewExpr | Matcher<CXXNewExpr>... | |
Matches new expressions. Given new X; cxxNewExpr() matches 'new X'. | |||
Matcher<Stmt> | cxxNoexceptExpr | Matcher<CXXNoexceptExpr>... | |
Matches noexcept expressions. Given bool a() noexcept; bool b() noexcept(true); bool c() noexcept(false); bool d() noexcept(noexcept(a())); bool e = noexcept(b()) || noexcept(c()); cxxNoexceptExpr() matches `noexcept(a())`, `noexcept(b())` and `noexcept(c())`. doesn't match the noexcept specifier in the declarations a, b, c or d. | |||
Matcher<Stmt> | cxxNullPtrLiteralExpr | Matcher<CXXNullPtrLiteralExpr>... | |
Matches nullptr literal. | |||
Matcher<Stmt> | cxxOperatorCallExpr | Matcher<CXXOperatorCallExpr>... | |
Matches overloaded operator calls. Note that if an operator isn't overloaded, it won't match. Instead, use binaryOperator matcher. Currently it does not match operators such as new delete. FIXME: figure out why these do not match? Example matches both operator<<((o << b), c) and operator<<(o, b) (matcher = cxxOperatorCallExpr()) ostream &operator<< (ostream &out, int i) { }; ostream &o; int b = 1, c = 1; o << b << c; See also the binaryOperation() matcher for more-general matching of binary uses of this AST node. | |||
Matcher<Stmt> | cxxReinterpretCastExpr | Matcher<CXXReinterpretCastExpr>... | |
Matches a reinterpret_cast expression. Either the source expression or the destination type can be matched using has(), but hasDestinationType() is more specific and can be more readable. Example matches reinterpret_cast<char*>(&p) in void* p = reinterpret_cast<char*>(&p); | |||
Matcher<Stmt> | cxxRewrittenBinaryOperator | Matcher<CXXRewrittenBinaryOperator>... | |
Matches rewritten binary operators Example matches use of "<": #include <compare> struct HasSpaceshipMem { int a; constexpr auto operator<=>(const HasSpaceshipMem&) const = default; }; void compare() { HasSpaceshipMem hs1, hs2; if (hs1 < hs2) return; } See also the binaryOperation() matcher for more-general matching of this AST node. | |||
Matcher<Stmt> | cxxStaticCastExpr | Matcher<CXXStaticCastExpr>... | |
Matches a C++ static_cast expression. See also: hasDestinationType See also: reinterpretCast Example: cxxStaticCastExpr() matches static_cast<long>(8) in long eight(static_cast<long>(8)); | |||
Matcher<Stmt> | cxxStdInitializerListExpr | Matcher<CXXStdInitializerListExpr>... | |
Matches C++ initializer list expressions. Given std::vector<int> a({ 1, 2, 3 }); std::vector<int> b = { 4, 5 }; int c[] = { 6, 7 }; std::pair<int, int> d = { 8, 9 }; cxxStdInitializerListExpr() matches "{ 1, 2, 3 }" and "{ 4, 5 }" | |||
Matcher<Stmt> | cxxTemporaryObjectExpr | Matcher<CXXTemporaryObjectExpr>... | |
Matches functional cast expressions having N != 1 arguments Example: Matches Foo(bar, bar) Foo h = Foo(bar, bar); | |||
Matcher<Stmt> | cxxThisExpr | Matcher<CXXThisExpr>... | |
Matches implicit and explicit this expressions. Example matches the implicit this expression in "return i". (matcher = cxxThisExpr()) struct foo { int i; int f() { return i; } }; | |||
Matcher<Stmt> | cxxThrowExpr | Matcher<CXXThrowExpr>... | |
Matches throw expressions. try { throw 5; } catch(int i) {} cxxThrowExpr() matches 'throw 5' | |||
Matcher<Stmt> | cxxTryStmt | Matcher<CXXTryStmt>... | |
Matches try statements. try {} catch(int i) {} cxxTryStmt() matches 'try {}' | |||
Matcher<Stmt> | cxxUnresolvedConstructExpr | Matcher<CXXUnresolvedConstructExpr>... | |
Matches unresolved constructor call expressions. Example matches T(t) in return statement of f (matcher = cxxUnresolvedConstructExpr()) template <typename T> void f(const T& t) { return T(t); } | |||
Matcher<Stmt> | declRefExpr | Matcher<DeclRefExpr>... | |
Matches expressions that refer to declarations. Example matches x in if (x) bool x; if (x) {} | |||
Matcher<Stmt> | declStmt | Matcher<DeclStmt>... | |
Matches declaration statements. Given int a; declStmt() matches 'int a'. | |||
Matcher<Stmt> | defaultStmt | Matcher<DefaultStmt>... | |
Matches default statements inside switch statements. Given switch(a) { case 42: break; default: break; } defaultStmt() matches 'default:'. | |||
Matcher<Stmt> | dependentCoawaitExpr | Matcher<DependentCoawaitExpr>... | |
Matches co_await expressions where the type of the promise is dependent | |||
Matcher<Stmt> | designatedInitExpr | Matcher<DesignatedInitExpr>... | |
Matches C99 designated initializer expressions [C99 6.7.8]. Example: Matches { [2].y = 1.0, [0].x = 1.0 } point ptarray[10] = { [2].y = 1.0, [0].x = 1.0 }; | |||
Matcher<Stmt> | doStmt | Matcher<DoStmt>... | |
Matches do statements. Given do {} while (true); doStmt() matches 'do {} while(true)' | |||
Matcher<Stmt> | explicitCastExpr | Matcher<ExplicitCastExpr>... | |
Matches explicit cast expressions. Matches any cast expression written in user code, whether it be a C-style cast, a functional-style cast, or a keyword cast. Does not match implicit conversions. Note: the name "explicitCast" is chosen to match Clang's terminology, as Clang uses the term "cast" to apply to implicit conversions as well as to actual cast expressions. See also: hasDestinationType. Example: matches all five of the casts in int((int)(reinterpret_cast<int>(static_cast<int>(const_cast<int>(42))))) but does not match the implicit conversion in long ell = 42; | |||
Matcher<Stmt> | expr | Matcher<Expr>... | |
Matches expressions. Example matches x() void f() { x(); } | |||
Matcher<Stmt> | exprWithCleanups | Matcher<ExprWithCleanups>... | |
Matches expressions that introduce cleanups to be run at the end of the sub-expression's evaluation. Example matches std::string() const std::string str = std::string(); | |||
Matcher<Stmt> | fixedPointLiteral | Matcher<FixedPointLiteral>... | |
Matches fixed point literals | |||
Matcher<Stmt> | floatLiteral | Matcher<FloatingLiteral>... | |
Matches float literals of all sizes / encodings, e.g. 1.0, 1.0f, 1.0L and 1e10. Does not match implicit conversions such as float a = 10; | |||
Matcher<Stmt> | forStmt | Matcher<ForStmt>... | |
Matches for statements. Example matches 'for (;;) {}' for (;;) {} int i[] = {1, 2, 3}; for (auto a : i); | |||
Matcher<Stmt> | genericSelectionExpr | Matcher<GenericSelectionExpr>... | |
Matches C11 _Generic expression. | |||
Matcher<Stmt> | gnuNullExpr | Matcher<GNUNullExpr>... | |
Matches GNU __null expression. | |||
Matcher<Stmt> | gotoStmt | Matcher<GotoStmt>... | |
Matches goto statements. Given goto FOO; FOO: bar(); gotoStmt() matches 'goto FOO' | |||
Matcher<Stmt> | ifStmt | Matcher<IfStmt>... | |
Matches if statements. Example matches 'if (x) {}' if (x) {} | |||
Matcher<Stmt> | imaginaryLiteral | Matcher<ImaginaryLiteral>... | |
Matches imaginary literals, which are based on integer and floating point literals e.g.: 1i, 1.0i | |||
Matcher<Stmt> | implicitCastExpr | Matcher<ImplicitCastExpr>... | |
Matches the implicit cast nodes of Clang's AST. This matches many different places, including function call return value eliding, as well as any type conversions. | |||
Matcher<Stmt> | implicitValueInitExpr | Matcher<ImplicitValueInitExpr>... | |
Matches implicit initializers of init list expressions. Given point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 }; implicitValueInitExpr() matches "[0].y" (implicitly) | |||
Matcher<Stmt> | initListExpr | Matcher<InitListExpr>... | |
Matches init list expressions. Given int a[] = { 1, 2 }; struct B { int x, y; }; B b = { 5, 6 }; initListExpr() matches "{ 1, 2 }" and "{ 5, 6 }" | |||
Matcher<Stmt> | integerLiteral | Matcher<IntegerLiteral>... | |
Matches integer literals of all sizes / encodings, e.g. 1, 1L, 0x1 and 1U. Does not match character-encoded integers such as L'a'. | |||
Matcher<Stmt> | labelStmt | Matcher<LabelStmt>... | |
Matches label statements. Given goto FOO; FOO: bar(); labelStmt() matches 'FOO:' | |||
Matcher<Stmt> | lambdaExpr | Matcher<LambdaExpr>... | |
Matches lambda expressions. Example matches [&](){return 5;} [&](){return 5;} | |||
Matcher<Stmt> | materializeTemporaryExpr | Matcher<MaterializeTemporaryExpr>... | |
Matches nodes where temporaries are materialized. Example: Given struct T {void func();}; T f(); void g(T); materializeTemporaryExpr() matches 'f()' in these statements T u(f()); g(f()); f().func(); but does not match f(); | |||
Matcher<Stmt> | memberExpr | Matcher<MemberExpr>... | |
Matches member expressions. Given class Y { void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; } int a; static int b; }; memberExpr() matches this->x, x, y.x, a, this->b | |||
Matcher<Stmt> | nullStmt | Matcher<NullStmt>... | |
Matches null statements. foo();; nullStmt() matches the second ';' | |||
Matcher<Stmt> | objcCatchStmt | Matcher<ObjCAtCatchStmt>... | |
Matches Objective-C @catch statements. Example matches @catch @try {} @catch (...) {} | |||
Matcher<Stmt> | objcFinallyStmt | Matcher<ObjCAtFinallyStmt>... | |
Matches Objective-C @finally statements. Example matches @finally @try {} @finally {} | |||
Matcher<Stmt> | objcIvarRefExpr | Matcher<ObjCIvarRefExpr>... | |
Matches a reference to an ObjCIvar. Example: matches "a" in "init" method: @implementation A { NSString *a; } - (void) init { a = @"hello"; } | |||
Matcher<Stmt> | objcMessageExpr | Matcher<ObjCMessageExpr>... | |
Matches ObjectiveC Message invocation expressions. The innermost message send invokes the "alloc" class method on the NSString class, while the outermost message send invokes the "initWithString" instance method on the object returned from NSString's "alloc". This matcher should match both message sends. [[NSString alloc] initWithString:@"Hello"] | |||
Matcher<Stmt> | objcStringLiteral | Matcher<ObjCStringLiteral>... | |
Matches ObjectiveC String literal expressions. Example matches @"abcd" NSString *s = @"abcd"; | |||
Matcher<Stmt> | objcThrowStmt | Matcher<ObjCAtThrowStmt>... | |
Matches Objective-C statements. Example matches @throw obj; | |||
Matcher<Stmt> | objcTryStmt | Matcher<ObjCAtTryStmt>... | |
Matches Objective-C @try statements. Example matches @try @try {} @catch (...) {} | |||
Matcher<Stmt> | ompExecutableDirective | Matcher<OMPExecutableDirective>... | |
Matches any ``#pragma omp`` executable directive. Given #pragma omp parallel #pragma omp parallel default(none) #pragma omp taskyield ``ompExecutableDirective()`` matches ``omp parallel``, ``omp parallel default(none)`` and ``omp taskyield``. | |||
Matcher<Stmt> | opaqueValueExpr | Matcher<OpaqueValueExpr>... | |
Matches opaque value expressions. They are used as helpers to reference another expressions and can be met in BinaryConditionalOperators, for example. Example matches 'a' (a ?: c) + 42; | |||
Matcher<Stmt> | parenExpr | Matcher<ParenExpr>... | |
Matches parentheses used in expressions. Example matches (foo() + 1) int foo() { return 1; } int a = (foo() + 1); | |||
Matcher<Stmt> | parenListExpr | Matcher<ParenListExpr>... | |
Matches paren list expressions. ParenListExprs don't have a predefined type and are used for late parsing. In the final AST, they can be met in template declarations. Given template<typename T> class X { void f() { X x(*this); int a = 0, b = 1; int i = (a, b); } }; parenListExpr() matches "*this" but NOT matches (a, b) because (a, b) has a predefined type and is a ParenExpr, not a ParenListExpr. | |||
Matcher<Stmt> | predefinedExpr | Matcher<PredefinedExpr>... | |
Matches predefined identifier expressions [C99 6.4.2.2]. Example: Matches __func__ printf("%s", __func__); | |||
Matcher<Stmt> | returnStmt | Matcher<ReturnStmt>... | |
Matches return statements. Given return 1; returnStmt() matches 'return 1' | |||
Matcher<Stmt> | stmt | Matcher<Stmt>... | |
Matches statements. Given { ++a; } stmt() matches both the compound statement '{ ++a; }' and '++a'. | |||
Matcher<Stmt> | stmtExpr | Matcher<StmtExpr>... | |
Matches statement expression (GNU extension). Example match: ({ int X = 4; X; }) int C = ({ int X = 4; X; }); | |||
Matcher<Stmt> | stringLiteral | Matcher<StringLiteral>... | |
Matches string literals (also matches wide string literals). Example matches "abcd", L"abcd" char *s = "abcd"; wchar_t *ws = L"abcd"; | |||
Matcher<Stmt> | substNonTypeTemplateParmExpr | Matcher<SubstNonTypeTemplateParmExpr>... | |
Matches substitutions of non-type template parameters. Given template <int N> struct A { static const int n = N; }; struct B : public A<42> {}; substNonTypeTemplateParmExpr() matches "N" in the right-hand side of "static const int n = N;" | |||
Matcher<Stmt> | switchCase | Matcher<SwitchCase>... | |
Matches case and default statements inside switch statements. Given switch(a) { case 42: break; default: break; } switchCase() matches 'case 42:' and 'default:'. | |||
Matcher<Stmt> | switchStmt | Matcher<SwitchStmt>... | |
Matches switch statements. Given switch(a) { case 42: break; default: break; } switchStmt() matches 'switch(a)'. | |||
Matcher<Stmt> | unaryExprOrTypeTraitExpr | Matcher<UnaryExprOrTypeTraitExpr>... | |
Matches sizeof (C99), alignof (C++11) and vec_step (OpenCL) Given Foo x = bar; int y = sizeof(x) + alignof(x); unaryExprOrTypeTraitExpr() matches sizeof(x) and alignof(x) | |||
Matcher<Stmt> | unaryOperator | Matcher<UnaryOperator>... | |
Matches unary operator expressions. Example matches !a !a || b | |||
Matcher<Stmt> | unresolvedLookupExpr | Matcher<UnresolvedLookupExpr>... | |
Matches reference to a name that can be looked up during parsing but could not be resolved to a specific declaration. Given template<typename T> T foo() { T a; return a; } template<typename T> void bar() { foo<T>(); } unresolvedLookupExpr() matches foo<T>() | |||
Matcher<Stmt> | unresolvedMemberExpr | Matcher<UnresolvedMemberExpr>... | |
Matches unresolved member expressions. Given struct X { template <class T> void f(); void g(); }; template <class T> void h() { X x; x.f<T>(); x.g(); } unresolvedMemberExpr() matches x.f<T> | |||
Matcher<Stmt> | userDefinedLiteral | Matcher<UserDefinedLiteral>... | |
Matches user defined literal operator call. Example match: "foo"_suffix | |||
Matcher<Stmt> | whileStmt | Matcher<WhileStmt>... | |
Matches while statements. Given while (true) {} whileStmt() matches 'while (true) {}'. | |||
Matcher<TemplateArgumentLoc> | templateArgumentLoc | Matcher<TemplateArgumentLoc>... | |
Matches template arguments (with location info). Given template <typename T> struct C {}; C<int> c; templateArgumentLoc() matches 'int' in C<int>. | |||
Matcher<TemplateArgument> | templateArgument | Matcher<TemplateArgument>... | |
Matches template arguments. Given template <typename T> struct C {}; C<int> c; templateArgument() matches 'int' in C<int>. | |||
Matcher<TemplateName> | templateName | Matcher<TemplateName>... | |
Matches template name. Given template <typename T> class X { }; X<int> xi; templateName() matches 'X' in X<int>. | |||
Matcher<TypeLoc> | elaboratedTypeLoc | Matcher<ElaboratedTypeLoc>... | |
Matches C or C++ elaborated `TypeLoc`s. Given struct s {}; struct s ss; elaboratedTypeLoc() matches the `TypeLoc` of the variable declaration of `ss`. | |||
Matcher<TypeLoc> | pointerTypeLoc | Matcher<PointerTypeLoc>... | |
Matches pointer `TypeLoc`s. Given int* x; pointerTypeLoc() matches `int*`. | |||
Matcher<TypeLoc> | qualifiedTypeLoc | Matcher<QualifiedTypeLoc>... | |
Matches `QualifiedTypeLoc`s in the clang AST. Given const int x = 0; qualifiedTypeLoc() matches `const int`. | |||
Matcher<TypeLoc> | referenceTypeLoc | Matcher<ReferenceTypeLoc>... | |
Matches reference `TypeLoc`s. Given int x = 3; int& l = x; int&& r = 3; referenceTypeLoc() matches `int&` and `int&&`. | |||
Matcher<TypeLoc> | templateSpecializationTypeLoc | Matcher<TemplateSpecializationTypeLoc>... | |
Matches template specialization `TypeLoc`s. Given template <typename T> class C {}; C<char> var; varDecl(hasTypeLoc(templateSpecializationTypeLoc(typeLoc()))) matches `C<char> var`. | |||
Matcher<TypeLoc> | typeLoc | Matcher<TypeLoc>... | |
Matches TypeLocs in the clang AST. | |||
Matcher<Type> | arrayType | Matcher<ArrayType>... | |
Matches all kinds of arrays. Given int a[] = { 2, 3 }; int b[4]; void f() { int c[a[0]]; } arrayType() matches "int a[]", "int b[4]" and "int c[a[0]]"; | |||
Matcher<Type> | atomicType | Matcher<AtomicType>... | |
Matches atomic types. Given _Atomic(int) i; atomicType() matches "_Atomic(int) i" | |||
Matcher<Type> | autoType | Matcher<AutoType>... | |
Matches types nodes representing C++11 auto types. Given: auto n = 4; int v[] = { 2, 3 } for (auto i : v) { } autoType() matches "auto n" and "auto i" | |||
Matcher<Type> | blockPointerType | Matcher<BlockPointerType>... | |
Matches block pointer types, i.e. types syntactically represented as "void (^)(int)". The pointee is always required to be a FunctionType. | |||
Matcher<Type> | builtinType | Matcher<BuiltinType>... | |
Matches builtin Types. Given struct A {}; A a; int b; float c; bool d; builtinType() matches "int b", "float c" and "bool d" | |||
Matcher<Type> | complexType | Matcher<ComplexType>... | |
Matches C99 complex types. Given _Complex float f; complexType() matches "_Complex float f" | |||
Matcher<Type> | constantArrayType | Matcher<ConstantArrayType>... | |
Matches C arrays with a specified constant size. Given void() { int a[2]; int b[] = { 2, 3 }; int c[b[0]]; } constantArrayType() matches "int a[2]" | |||
Matcher<Type> | decayedType | Matcher<DecayedType>... | |
Matches decayed type Example matches i[] in declaration of f. (matcher = valueDecl(hasType(decayedType(hasDecayedType(pointerType()))))) Example matches i[1]. (matcher = expr(hasType(decayedType(hasDecayedType(pointerType()))))) void f(int i[]) { i[1] = 0; } | |||
Matcher<Type> | decltypeType | Matcher<DecltypeType>... | |
Matches types nodes representing C++11 decltype(<expr>) types. Given: short i = 1; int j = 42; decltype(i + j) result = i + j; decltypeType() matches "decltype(i + j)" | |||
Matcher<Type> | deducedTemplateSpecializationType | Matcher<DeducedTemplateSpecializationType>... | |
Matches C++17 deduced template specialization types, e.g. deduced class template types. Given template <typename T> class C { public: C(T); }; C c(123); deducedTemplateSpecializationType() matches the type in the declaration of the variable c. | |||
Matcher<Type> | dependentSizedArrayType | Matcher<DependentSizedArrayType>... | |
Matches C++ arrays whose size is a value-dependent expression. Given template<typename T, int Size> class array { T data[Size]; }; dependentSizedArrayType() matches "T data[Size]" | |||
Matcher<Type> | dependentSizedExtVectorType | Matcher<DependentSizedExtVectorType>... | |
Matches C++ extended vector type where either the type or size is dependent. Given template<typename T, int Size> class vector { typedef T __attribute__((ext_vector_type(Size))) type; }; dependentSizedExtVectorType() matches "T __attribute__((ext_vector_type(Size)))" | |||
Matcher<Type> | elaboratedType | Matcher<ElaboratedType>... | |
Matches types specified with an elaborated type keyword or with a qualified name. Given namespace N { namespace M { class D {}; } } class C {}; class C c; N::M::D d; elaboratedType() matches the type of the variable declarations of both c and d. | |||
Matcher<Type> | enumType | Matcher<EnumType>... | |
Matches enum types. Given enum C { Green }; enum class S { Red }; C c; S s; enumType() matches the type of the variable declarations of both c and s. | |||
Matcher<Type> | functionProtoType | Matcher<FunctionProtoType>... | |
Matches FunctionProtoType nodes. Given int (*f)(int); void g(); functionProtoType() matches "int (*f)(int)" and the type of "g" in C++ mode. In C mode, "g" is not matched because it does not contain a prototype. | |||
Matcher<Type> | functionType | Matcher<FunctionType>... | |
Matches FunctionType nodes. Given int (*f)(int); void g(); functionType() matches "int (*f)(int)" and the type of "g". | |||
Matcher<Type> | incompleteArrayType | Matcher<IncompleteArrayType>... | |
Matches C arrays with unspecified size. Given int a[] = { 2, 3 }; int b[42]; void f(int c[]) { int d[a[0]]; }; incompleteArrayType() matches "int a[]" and "int c[]" | |||
Matcher<Type> | injectedClassNameType | Matcher<InjectedClassNameType>... | |
Matches injected class name types. Example matches S s, but not S<T> s. (matcher = parmVarDecl(hasType(injectedClassNameType()))) template <typename T> struct S { void f(S s); void g(S<T> s); }; | |||
Matcher<Type> | lValueReferenceType | Matcher<LValueReferenceType>... | |
Matches lvalue reference types. Given: int *a; int &b = *a; int &&c = 1; auto &d = b; auto &&e = c; auto &&f = 2; int g = 5; lValueReferenceType() matches the types of b, d, and e. e is matched since the type is deduced as int& by reference collapsing rules. | |||
Matcher<Type> | macroQualifiedType | Matcher<MacroQualifiedType>... | |
Matches qualified types when the qualifier is applied via a macro. Given #define CDECL __attribute__((cdecl)) typedef void (CDECL *X)(); typedef void (__attribute__((cdecl)) *Y)(); macroQualifiedType() matches the type of the typedef declaration of X but not Y. | |||
Matcher<Type> | memberPointerType | Matcher<MemberPointerType>... | |
Matches member pointer types. Given struct A { int i; } A::* ptr = A::i; memberPointerType() matches "A::* ptr" | |||
Matcher<Type> | objcObjectPointerType | Matcher<ObjCObjectPointerType>... | |
Matches an Objective-C object pointer type, which is different from a pointer type, despite being syntactically similar. Given int *a; @interface Foo @end Foo *f; pointerType() matches "Foo *f", but does not match "int *a". | |||
Matcher<Type> | parenType | Matcher<ParenType>... | |
Matches ParenType nodes. Given int (*ptr_to_array)[4]; int *array_of_ptrs[4]; varDecl(hasType(pointsTo(parenType()))) matches ptr_to_array but not array_of_ptrs. | |||
Matcher<Type> | pointerType | Matcher<PointerType>... | |
Matches pointer types, but does not match Objective-C object pointer types. Given int *a; int &b = *a; int c = 5; @interface Foo @end Foo *f; pointerType() matches "int *a", but does not match "Foo *f". | |||
Matcher<Type> | rValueReferenceType | Matcher<RValueReferenceType>... | |
Matches rvalue reference types. Given: int *a; int &b = *a; int &&c = 1; auto &d = b; auto &&e = c; auto &&f = 2; int g = 5; rValueReferenceType() matches the types of c and f. e is not matched as it is deduced to int& by reference collapsing rules. | |||
Matcher<Type> | recordType | Matcher<RecordType>... | |
Matches record types (e.g. structs, classes). Given class C {}; struct S {}; C c; S s; recordType() matches the type of the variable declarations of both c and s. | |||
Matcher<Type> | referenceType | Matcher<ReferenceType>... | |
Matches both lvalue and rvalue reference types. Given int *a; int &b = *a; int &&c = 1; auto &d = b; auto &&e = c; auto &&f = 2; int g = 5; referenceType() matches the types of b, c, d, e, and f. | |||
Matcher<Type> | substTemplateTypeParmType | Matcher<SubstTemplateTypeParmType>... | |
Matches types that represent the result of substituting a type for a template type parameter. Given template <typename T> void F(T t) { int i = 1 + t; } substTemplateTypeParmType() matches the type of 't' but not '1' | |||
Matcher<Type> | tagType | Matcher<TagType>... | |
Matches tag types (record and enum types). Given enum E {}; class C {}; E e; C c; tagType() matches the type of the variable declarations of both e and c. | |||
Matcher<Type> | templateSpecializationType | Matcher<TemplateSpecializationType>... | |
Matches template specialization types. Given template <typename T> class C { }; template class C<int>; // A C<char> var; // B templateSpecializationType() matches the type of the explicit instantiation in A and the type of the variable declaration in B. | |||
Matcher<Type> | templateTypeParmType | Matcher<TemplateTypeParmType>... | |
Matches template type parameter types. Example matches T, but not int. (matcher = templateTypeParmType()) template <typename T> void f(int i); | |||
Matcher<Type> | type | Matcher<Type>... | |
Matches Types in the clang AST. | |||
Matcher<Type> | typedefType | Matcher<TypedefType>... | |
Matches typedef types. Given typedef int X; typedefType() matches "typedef int X" | |||
Matcher<Type> | unaryTransformType | Matcher<UnaryTransformType>... | |
Matches types nodes representing unary type transformations. Given: typedef __underlying_type(T) type; unaryTransformType() matches "__underlying_type(T)" | |||
Matcher<Type> | usingType | Matcher<UsingType>... | |
Matches types specified through a using declaration. Given namespace a { struct S {}; } using a::S; S s; usingType() matches the type of the variable declaration of s. | |||
Matcher<Type> | variableArrayType | Matcher<VariableArrayType>... | |
Matches C arrays with a specified size that is not an integer-constant-expression. Given void f() { int a[] = { 2, 3 } int b[42]; int c[a[0]]; } variableArrayType() matches "int c[a[0]]" |
Narrowing Matchers
Narrowing matchers match certain attributes on the current node, thus narrowing down the set of nodes of the current type to match on.
There are special logical narrowing matchers (allOf, anyOf, anything and unless) which allow users to create more powerful match expressions.
Return type | Name | Parameters | |
---|---|---|---|
Matcher<*> | allOf | Matcher<*>, ..., Matcher<*> | |
Matches if all given matchers match. Usable as: Any Matcher | |||
Matcher<*> | anyOf | Matcher<*>, ..., Matcher<*> | |
Matches if any of the given matchers matches. Usable as: Any Matcher | |||
Matcher<*> | anything | ||
Matches any node. Useful when another matcher requires a child matcher, but there's no additional constraint. This will often be used with an explicit conversion to an internal::Matcher<> type such as TypeMatcher. Example: DeclarationMatcher(anything()) matches all declarations, e.g., "int* p" and "void f()" in int* p; void f(); Usable as: Any Matcher | |||
unspecified | mapAnyOf | nodeMatcherFunction... | |
Matches any of the NodeMatchers with InnerMatchers nested within Given if (true); for (; true; ); with the matcher mapAnyOf(ifStmt, forStmt).with( hasCondition(cxxBoolLiteralExpr(equals(true))) ).bind("trueCond") matches the if and the for. It is equivalent to: auto trueCond = hasCondition(cxxBoolLiteralExpr(equals(true))); anyOf( ifStmt(trueCond).bind("trueCond"), forStmt(trueCond).bind("trueCond") ); The with() chain-call accepts zero or more matchers which are combined as-if with allOf() in each of the node matchers. Usable as: Any Matcher | |||
Matcher<*> | unless | Matcher<*> | |
Matches if the provided matcher does not match. Example matches Y (matcher = cxxRecordDecl(unless(hasName("X")))) class X {}; class Y {}; Usable as: Any Matcher | |||
Matcher<Attr> | isImplicit | ||
Matches an entity that has been implicitly added by the compiler (e.g. implicit default/copy constructors). | |||
Matcher<BinaryOperator> | hasAnyOperatorName | StringRef, ..., StringRef | |
Matches operator expressions (binary or unary) that have any of the specified names. hasAnyOperatorName("+", "-") Is equivalent to anyOf(hasOperatorName("+"), hasOperatorName("-")) | |||
Matcher<BinaryOperator> | hasOperatorName | std::string Name | |
Matches the operator Name of operator expressions and fold expressions (binary or unary). Example matches a || b (matcher = binaryOperator(hasOperatorName("||"))) !(a || b) Example matches `(0 + ... + args)` (matcher = cxxFoldExpr(hasOperatorName("+"))) template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } | |||
Matcher<BinaryOperator> | isAssignmentOperator | ||
Matches all kinds of assignment operators. Example 1: matches a += b (matcher = binaryOperator(isAssignmentOperator())) if (a == b) a += b; Example 2: matches s1 = s2 (matcher = cxxOperatorCallExpr(isAssignmentOperator())) struct S { S& operator=(const S&); }; void x() { S s1, s2; s1 = s2; } | |||
Matcher<BinaryOperator> | isComparisonOperator | ||
Matches comparison operators. Example 1: matches a == b (matcher = binaryOperator(isComparisonOperator())) if (a == b) a += b; Example 2: matches s1 < s2 (matcher = cxxOperatorCallExpr(isComparisonOperator())) struct S { bool operator<(const S& other); }; void x(S s1, S s2) { bool b1 = s1 < s2; } | |||
Matcher<CXXBaseSpecifier> | isPrivate | ||
Matches private C++ declarations and C++ base specifers that specify private inheritance. Examples: class C { public: int a; protected: int b; private: int c; // fieldDecl(isPrivate()) matches 'c' }; struct Base {}; struct Derived1 : private Base {}; // matches 'Base' class Derived2 : Base {}; // matches 'Base' | |||
Matcher<CXXBaseSpecifier> | isProtected | ||
Matches protected C++ declarations and C++ base specifers that specify protected inheritance. Examples: class C { public: int a; protected: int b; // fieldDecl(isProtected()) matches 'b' private: int c; }; class Base {}; class Derived : protected Base {}; // matches 'Base' | |||
Matcher<CXXBaseSpecifier> | isPublic | ||
Matches public C++ declarations and C++ base specifers that specify public inheritance. Examples: class C { public: int a; // fieldDecl(isPublic()) matches 'a' protected: int b; private: int c; }; class Base {}; class Derived1 : public Base {}; // matches 'Base' struct Derived2 : Base {}; // matches 'Base' | |||
Matcher<CXXBaseSpecifier> | isVirtual | ||
Matches declarations of virtual methods and C++ base specifers that specify virtual inheritance. Example: class A { public: virtual void x(); // matches x }; Example: class Base {}; class DirectlyDerived : virtual Base {}; // matches Base class IndirectlyDerived : DirectlyDerived, Base {}; // matches Base Usable as: Matcher<CXXMethodDecl>, Matcher<CXXBaseSpecifier> | |||
Matcher<CXXBoolLiteralExpr> | equals | bool Value | |
Matcher<CXXBoolLiteralExpr> | equals | const ValueT Value | |
Matches literals that are equal to the given value of type ValueT. Given f('false, 3.14, 42); characterLiteral(equals(0)) matches 'cxxBoolLiteral(equals(false)) and cxxBoolLiteral(equals(0)) match false floatLiteral(equals(3.14)) and floatLiteral(equals(314e-2)) match 3.14 integerLiteral(equals(42)) matches 42 Note that you cannot directly match a negative numeric literal because the minus sign is not part of the literal: It is a unary operator whose operand is the positive numeric literal. Instead, you must use a unaryOperator() matcher to match the minus sign: unaryOperator(hasOperatorName("-"), hasUnaryOperand(integerLiteral(equals(13)))) Usable as: Matcher<CharacterLiteral>, Matcher<CXXBoolLiteralExpr>, Matcher<FloatingLiteral>, Matcher<IntegerLiteral> | |||
Matcher<CXXBoolLiteralExpr> | equals | double Value | |
Matcher<CXXBoolLiteralExpr> | equals | unsigned Value | |
Matcher<CXXCatchStmt> | isCatchAll | ||
Matches a C++ catch statement that has a catch-all handler. Given try { // ... } catch (int) { // ... } catch (...) { // ... } cxxCatchStmt(isCatchAll()) matches catch(...) but not catch(int). | |||
Matcher<CXXConstructExpr> | argumentCountAtLeast | unsigned N | |
Checks that a call expression or a constructor call expression has at least the specified number of arguments (including absent default arguments). Example matches f(0, 0) and g(0, 0, 0) (matcher = callExpr(argumentCountAtLeast(2))) void f(int x, int y); void g(int x, int y, int z); f(0, 0); g(0, 0, 0); | |||
Matcher<CXXConstructExpr> | argumentCountIs | unsigned N | |
Checks that a call expression or a constructor call expression has a specific number of arguments (including absent default arguments). Example matches f(0, 0) (matcher = callExpr(argumentCountIs(2))) void f(int x, int y); f(0, 0); | |||
Matcher<CXXConstructExpr> | isListInitialization | ||
Matches a constructor call expression which uses list initialization. | |||
Matcher<CXXConstructExpr> | requiresZeroInitialization | ||
Matches a constructor call expression which requires zero initialization. Given void foo() { struct point { double x; double y; }; point pt[2] = { { 1.0, 2.0 } }; } initListExpr(has(cxxConstructExpr(requiresZeroInitialization())) will match the implicit array filler for pt[1]. | |||
Matcher<CXXConstructorDecl> | isCopyConstructor | ||
Matches constructor declarations that are copy constructors. Given struct S { S(); // #1 S(const S &); // #2 S(S &&); // #3 }; cxxConstructorDecl(isCopyConstructor()) will match #2, but not #1 or #3. | |||
Matcher<CXXConstructorDecl> | isDefaultConstructor | ||
Matches constructor declarations that are default constructors. Given struct S { S(); // #1 S(const S &); // #2 S(S &&); // #3 }; cxxConstructorDecl(isDefaultConstructor()) will match #1, but not #2 or #3. | |||
Matcher<CXXConstructorDecl> | isDelegatingConstructor | ||
Matches constructors that delegate to another constructor. Given struct S { S(); // #1 S(int) {} // #2 S(S &&) : S() {} // #3 }; S::S() : S(0) {} // #4 cxxConstructorDecl(isDelegatingConstructor()) will match #3 and #4, but not #1 or #2. | |||
Matcher<CXXConstructorDecl> | isExplicit | ||
Matches constructor, conversion function, and deduction guide declarations that have an explicit specifier if this explicit specifier is resolved to true. Given template<bool b> struct S { S(int); // #1 explicit S(double); // #2 operator int(); // #3 explicit operator bool(); // #4 explicit(false) S(bool) // # 7 explicit(true) S(char) // # 8 explicit(b) S(S) // # 9 }; S(int) -> S<true> // #5 explicit S(double) -> S<false> // #6 cxxConstructorDecl(isExplicit()) will match #2 and #8, but not #1, #7 or #9. cxxConversionDecl(isExplicit()) will match #4, but not #3. cxxDeductionGuideDecl(isExplicit()) will match #6, but not #5. | |||
Matcher<CXXConstructorDecl> | isInheritingConstructor | ||
Matcher<CXXConstructorDecl> | isMoveConstructor | ||
Matches constructor declarations that are move constructors. Given struct S { S(); // #1 S(const S &); // #2 S(S &&); // #3 }; cxxConstructorDecl(isMoveConstructor()) will match #3, but not #1 or #2. | |||
Matcher<CXXConversionDecl> | isExplicit | ||
Matches constructor, conversion function, and deduction guide declarations that have an explicit specifier if this explicit specifier is resolved to true. Given template<bool b> struct S { S(int); // #1 explicit S(double); // #2 operator int(); // #3 explicit operator bool(); // #4 explicit(false) S(bool) // # 7 explicit(true) S(char) // # 8 explicit(b) S(S) // # 9 }; S(int) -> S<true> // #5 explicit S(double) -> S<false> // #6 cxxConstructorDecl(isExplicit()) will match #2 and #8, but not #1, #7 or #9. cxxConversionDecl(isExplicit()) will match #4, but not #3. cxxDeductionGuideDecl(isExplicit()) will match #6, but not #5. | |||
Matcher<CXXCtorInitializer> | isBaseInitializer | ||
Matches a constructor initializer if it is initializing a base, as opposed to a member. Given struct B {}; struct D : B { int I; D(int i) : I(i) {} }; struct E : B { E() : B() {} }; cxxConstructorDecl(hasAnyConstructorInitializer(isBaseInitializer())) will match E(), but not match D(int). | |||
Matcher<CXXCtorInitializer> | isMemberInitializer | ||
Matches a constructor initializer if it is initializing a member, as opposed to a base. Given struct B {}; struct D : B { int I; D(int i) : I(i) {} }; struct E : B { E() : B() {} }; cxxConstructorDecl(hasAnyConstructorInitializer(isMemberInitializer())) will match D(int), but not match E(). | |||
Matcher<CXXCtorInitializer> | isWritten | ||
Matches a constructor initializer if it is explicitly written in code (as opposed to implicitly added by the compiler). Given struct Foo { Foo() { } Foo(int) : foo_("A") { } string foo_; }; cxxConstructorDecl(hasAnyConstructorInitializer(isWritten())) will match Foo(int), but not Foo() | |||
Matcher<CXXDeductionGuideDecl> | isExplicit | ||
Matches constructor, conversion function, and deduction guide declarations that have an explicit specifier if this explicit specifier is resolved to true. Given template<bool b> struct S { S(int); // #1 explicit S(double); // #2 operator int(); // #3 explicit operator bool(); // #4 explicit(false) S(bool) // # 7 explicit(true) S(char) // # 8 explicit(b) S(S) // # 9 }; S(int) -> S<true> // #5 explicit S(double) -> S<false> // #6 cxxConstructorDecl(isExplicit()) will match #2 and #8, but not #1, #7 or #9. cxxConversionDecl(isExplicit()) will match #4, but not #3. cxxDeductionGuideDecl(isExplicit()) will match #6, but not #5. | |||
Matcher<CXXDependentScopeMemberExpr> | hasMemberName | std::string N | |
Matches template-dependent, but known, member names. In template declarations, dependent members are not resolved and so can not be matched to particular named declarations. This matcher allows to match on the known name of members. Given template <typename T> struct S { void mem(); }; template <typename T> void x() { S<T> s; s.mem(); } cxxDependentScopeMemberExpr(hasMemberName("mem")) matches `s.mem()` | |||
Matcher<CXXDependentScopeMemberExpr> | isArrow | ||
Matches member expressions that are called with '->' as opposed to '.'. Member calls on the implicit this pointer match as called with '->'. Given class Y { void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; } template <class T> void f() { this->f<T>(); f<T>(); } int a; static int b; }; template <class T> class Z { void x() { this->m; } }; memberExpr(isArrow()) matches this->x, x, y.x, a, this->b cxxDependentScopeMemberExpr(isArrow()) matches this->m unresolvedMemberExpr(isArrow()) matches this->f<T>, f<T> | |||
Matcher<CXXDependentScopeMemberExpr> | memberHasSameNameAsBoundNode | std::string BindingID | |
Matches template-dependent, but known, member names against an already-bound node In template declarations, dependent members are not resolved and so can not be matched to particular named declarations. This matcher allows to match on the name of already-bound VarDecl, FieldDecl and CXXMethodDecl nodes. Given template <typename T> struct S { void mem(); }; template <typename T> void x() { S<T> s; s.mem(); } The matcher @code cxxDependentScopeMemberExpr( hasObjectExpression(declRefExpr(hasType(templateSpecializationType( hasDeclaration(classTemplateDecl(has(cxxRecordDecl(has( cxxMethodDecl(hasName("mem")).bind("templMem") ))))) )))), memberHasSameNameAsBoundNode("templMem") ) @endcode first matches and binds the @c mem member of the @c S template, then compares its name to the usage in @c s.mem() in the @c x function template | |||
Matcher<CXXFoldExpr> | hasOperatorName | std::string Name | |
Matches the operator Name of operator expressions and fold expressions (binary or unary). Example matches a || b (matcher = binaryOperator(hasOperatorName("||"))) !(a || b) Example matches `(0 + ... + args)` (matcher = cxxFoldExpr(hasOperatorName("+"))) template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } | |||
Matcher<CXXFoldExpr> | isBinaryFold | ||
Matches binary fold expressions, i.e. fold expressions with an initializer. Example matches `(0 + ... + args)` (matcher = cxxFoldExpr(isBinaryFold())) template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } template <typename... Args> auto multiply(Args... args) { return (args * ...); } | |||
Matcher<CXXFoldExpr> | isLeftFold | ||
Matches left-folding fold expressions. Example matches `(0 + ... + args)` (matcher = cxxFoldExpr(isLeftFold())) template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } template <typename... Args> auto multiply(Args... args) { return (args * ... * 1); } | |||
Matcher<CXXFoldExpr> | isRightFold | ||
Matches right-folding fold expressions. Example matches `(args * ... * 1)` (matcher = cxxFoldExpr(isRightFold())) template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } template <typename... Args> auto multiply(Args... args) { return (args * ... * 1); } | |||
Matcher<CXXFoldExpr> | isUnaryFold | ||
Matches unary fold expressions, i.e. fold expressions without an initializer. Example matches `(args * ...)` (matcher = cxxFoldExpr(isUnaryFold())) template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } template <typename... Args> auto multiply(Args... args) { return (args * ...); } | |||
Matcher<CXXMethodDecl> | isConst | ||
Matches if the given method declaration is const. Given struct A { void foo() const; void bar(); }; cxxMethodDecl(isConst()) matches A::foo() but not A::bar() | |||
Matcher<CXXMethodDecl> | isCopyAssignmentOperator | ||
Matches if the given method declaration declares a copy assignment operator. Given struct A { A &operator=(const A &); A &operator=(A &&); }; cxxMethodDecl(isCopyAssignmentOperator()) matches the first method but not the second one. | |||
Matcher<CXXMethodDecl> | isExplicitObjectMemberFunction | ||
Matches if the given method declaration declares a member function with an explicit object parameter. Given struct A { int operator-(this A, int); void fun(this A &&self); static int operator()(int); int operator+(int); }; cxxMethodDecl(isExplicitObjectMemberFunction()) matches the first two methods but not the last two. | |||
Matcher<CXXMethodDecl> | isFinal | ||
Matches if the given method or class declaration is final. Given: class A final {}; struct B { virtual void f(); }; struct C : B { void f() final; }; matches A and C::f, but not B, C, or B::f | |||
Matcher<CXXMethodDecl> | isMoveAssignmentOperator | ||
Matches if the given method declaration declares a move assignment operator. Given struct A { A &operator=(const A &); A &operator=(A &&); }; cxxMethodDecl(isMoveAssignmentOperator()) matches the second method but not the first one. | |||
Matcher<CXXMethodDecl> | isOverride | ||
Matches if the given method declaration overrides another method. Given class A { public: virtual void x(); }; class B : public A { public: virtual void x(); }; matches B::x | |||
Matcher<CXXMethodDecl> | isPure | ||
Matches if the given method declaration is pure. Given class A { public: virtual void x() = 0; }; matches A::x | |||
Matcher<CXXMethodDecl> | isUserProvided | ||
Matches method declarations that are user-provided. Given struct S { S(); // #1 S(const S &) = default; // #2 S(S &&) = delete; // #3 }; cxxConstructorDecl(isUserProvided()) will match #1, but not #2 or #3. | |||
Matcher<CXXMethodDecl> | isVirtual | ||
Matches declarations of virtual methods and C++ base specifers that specify virtual inheritance. Example: class A { public: virtual void x(); // matches x }; Example: class Base {}; class DirectlyDerived : virtual Base {}; // matches Base class IndirectlyDerived : DirectlyDerived, Base {}; // matches Base Usable as: Matcher<CXXMethodDecl>, Matcher<CXXBaseSpecifier> | |||
Matcher<CXXMethodDecl> | isVirtualAsWritten | ||
Matches if the given method declaration has an explicit "virtual". Given class A { public: virtual void x(); }; class B : public A { public: void x(); }; matches A::x but not B::x | |||
Matcher<CXXNewExpr> | isArray | ||
Matches array new expressions. Given: MyClass *p1 = new MyClass[10]; cxxNewExpr(isArray()) matches the expression 'new MyClass[10]'. | |||
Matcher<CXXOperatorCallExpr> | hasAnyOperatorName | StringRef, ..., StringRef | |
Matches operator expressions (binary or unary) that have any of the specified names. hasAnyOperatorName("+", "-") Is equivalent to anyOf(hasOperatorName("+"), hasOperatorName("-")) | |||
Matcher<CXXOperatorCallExpr> | hasAnyOverloadedOperatorName | StringRef, ..., StringRef | |
Matches overloaded operator names. Matches overloaded operator names specified in strings without the "operator" prefix: e.g. "<<". hasAnyOverloadedOperatorName("+", "-") Is equivalent to anyOf(hasOverloadedOperatorName("+"), hasOverloadedOperatorName("-")) | |||
Matcher<CXXOperatorCallExpr> | hasOperatorName | std::string Name | |
Matches the operator Name of operator expressions and fold expressions (binary or unary). Example matches a || b (matcher = binaryOperator(hasOperatorName("||"))) !(a || b) Example matches `(0 + ... + args)` (matcher = cxxFoldExpr(hasOperatorName("+"))) template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } | |||
Matcher<CXXOperatorCallExpr> | hasOverloadedOperatorName | StringRef Name | |
Matches overloaded operator names. Matches overloaded operator names specified in strings without the "operator" prefix: e.g. "<<". Given: class A { int operator*(); }; const A &operator<<(const A &a, const A &b); A a; a << a; // <-- This matches cxxOperatorCallExpr(hasOverloadedOperatorName("<<"))) matches the specified line and cxxRecordDecl(hasMethod(hasOverloadedOperatorName("*"))) matches the declaration of A. Usable as: Matcher<CXXOperatorCallExpr>, Matcher<FunctionDecl> | |||
Matcher<CXXOperatorCallExpr> | isAssignmentOperator | ||
Matches all kinds of assignment operators. Example 1: matches a += b (matcher = binaryOperator(isAssignmentOperator())) if (a == b) a += b; Example 2: matches s1 = s2 (matcher = cxxOperatorCallExpr(isAssignmentOperator())) struct S { S& operator=(const S&); }; void x() { S s1, s2; s1 = s2; } | |||
Matcher<CXXOperatorCallExpr> | isComparisonOperator | ||
Matches comparison operators. Example 1: matches a == b (matcher = binaryOperator(isComparisonOperator())) if (a == b) a += b; Example 2: matches s1 < s2 (matcher = cxxOperatorCallExpr(isComparisonOperator())) struct S { bool operator<(const S& other); }; void x(S s1, S s2) { bool b1 = s1 < s2; } | |||
Matcher<CXXRecordDecl> | hasDefinition | ||
Matches a class declaration that is defined. Example matches x (matcher = cxxRecordDecl(hasDefinition())) class x {}; class y; | |||
Matcher<CXXRecordDecl> | isDerivedFrom | std::string BaseName | |
Overloaded method as shortcut for isDerivedFrom(hasName(...)). | |||
Matcher<CXXRecordDecl> | isDirectlyDerivedFrom | std::string BaseName | |
Overloaded method as shortcut for isDirectlyDerivedFrom(hasName(...)). | |||
Matcher<CXXRecordDecl> | isExplicitTemplateSpecialization | ||
Matches explicit template specializations of function, class, or static member variable template instantiations. Given template<typename T> void A(T t) { } template<> void A(int N) { } functionDecl(isExplicitTemplateSpecialization()) matches the specialization A<int>(). Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl> | |||
Matcher<CXXRecordDecl> | isFinal | ||
Matches if the given method or class declaration is final. Given: class A final {}; struct B { virtual void f(); }; struct C : B { void f() final; }; matches A and C::f, but not B, C, or B::f | |||
Matcher<CXXRecordDecl> | isLambda | ||
Matches the generated class of lambda expressions. Given: auto x = []{}; cxxRecordDecl(isLambda()) matches the implicit class declaration of decltype(x) | |||
Matcher<CXXRecordDecl> | isSameOrDerivedFrom | std::string BaseName | |
Overloaded method as shortcut for isSameOrDerivedFrom(hasName(...)). | |||
Matcher<CXXRecordDecl> | isTemplateInstantiation | ||
Matches template instantiations of function, class, or static member variable template instantiations. Given template <typename T> class X {}; class A {}; X<A> x; or template <typename T> class X {}; class A {}; template class X<A>; or template <typename T> class X {}; class A {}; extern template class X<A>; cxxRecordDecl(hasName("::X"), isTemplateInstantiation()) matches the template instantiation of X<A>. But given template <typename T> class X {}; class A {}; template <> class X<A> {}; X<A> x; cxxRecordDecl(hasName("::X"), isTemplateInstantiation()) does not match, as X<A> is an explicit template specialization. Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl> | |||
Matcher<CXXRewrittenBinaryOperator> | hasAnyOperatorName | StringRef, ..., StringRef | |
Matches operator expressions (binary or unary) that have any of the specified names. hasAnyOperatorName("+", "-") Is equivalent to anyOf(hasOperatorName("+"), hasOperatorName("-")) | |||
Matcher<CXXRewrittenBinaryOperator> | hasOperatorName | std::string Name | |
Matches the operator Name of operator expressions and fold expressions (binary or unary). Example matches a || b (matcher = binaryOperator(hasOperatorName("||"))) !(a || b) Example matches `(0 + ... + args)` (matcher = cxxFoldExpr(hasOperatorName("+"))) template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } | |||
Matcher<CXXRewrittenBinaryOperator> | isAssignmentOperator | ||
Matches all kinds of assignment operators. Example 1: matches a += b (matcher = binaryOperator(isAssignmentOperator())) if (a == b) a += b; Example 2: matches s1 = s2 (matcher = cxxOperatorCallExpr(isAssignmentOperator())) struct S { S& operator=(const S&); }; void x() { S s1, s2; s1 = s2; } | |||
Matcher<CXXRewrittenBinaryOperator> | isComparisonOperator | ||
Matches comparison operators. Example 1: matches a == b (matcher = binaryOperator(isComparisonOperator())) if (a == b) a += b; Example 2: matches s1 < s2 (matcher = cxxOperatorCallExpr(isComparisonOperator())) struct S { bool operator<(const S& other); }; void x(S s1, S s2) { bool b1 = s1 < s2; } | |||
Matcher<CXXUnresolvedConstructExpr> | argumentCountAtLeast | unsigned N | |
Checks that a call expression or a constructor call expression has at least the specified number of arguments (including absent default arguments). Example matches f(0, 0) and g(0, 0, 0) (matcher = callExpr(argumentCountAtLeast(2))) void f(int x, int y); void g(int x, int y, int z); f(0, 0); g(0, 0, 0); | |||
Matcher<CXXUnresolvedConstructExpr> | argumentCountIs | unsigned N | |
Checks that a call expression or a constructor call expression has a specific number of arguments (including absent default arguments). Example matches f(0, 0) (matcher = callExpr(argumentCountIs(2))) void f(int x, int y); f(0, 0); | |||
Matcher<CallExpr> | argumentCountAtLeast | unsigned N | |
Checks that a call expression or a constructor call expression has at least the specified number of arguments (including absent default arguments). Example matches f(0, 0) and g(0, 0, 0) (matcher = callExpr(argumentCountAtLeast(2))) void f(int x, int y); void g(int x, int y, int z); f(0, 0); g(0, 0, 0); | |||
Matcher<CallExpr> | argumentCountIs | unsigned N | |
Checks that a call expression or a constructor call expression has a specific number of arguments (including absent default arguments). Example matches f(0, 0) (matcher = callExpr(argumentCountIs(2))) void f(int x, int y); f(0, 0); | |||
Matcher<CallExpr> | usesADL | ||
Matches call expressions which were resolved using ADL. Example matches y(x) but not y(42) or NS::y(x). namespace NS { struct X {}; void y(X); } void y(...); void test() { NS::X x; y(x); // Matches NS::y(x); // Doesn't match y(42); // Doesn't match using NS::y; y(x); // Found by both unqualified lookup and ADL, doesn't match } | |||
Matcher<CastExpr> | hasCastKind | CastKind Kind | |
Matches casts that has a given cast kind. Example: matches the implicit cast around 0 (matcher = castExpr(hasCastKind(CK_NullToPointer))) int *p = 0; If the matcher is use from clang-query, CastKind parameter should be passed as a quoted string. e.g., hasCastKind("CK_NullToPointer"). | |||
Matcher<CharacterLiteral> | equals | bool Value | |
Matcher<CharacterLiteral> | equals | const ValueT Value | |
Matches literals that are equal to the given value of type ValueT. Given f('false, 3.14, 42); characterLiteral(equals(0)) matches 'cxxBoolLiteral(equals(false)) and cxxBoolLiteral(equals(0)) match false floatLiteral(equals(3.14)) and floatLiteral(equals(314e-2)) match 3.14 integerLiteral(equals(42)) matches 42 Note that you cannot directly match a negative numeric literal because the minus sign is not part of the literal: It is a unary operator whose operand is the positive numeric literal. Instead, you must use a unaryOperator() matcher to match the minus sign: unaryOperator(hasOperatorName("-"), hasUnaryOperand(integerLiteral(equals(13)))) Usable as: Matcher<CharacterLiteral>, Matcher<CXXBoolLiteralExpr>, Matcher<FloatingLiteral>, Matcher<IntegerLiteral> | |||
Matcher<CharacterLiteral> | equals | double Value | |
Matcher<CharacterLiteral> | equals | unsigned Value | |
Matcher<ClassTemplateSpecializationDecl> | templateArgumentCountIs | unsigned N | |
Matches if the number of template arguments equals N. Given template<typename T> struct C {}; C<int> c; classTemplateSpecializationDecl(templateArgumentCountIs(1)) matches C<int>. | |||
Matcher<CompoundStmt> | statementCountIs | unsigned N | |
Checks that a compound statement contains a specific number of child statements. Example: Given { for (;;) {} } compoundStmt(statementCountIs(0))) matches '{}' but does not match the outer compound statement. | |||
Matcher<ConstantArrayType> | hasSize | unsigned N | |
Matches nodes that have the specified size. Given int a[42]; int b[2 * 21]; int c[41], d[43]; char *s = "abcd"; wchar_t *ws = L"abcd"; char *w = "a"; constantArrayType(hasSize(42)) matches "int a[42]" and "int b[2 * 21]" stringLiteral(hasSize(4)) matches "abcd", L"abcd" | |||
Matcher<DeclStmt> | declCountIs | unsigned N | |
Matches declaration statements that contain a specific number of declarations. Example: Given int a, b; int c; int d = 2, e; declCountIs(2) matches 'int a, b;' and 'int d = 2, e;', but not 'int c;'. | |||
Matcher<Decl> | equalsBoundNode | std::string ID | |
Matches if a node equals a previously bound node. Matches a node if it equals the node previously bound to ID. Given class X { int a; int b; }; cxxRecordDecl( has(fieldDecl(hasName("a"), hasType(type().bind("t")))), has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t")))))) matches the class X, as a and b have the same type. Note that when multiple matches are involved via forEach* matchers, equalsBoundNodes acts as a filter. For example: compoundStmt( forEachDescendant(varDecl().bind("d")), forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d")))))) will trigger a match for each combination of variable declaration and reference to that variable declaration within a compound statement. | |||
Matcher<Decl> | equalsNode | const Decl* Other | |
Matches if a node equals another node. Decl has pointer identity in the AST. | |||
Matcher<Decl> | hasAttr | attr::Kind AttrKind | |
Matches declaration that has a given attribute. Given __attribute__((device)) void f() { ... } decl(hasAttr(clang::attr::CUDADevice)) matches the function declaration of f. If the matcher is used from clang-query, attr::Kind parameter should be passed as a quoted string. e.g., hasAttr("attr::CUDADevice"). | |||
Matcher<Decl> | isExpandedFromMacro | std::string MacroName | |
Matches statements that are (transitively) expanded from the named macro. Does not match if only part of the statement is expanded from that macro or if different parts of the statement are expanded from different appearances of the macro. | |||
Matcher<Decl> | isExpansionInFileMatching | StringRef RegExp, Regex::RegexFlags Flags = NoFlags | |
Matches AST nodes that were expanded within files whose name is partially matching a given regex. Example matches Y but not X (matcher = cxxRecordDecl(isExpansionInFileMatching("AST.*")) #include "ASTMatcher.h" class X {}; ASTMatcher.h: class Y {}; Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc> If the matcher is used in clang-query, RegexFlags parameter should be passed as a quoted string. e.g: "NoFlags". Flags can be combined with '|' example "IgnoreCase | BasicRegex" | |||
Matcher<Decl> | isExpansionInMainFile | ||
Matches AST nodes that were expanded within the main-file. Example matches X but not Y (matcher = cxxRecordDecl(isExpansionInMainFile()) #include <Y.h> class X {}; Y.h: class Y {}; Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc> | |||
Matcher<Decl> | isExpansionInSystemHeader | ||
Matches AST nodes that were expanded within system-header-files. Example matches Y but not X (matcher = cxxRecordDecl(isExpansionInSystemHeader()) #include <SystemHeader.h> class X {}; SystemHeader.h: class Y {}; Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc> | |||
Matcher<Decl> | isImplicit | ||
Matches an entity that has been implicitly added by the compiler (e.g. implicit default/copy constructors). | |||
Matcher<Decl> | isInAnonymousNamespace | ||
Matches declarations in an anonymous namespace. Given class vector {}; namespace foo { class vector {}; namespace { class vector {}; // #1 } } namespace { class vector {}; // #2 namespace foo { class vector{}; // #3 } } cxxRecordDecl(hasName("vector"), isInAnonymousNamespace()) will match #1, #2 and #3. | |||
Matcher<Decl> | isInStdNamespace | ||
Matches declarations in the namespace `std`, but not in nested namespaces. Given class vector {}; namespace foo { class vector {}; namespace std { class vector {}; } } namespace std { inline namespace __1 { class vector {}; // #1 namespace experimental { class vector {}; } } } cxxRecordDecl(hasName("vector"), isInStdNamespace()) will match only #1. | |||
Matcher<Decl> | isInstantiated | ||
Matches declarations that are template instantiations or are inside template instantiations. Given template<typename T> void A(T t) { T i; } A(0); A(0U); functionDecl(isInstantiated()) matches 'A(int) {...};' and 'A(unsigned) {...}'. | |||
Matcher<Decl> | isPrivate | ||
Matches private C++ declarations and C++ base specifers that specify private inheritance. Examples: class C { public: int a; protected: int b; private: int c; // fieldDecl(isPrivate()) matches 'c' }; struct Base {}; struct Derived1 : private Base {}; // matches 'Base' class Derived2 : Base {}; // matches 'Base' | |||
Matcher<Decl> | isProtected | ||
Matches protected C++ declarations and C++ base specifers that specify protected inheritance. Examples: class C { public: int a; protected: int b; // fieldDecl(isProtected()) matches 'b' private: int c; }; class Base {}; class Derived : protected Base {}; // matches 'Base' | |||
Matcher<Decl> | isPublic | ||
Matches public C++ declarations and C++ base specifers that specify public inheritance. Examples: class C { public: int a; // fieldDecl(isPublic()) matches 'a' protected: int b; private: int c; }; class Base {}; class Derived1 : public Base {}; // matches 'Base' struct Derived2 : Base {}; // matches 'Base' | |||
Matcher<DesignatedInitExpr> | designatorCountIs | unsigned N | |
Matches designated initializer expressions that contain a specific number of designators. Example: Given point ptarray[10] = { [2].y = 1.0, [0].x = 1.0 }; point ptarray2[10] = { [2].y = 1.0, [2].x = 0.0, [0].x = 1.0 }; designatorCountIs(2) matches '{ [2].y = 1.0, [0].x = 1.0 }', but not '{ [2].y = 1.0, [2].x = 0.0, [0].x = 1.0 }'. | |||
Matcher<EnumDecl> | isScoped | ||
Matches C++11 scoped enum declaration. Example matches Y (matcher = enumDecl(isScoped())) enum X {}; enum class Y {}; | |||
Matcher<Expr> | isInstantiationDependent | ||
Matches expressions that are instantiation-dependent even if it is neither type- nor value-dependent. In the following example, the expression sizeof(sizeof(T() + T())) is instantiation-dependent (since it involves a template parameter T), but is neither type- nor value-dependent, since the type of the inner sizeof is known (std::size_t) and therefore the size of the outer sizeof is known. template<typename T> void f(T x, T y) { sizeof(sizeof(T() + T()); } expr(isInstantiationDependent()) matches sizeof(sizeof(T() + T()) | |||
Matcher<Expr> | isTypeDependent | ||
Matches expressions that are type-dependent because the template type is not yet instantiated. For example, the expressions "x" and "x + y" are type-dependent in the following code, but "y" is not type-dependent: template<typename T> void add(T x, int y) { x + y; } expr(isTypeDependent()) matches x + y | |||
Matcher<Expr> | isValueDependent | ||
Matches expression that are value-dependent because they contain a non-type template parameter. For example, the array bound of "Chars" in the following example is value-dependent. template<int Size> int f() { return Size; } expr(isValueDependent()) matches return Size | |||
Matcher<Expr> | nullPointerConstant | ||
Matches expressions that resolve to a null pointer constant, such as GNU's __null, C++11's nullptr, or C's NULL macro. Given: void *v1 = NULL; void *v2 = nullptr; void *v3 = __null; // GNU extension char *cp = (char *)0; int *ip = 0; int i = 0; expr(nullPointerConstant()) matches the initializer for v1, v2, v3, cp, and ip. Does not match the initializer for i. | |||
Matcher<FieldDecl> | hasBitWidth | unsigned Width | |
Matches non-static data members that are bit-fields of the specified bit width. Given class C { int a : 2; int b : 4; int c : 2; }; fieldDecl(hasBitWidth(2)) matches 'int a;' and 'int c;' but not 'int b;'. | |||
Matcher<FieldDecl> | isBitField | ||
Matches non-static data members that are bit-fields. Given class C { int a : 2; int b; }; fieldDecl(isBitField()) matches 'int a;' but not 'int b;'. | |||
Matcher<FloatingLiteral> | equals | const ValueT Value | |
Matches literals that are equal to the given value of type ValueT. Given f('false, 3.14, 42); characterLiteral(equals(0)) matches 'cxxBoolLiteral(equals(false)) and cxxBoolLiteral(equals(0)) match false floatLiteral(equals(3.14)) and floatLiteral(equals(314e-2)) match 3.14 integerLiteral(equals(42)) matches 42 Note that you cannot directly match a negative numeric literal because the minus sign is not part of the literal: It is a unary operator whose operand is the positive numeric literal. Instead, you must use a unaryOperator() matcher to match the minus sign: unaryOperator(hasOperatorName("-"), hasUnaryOperand(integerLiteral(equals(13)))) Usable as: Matcher<CharacterLiteral>, Matcher<CXXBoolLiteralExpr>, Matcher<FloatingLiteral>, Matcher<IntegerLiteral> | |||
Matcher<FloatingLiteral> | equals | double Value | |
Matcher<FunctionDecl> | hasAnyOverloadedOperatorName | StringRef, ..., StringRef | |
Matches overloaded operator names. Matches overloaded operator names specified in strings without the "operator" prefix: e.g. "<<". hasAnyOverloadedOperatorName("+", "-") Is equivalent to anyOf(hasOverloadedOperatorName("+"), hasOverloadedOperatorName("-")) | |||
Matcher<FunctionDecl> | hasDynamicExceptionSpec | ||
Matches functions that have a dynamic exception specification. Given: void f(); void g() noexcept; void h() noexcept(true); void i() noexcept(false); void j() throw(); void k() throw(int); void l() throw(...); functionDecl(hasDynamicExceptionSpec()) and functionProtoType(hasDynamicExceptionSpec()) match the declarations of j, k, and l, but not f, g, h, or i. | |||
Matcher<FunctionDecl> | hasOverloadedOperatorName | StringRef Name | |
Matches overloaded operator names. Matches overloaded operator names specified in strings without the "operator" prefix: e.g. "<<". Given: class A { int operator*(); }; const A &operator<<(const A &a, const A &b); A a; a << a; // <-- This matches cxxOperatorCallExpr(hasOverloadedOperatorName("<<"))) matches the specified line and cxxRecordDecl(hasMethod(hasOverloadedOperatorName("*"))) matches the declaration of A. Usable as: Matcher<CXXOperatorCallExpr>, Matcher<FunctionDecl> | |||
Matcher<FunctionDecl> | hasTrailingReturn | ||
Matches a function declared with a trailing return type. Example matches Y (matcher = functionDecl(hasTrailingReturn())) int X() {} auto Y() -> int {} | |||
Matcher<FunctionDecl> | isConsteval | ||
Matches consteval function declarations and if consteval/if ! consteval statements. Given: consteval int a(); void b() { if consteval {} } void c() { if ! consteval {} } void d() { if ! consteval {} else {} } functionDecl(isConsteval()) matches the declaration of "int a()". ifStmt(isConsteval()) matches the if statement in "void b()", "void c()", "void d()". | |||
Matcher<FunctionDecl> | isConstexpr | ||
Matches constexpr variable and function declarations, and if constexpr. Given: constexpr int foo = 42; constexpr int bar(); void baz() { if constexpr(1 > 0) {} } varDecl(isConstexpr()) matches the declaration of foo. functionDecl(isConstexpr()) matches the declaration of bar. ifStmt(isConstexpr()) matches the if statement in baz. | |||
Matcher<FunctionDecl> | isDefaulted | ||
Matches defaulted function declarations. Given: class A { ~A(); }; class B { ~B() = default; }; functionDecl(isDefaulted()) matches the declaration of ~B, but not ~A. | |||
Matcher<FunctionDecl> | isDefinition | ||
Matches if a declaration has a body attached. Example matches A, va, fa class A {}; class B; // Doesn't match, as it has no body. int va; extern int vb; // Doesn't match, as it doesn't define the variable. void fa() {} void fb(); // Doesn't match, as it has no body. @interface X - (void)ma; // Doesn't match, interface is declaration. @end @implementation X - (void)ma {} @end Usable as: Matcher<TagDecl>, Matcher<VarDecl>, Matcher<FunctionDecl>, Matcher<ObjCMethodDecl> | |||
Matcher<FunctionDecl> | isDeleted | ||
Matches deleted function declarations. Given: void Func(); void DeletedFunc() = delete; functionDecl(isDeleted()) matches the declaration of DeletedFunc, but not Func. | |||
Matcher<FunctionDecl> | isExplicitTemplateSpecialization | ||
Matches explicit template specializations of function, class, or static member variable template instantiations. Given template<typename T> void A(T t) { } template<> void A(int N) { } functionDecl(isExplicitTemplateSpecialization()) matches the specialization A<int>(). Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl> | |||
Matcher<FunctionDecl> | isExternC | ||
Matches extern "C" function or variable declarations. Given: extern "C" void f() {} extern "C" { void g() {} } void h() {} extern "C" int x = 1; extern "C" int y = 2; int z = 3; functionDecl(isExternC()) matches the declaration of f and g, but not the declaration of h. varDecl(isExternC()) matches the declaration of x and y, but not the declaration of z. | |||
Matcher<FunctionDecl> | isInline | ||
Matches functions, variables and namespace declarations that are marked with the inline keyword. Given inline void f(); void g(); namespace n { inline namespace m {} } inline int Foo = 5; functionDecl(isInline()) will match ::f(). namespaceDecl(isInline()) will match n::m. varDecl(isInline()) will match Foo; | |||
Matcher<FunctionDecl> | isMain | ||
Determines whether the function is "main", which is the entry point into an executable program. | |||
Matcher<FunctionDecl> | isNoReturn | ||
Matches FunctionDecls that have a noreturn attribute. Given void nope(); [[noreturn]] void a(); __attribute__((noreturn)) void b(); struct c { [[noreturn]] c(); }; functionDecl(isNoReturn()) matches all of those except void nope(); | |||
Matcher<FunctionDecl> | isNoThrow | ||
Matches functions that have a non-throwing exception specification. Given: void f(); void g() noexcept; void h() throw(); void i() throw(int); void j() noexcept(false); functionDecl(isNoThrow()) and functionProtoType(isNoThrow()) match the declarations of g, and h, but not f, i or j. | |||
Matcher<FunctionDecl> | isStaticStorageClass | ||
Matches variable/function declarations that have "static" storage class specifier ("static" keyword) written in the source. Given: static void f() {} static int i = 0; extern int j; int k; functionDecl(isStaticStorageClass()) matches the function declaration f. varDecl(isStaticStorageClass()) matches the variable declaration i. | |||
Matcher<FunctionDecl> | isTemplateInstantiation | ||
Matches template instantiations of function, class, or static member variable template instantiations. Given template <typename T> class X {}; class A {}; X<A> x; or template <typename T> class X {}; class A {}; template class X<A>; or template <typename T> class X {}; class A {}; extern template class X<A>; cxxRecordDecl(hasName("::X"), isTemplateInstantiation()) matches the template instantiation of X<A>. But given template <typename T> class X {}; class A {}; template <> class X<A> {}; X<A> x; cxxRecordDecl(hasName("::X"), isTemplateInstantiation()) does not match, as X<A> is an explicit template specialization. Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl> | |||
Matcher<FunctionDecl> | isVariadic | ||
Matches if a function declaration is variadic. Example matches f, but not g or h. The function i will not match, even when compiled in C mode. void f(...); void g(int); template <typename... Ts> void h(Ts...); void i(); | |||
Matcher<FunctionDecl> | isWeak | ||
Matches weak function declarations. Given: void foo() __attribute__((__weakref__("__foo"))); void bar(); functionDecl(isWeak()) matches the weak declaration "foo", but not "bar". | |||
Matcher<FunctionDecl> | parameterCountIs | unsigned N | |
Matches FunctionDecls and FunctionProtoTypes that have a specific parameter count. Given void f(int i) {} void g(int i, int j) {} void h(int i, int j); void j(int i); void k(int x, int y, int z, ...); functionDecl(parameterCountIs(2)) matches g and h functionProtoType(parameterCountIs(2)) matches g and h functionProtoType(parameterCountIs(3)) matches k | |||
Matcher<FunctionProtoType> | hasDynamicExceptionSpec | ||
Matches functions that have a dynamic exception specification. Given: void f(); void g() noexcept; void h() noexcept(true); void i() noexcept(false); void j() throw(); void k() throw(int); void l() throw(...); functionDecl(hasDynamicExceptionSpec()) and functionProtoType(hasDynamicExceptionSpec()) match the declarations of j, k, and l, but not f, g, h, or i. | |||
Matcher<FunctionProtoType> | isNoThrow | ||
Matches functions that have a non-throwing exception specification. Given: void f(); void g() noexcept; void h() throw(); void i() throw(int); void j() noexcept(false); functionDecl(isNoThrow()) and functionProtoType(isNoThrow()) match the declarations of g, and h, but not f, i or j. | |||
Matcher<FunctionProtoType> | parameterCountIs | unsigned N | |
Matches FunctionDecls and FunctionProtoTypes that have a specific parameter count. Given void f(int i) {} void g(int i, int j) {} void h(int i, int j); void j(int i); void k(int x, int y, int z, ...); functionDecl(parameterCountIs(2)) matches g and h functionProtoType(parameterCountIs(2)) matches g and h functionProtoType(parameterCountIs(3)) matches k | |||
Matcher<IfStmt> | isConsteval | ||
Matches consteval function declarations and if consteval/if ! consteval statements. Given: consteval int a(); void b() { if consteval {} } void c() { if ! consteval {} } void d() { if ! consteval {} else {} } functionDecl(isConsteval()) matches the declaration of "int a()". ifStmt(isConsteval()) matches the if statement in "void b()", "void c()", "void d()". | |||
Matcher<IfStmt> | isConstexpr | ||
Matches constexpr variable and function declarations, and if constexpr. Given: constexpr int foo = 42; constexpr int bar(); void baz() { if constexpr(1 > 0) {} } varDecl(isConstexpr()) matches the declaration of foo. functionDecl(isConstexpr()) matches the declaration of bar. ifStmt(isConstexpr()) matches the if statement in baz. | |||
Matcher<IntegerLiteral> | equals | bool Value | |
Matcher<IntegerLiteral> | equals | const ValueT Value | |
Matches literals that are equal to the given value of type ValueT. Given f('false, 3.14, 42); characterLiteral(equals(0)) matches 'cxxBoolLiteral(equals(false)) and cxxBoolLiteral(equals(0)) match false floatLiteral(equals(3.14)) and floatLiteral(equals(314e-2)) match 3.14 integerLiteral(equals(42)) matches 42 Note that you cannot directly match a negative numeric literal because the minus sign is not part of the literal: It is a unary operator whose operand is the positive numeric literal. Instead, you must use a unaryOperator() matcher to match the minus sign: unaryOperator(hasOperatorName("-"), hasUnaryOperand(integerLiteral(equals(13)))) Usable as: Matcher<CharacterLiteral>, Matcher<CXXBoolLiteralExpr>, Matcher<FloatingLiteral>, Matcher<IntegerLiteral> | |||
Matcher<IntegerLiteral> | equals | double Value | |
Matcher<IntegerLiteral> | equals | unsigned Value | |
Matcher<LambdaCapture> | capturesThis | ||
Matches a `LambdaCapture` that refers to 'this'. Given class C { int cc; int f() { auto l = [this]() { return cc; }; return l(); } }; lambdaExpr(hasAnyCapture(lambdaCapture(capturesThis()))) matches `[this]() { return cc; }`. | |||
Matcher<LambdaCapture> | isImplicit | ||
Matches an entity that has been implicitly added by the compiler (e.g. implicit default/copy constructors). | |||
Matcher<MemberExpr> | isArrow | ||
Matches member expressions that are called with '->' as opposed to '.'. Member calls on the implicit this pointer match as called with '->'. Given class Y { void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; } template <class T> void f() { this->f<T>(); f<T>(); } int a; static int b; }; template <class T> class Z { void x() { this->m; } }; memberExpr(isArrow()) matches this->x, x, y.x, a, this->b cxxDependentScopeMemberExpr(isArrow()) matches this->m unresolvedMemberExpr(isArrow()) matches this->f<T>, f<T> | |||
Matcher<NamedDecl> | hasAnyName | StringRef, ..., StringRef | |
Matches NamedDecl nodes that have any of the specified names. This matcher is only provided as a performance optimization of hasName. hasAnyName(a, b, c) is equivalent to, but faster than anyOf(hasName(a), hasName(b), hasName(c)) | |||
Matcher<NamedDecl> | hasExternalFormalLinkage | ||
Matches a declaration that has external formal linkage. Example matches only z (matcher = varDecl(hasExternalFormalLinkage())) void f() { int x; static int y; } int z; Example matches f() because it has external formal linkage despite being unique to the translation unit as though it has internal likage (matcher = functionDecl(hasExternalFormalLinkage())) namespace { void f() {} } | |||
Matcher<NamedDecl> | hasName | StringRef Name | |
Matches NamedDecl nodes that have the specified name. Supports specifying enclosing namespaces or classes by prefixing the name with '<enclosing>::'. Does not match typedefs of an underlying type with the given name. Example matches X (Name == "X") class X; Example matches X (Name is one of "::a::b::X", "a::b::X", "b::X", "X") namespace a { namespace b { class X; } } | |||
Matcher<NamedDecl> | matchesName | StringRef RegExp, Regex::RegexFlags Flags = NoFlags | |
Matches NamedDecl nodes whose fully qualified names contain a substring matched by the given RegExp. Supports specifying enclosing namespaces or classes by prefixing the name with '<enclosing>::'. Does not match typedefs of an underlying type with the given name. Example matches X (regexp == "::X") class X; Example matches X (regexp is one of "::X", "^foo::.*X", among others) namespace foo { namespace bar { class X; } } If the matcher is used in clang-query, RegexFlags parameter should be passed as a quoted string. e.g: "NoFlags". Flags can be combined with '|' example "IgnoreCase | BasicRegex" | |||
Matcher<NamespaceDecl> | isAnonymous | ||
Matches anonymous namespace declarations. Given namespace n { namespace {} // #1 } namespaceDecl(isAnonymous()) will match #1 but not ::n. | |||
Matcher<NamespaceDecl> | isInline | ||
Matches functions, variables and namespace declarations that are marked with the inline keyword. Given inline void f(); void g(); namespace n { inline namespace m {} } inline int Foo = 5; functionDecl(isInline()) will match ::f(). namespaceDecl(isInline()) will match n::m. varDecl(isInline()) will match Foo; | |||
Matcher<OMPDefaultClause> | isFirstPrivateKind | ||
Matches if the OpenMP ``default`` clause has ``firstprivate`` kind specified. Given #pragma omp parallel #pragma omp parallel default(none) #pragma omp parallel default(shared) #pragma omp parallel default(private) #pragma omp parallel default(firstprivate) ``ompDefaultClause(isFirstPrivateKind())`` matches only ``default(firstprivate)``. | |||
Matcher<OMPDefaultClause> | isNoneKind | ||
Matches if the OpenMP ``default`` clause has ``none`` kind specified. Given #pragma omp parallel #pragma omp parallel default(none) #pragma omp parallel default(shared) #pragma omp parallel default(private) #pragma omp parallel default(firstprivate) ``ompDefaultClause(isNoneKind())`` matches only ``default(none)``. | |||
Matcher<OMPDefaultClause> | isPrivateKind | ||
Matches if the OpenMP ``default`` clause has ``private`` kind specified. Given #pragma omp parallel #pragma omp parallel default(none) #pragma omp parallel default(shared) #pragma omp parallel default(private) #pragma omp parallel default(firstprivate) ``ompDefaultClause(isPrivateKind())`` matches only ``default(private)``. | |||
Matcher<OMPDefaultClause> | isSharedKind | ||
Matches if the OpenMP ``default`` clause has ``shared`` kind specified. Given #pragma omp parallel #pragma omp parallel default(none) #pragma omp parallel default(shared) #pragma omp parallel default(private) #pragma omp parallel default(firstprivate) ``ompDefaultClause(isSharedKind())`` matches only ``default(shared)``. | |||
Matcher<OMPExecutableDirective> | isAllowedToContainClauseKind | OpenMPClauseKind CKind | |
Matches if the OpenMP directive is allowed to contain the specified OpenMP clause kind. Given #pragma omp parallel #pragma omp parallel for #pragma omp for `ompExecutableDirective(isAllowedToContainClause(OMPC_default))`` matches ``omp parallel`` and ``omp parallel for``. If the matcher is use from clang-query, ``OpenMPClauseKind`` parameter should be passed as a quoted string. e.g., ``isAllowedToContainClauseKind("OMPC_default").`` | |||
Matcher<OMPExecutableDirective> | isStandaloneDirective | ||
Matches standalone OpenMP directives, i.e., directives that can't have a structured block. Given #pragma omp parallel {} #pragma omp taskyield ``ompExecutableDirective(isStandaloneDirective()))`` matches ``omp taskyield``. | |||
Matcher<ObjCInterfaceDecl> | isDerivedFrom | std::string BaseName | |
Overloaded method as shortcut for isDerivedFrom(hasName(...)). | |||
Matcher<ObjCInterfaceDecl> | isDirectlyDerivedFrom | std::string BaseName | |
Overloaded method as shortcut for isDirectlyDerivedFrom(hasName(...)). | |||
Matcher<ObjCInterfaceDecl> | isSameOrDerivedFrom | std::string BaseName | |
Overloaded method as shortcut for isSameOrDerivedFrom(hasName(...)). | |||
Matcher<ObjCMessageExpr> | argumentCountAtLeast | unsigned N | |
Checks that a call expression or a constructor call expression has at least the specified number of arguments (including absent default arguments). Example matches f(0, 0) and g(0, 0, 0) (matcher = callExpr(argumentCountAtLeast(2))) void f(int x, int y); void g(int x, int y, int z); f(0, 0); g(0, 0, 0); | |||
Matcher<ObjCMessageExpr> | argumentCountIs | unsigned N | |
Checks that a call expression or a constructor call expression has a specific number of arguments (including absent default arguments). Example matches f(0, 0) (matcher = callExpr(argumentCountIs(2))) void f(int x, int y); f(0, 0); | |||
Matcher<ObjCMessageExpr> | hasAnySelector | StringRef, ..., StringRef | |
Matches when at least one of the supplied string equals to the Selector.getAsString() matcher = objCMessageExpr(hasSelector("methodA:", "methodB:")); matches both of the expressions below: [myObj methodA:argA]; [myObj methodB:argB]; | |||
Matcher<ObjCMessageExpr> | hasKeywordSelector | ||
Matches when the selector is a keyword selector objCMessageExpr(hasKeywordSelector()) matches the generated setFrame message expression in UIWebView *webView = ...; CGRect bodyFrame = webView.frame; bodyFrame.size.height = self.bodyContentHeight; webView.frame = bodyFrame; // ^---- matches here | |||
Matcher<ObjCMessageExpr> | hasNullSelector | ||
Matches when the selector is the empty selector Matches only when the selector of the objCMessageExpr is NULL. This may represent an error condition in the tree! | |||
Matcher<ObjCMessageExpr> | hasSelector | std::string BaseName | |
Matches when BaseName == Selector.getAsString() matcher = objCMessageExpr(hasSelector("loadHTMLString:baseURL:")); matches the outer message expr in the code below, but NOT the message invocation for self.bodyView. [self.bodyView loadHTMLString:html baseURL:NULL]; | |||
Matcher<ObjCMessageExpr> | hasUnarySelector | ||
Matches when the selector is a Unary Selector matcher = objCMessageExpr(matchesSelector(hasUnarySelector()); matches self.bodyView in the code below, but NOT the outer message invocation of "loadHTMLString:baseURL:". [self.bodyView loadHTMLString:html baseURL:NULL]; | |||
Matcher<ObjCMessageExpr> | isClassMessage | ||
Returns true when the Objective-C message is sent to a class. Example matcher = objcMessageExpr(isClassMessage()) matches [NSString stringWithFormat:@"format"]; but not NSString *x = @"hello"; [x containsString:@"h"]; | |||
Matcher<ObjCMessageExpr> | isInstanceMessage | ||
Returns true when the Objective-C message is sent to an instance. Example matcher = objcMessageExpr(isInstanceMessage()) matches NSString *x = @"hello"; [x containsString:@"h"]; but not [NSString stringWithFormat:@"format"]; | |||
Matcher<ObjCMessageExpr> | matchesSelector | StringRef RegExp, Regex::RegexFlags Flags = NoFlags | |
Matches ObjC selectors whose name contains a substring matched by the given RegExp. matcher = objCMessageExpr(matchesSelector("loadHTMLStringmatches the outer message expr in the code below, but NOT the message invocation for self.bodyView. [self.bodyView loadHTMLString:html baseURL:NULL]; If the matcher is used in clang-query, RegexFlags parameter should be passed as a quoted string. e.g: "NoFlags". Flags can be combined with '|' example "IgnoreCase | BasicRegex" | |||
Matcher<ObjCMessageExpr> | numSelectorArgs | unsigned N | |
Matches when the selector has the specified number of arguments matcher = objCMessageExpr(numSelectorArgs(0)); matches self.bodyView in the code below matcher = objCMessageExpr(numSelectorArgs(2)); matches the invocation of "loadHTMLString:baseURL:" but not that of self.bodyView [self.bodyView loadHTMLString:html baseURL:NULL]; | |||
Matcher<ObjCMethodDecl> | isClassMethod | ||
Returns true when the Objective-C method declaration is a class method. Example matcher = objcMethodDecl(isClassMethod()) matches @interface I + (void)foo; @end but not @interface I - (void)bar; @end | |||
Matcher<ObjCMethodDecl> | isDefinition | ||
Matches if a declaration has a body attached. Example matches A, va, fa class A {}; class B; // Doesn't match, as it has no body. int va; extern int vb; // Doesn't match, as it doesn't define the variable. void fa() {} void fb(); // Doesn't match, as it has no body. @interface X - (void)ma; // Doesn't match, interface is declaration. @end @implementation X - (void)ma {} @end Usable as: Matcher<TagDecl>, Matcher<VarDecl>, Matcher<FunctionDecl>, Matcher<ObjCMethodDecl> | |||
Matcher<ObjCMethodDecl> | isInstanceMethod | ||
Returns true when the Objective-C method declaration is an instance method. Example matcher = objcMethodDecl(isInstanceMethod()) matches @interface I - (void)bar; @end but not @interface I + (void)foo; @end | |||
Matcher<ParmVarDecl> | hasDefaultArgument | ||
Matches a declaration that has default arguments. Example matches y (matcher = parmVarDecl(hasDefaultArgument())) void x(int val) {} void y(int val = 0) {} Deprecated. Use hasInitializer() instead to be able to match on the contents of the default argument. For example: void x(int val = 7) {} void y(int val = 42) {} parmVarDecl(hasInitializer(integerLiteral(equals(42)))) matches the parameter of y A matcher such as parmVarDecl(hasInitializer(anything())) is equivalent to parmVarDecl(hasDefaultArgument()). | |||
Matcher<ParmVarDecl> | isAtPosition | unsigned N | |
Matches the ParmVarDecl nodes that are at the N'th position in the parameter list. The parameter list could be that of either a block, function, or objc-method. Given void f(int a, int b, int c) { } ``parmVarDecl(isAtPosition(0))`` matches ``int a``. ``parmVarDecl(isAtPosition(1))`` matches ``int b``. | |||
Matcher<QualType> | asString | std::string Name | |
Matches if the matched type is represented by the given string. Given class Y { public: void x(); }; void z() { Y* y; y->x(); } cxxMemberCallExpr(on(hasType(asString("class Y *")))) matches y->x() | |||
Matcher<QualType> | equalsBoundNode | std::string ID | |
Matches if a node equals a previously bound node. Matches a node if it equals the node previously bound to ID. Given class X { int a; int b; }; cxxRecordDecl( has(fieldDecl(hasName("a"), hasType(type().bind("t")))), has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t")))))) matches the class X, as a and b have the same type. Note that when multiple matches are involved via forEach* matchers, equalsBoundNodes acts as a filter. For example: compoundStmt( forEachDescendant(varDecl().bind("d")), forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d")))))) will trigger a match for each combination of variable declaration and reference to that variable declaration within a compound statement. | |||
Matcher<QualType> | hasLocalQualifiers | ||
Matches QualType nodes that have local CV-qualifiers attached to the node, not hidden within a typedef. Given typedef const int const_int; const_int i; int *const j; int *volatile k; int m; varDecl(hasType(hasLocalQualifiers())) matches only j and k. i is const-qualified but the qualifier is not local. | |||
Matcher<QualType> | isAnyCharacter | ||
Matches QualType nodes that are of character type. Given void a(char); void b(wchar_t); void c(double); functionDecl(hasAnyParameter(hasType(isAnyCharacter()))) matches "a(char)", "b(wchar_t)", but not "c(double)". | |||
Matcher<QualType> | isAnyPointer | ||
Matches QualType nodes that are of any pointer type; this includes the Objective-C object pointer type, which is different despite being syntactically similar. Given int *i = nullptr; @interface Foo @end Foo *f; int j; varDecl(hasType(isAnyPointer())) matches "int *i" and "Foo *f", but not "int j". | |||
Matcher<QualType> | isConstQualified | ||
Matches QualType nodes that are const-qualified, i.e., that include "top-level" const. Given void a(int); void b(int const); void c(const int); void d(const int*); void e(int const) {}; functionDecl(hasAnyParameter(hasType(isConstQualified()))) matches "void b(int const)", "void c(const int)" and "void e(int const) {}". It does not match d as there is no top-level const on the parameter type "const int *". | |||
Matcher<QualType> | isInteger | ||
Matches QualType nodes that are of integer type. Given void a(int); void b(long); void c(double); functionDecl(hasAnyParameter(hasType(isInteger()))) matches "a(int)", "b(long)", but not "c(double)". | |||
Matcher<QualType> | isSignedInteger | ||
Matches QualType nodes that are of signed integer type. Given void a(int); void b(unsigned long); void c(double); functionDecl(hasAnyParameter(hasType(isSignedInteger()))) matches "a(int)", but not "b(unsigned long)" and "c(double)". | |||
Matcher<QualType> | isUnsignedInteger | ||
Matches QualType nodes that are of unsigned integer type. Given void a(int); void b(unsigned long); void c(double); functionDecl(hasAnyParameter(hasType(isUnsignedInteger()))) matches "b(unsigned long)", but not "a(int)" and "c(double)". | |||
Matcher<QualType> | isVolatileQualified | ||
Matches QualType nodes that are volatile-qualified, i.e., that include "top-level" volatile. Given void a(int); void b(int volatile); void c(volatile int); void d(volatile int*); void e(int volatile) {}; functionDecl(hasAnyParameter(hasType(isVolatileQualified()))) matches "void b(int volatile)", "void c(volatile int)" and "void e(int volatile) {}". It does not match d as there is no top-level volatile on the parameter type "volatile int *". | |||
Matcher<Stmt> | equalsBoundNode | std::string ID | |
Matches if a node equals a previously bound node. Matches a node if it equals the node previously bound to ID. Given class X { int a; int b; }; cxxRecordDecl( has(fieldDecl(hasName("a"), hasType(type().bind("t")))), has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t")))))) matches the class X, as a and b have the same type. Note that when multiple matches are involved via forEach* matchers, equalsBoundNodes acts as a filter. For example: compoundStmt( forEachDescendant(varDecl().bind("d")), forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d")))))) will trigger a match for each combination of variable declaration and reference to that variable declaration within a compound statement. | |||
Matcher<Stmt> | equalsNode | const Stmt* Other | |
Matches if a node equals another node. Stmt has pointer identity in the AST. | |||
Matcher<Stmt> | isExpandedFromMacro | std::string MacroName | |
Matches statements that are (transitively) expanded from the named macro. Does not match if only part of the statement is expanded from that macro or if different parts of the statement are expanded from different appearances of the macro. | |||
Matcher<Stmt> | isExpansionInFileMatching | StringRef RegExp, Regex::RegexFlags Flags = NoFlags | |
Matches AST nodes that were expanded within files whose name is partially matching a given regex. Example matches Y but not X (matcher = cxxRecordDecl(isExpansionInFileMatching("AST.*")) #include "ASTMatcher.h" class X {}; ASTMatcher.h: class Y {}; Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc> If the matcher is used in clang-query, RegexFlags parameter should be passed as a quoted string. e.g: "NoFlags". Flags can be combined with '|' example "IgnoreCase | BasicRegex" | |||
Matcher<Stmt> | isExpansionInMainFile | ||
Matches AST nodes that were expanded within the main-file. Example matches X but not Y (matcher = cxxRecordDecl(isExpansionInMainFile()) #include <Y.h> class X {}; Y.h: class Y {}; Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc> | |||
Matcher<Stmt> | isExpansionInSystemHeader | ||
Matches AST nodes that were expanded within system-header-files. Example matches Y but not X (matcher = cxxRecordDecl(isExpansionInSystemHeader()) #include <SystemHeader.h> class X {}; SystemHeader.h: class Y {}; Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc> | |||
Matcher<Stmt> | isInTemplateInstantiation | ||
Matches statements inside of a template instantiation. Given int j; template<typename T> void A(T t) { T i; j += 42;} A(0); A(0U); declStmt(isInTemplateInstantiation()) matches 'int i;' and 'unsigned i'. unless(stmt(isInTemplateInstantiation())) will NOT match j += 42; as it's shared between the template definition and instantiation. | |||
Matcher<StringLiteral> | hasSize | unsigned N | |
Matches nodes that have the specified size. Given int a[42]; int b[2 * 21]; int c[41], d[43]; char *s = "abcd"; wchar_t *ws = L"abcd"; char *w = "a"; constantArrayType(hasSize(42)) matches "int a[42]" and "int b[2 * 21]" stringLiteral(hasSize(4)) matches "abcd", L"abcd" | |||
Matcher<TagDecl> | isClass | ||
Matches TagDecl object that are spelled with "class." Example matches C, but not S, U or E. struct S {}; class C {}; union U {}; enum E {}; | |||
Matcher<TagDecl> | isDefinition | ||
Matches if a declaration has a body attached. Example matches A, va, fa class A {}; class B; // Doesn't match, as it has no body. int va; extern int vb; // Doesn't match, as it doesn't define the variable. void fa() {} void fb(); // Doesn't match, as it has no body. @interface X - (void)ma; // Doesn't match, interface is declaration. @end @implementation X - (void)ma {} @end Usable as: Matcher<TagDecl>, Matcher<VarDecl>, Matcher<FunctionDecl>, Matcher<ObjCMethodDecl> | |||
Matcher<TagDecl> | isEnum | ||
Matches TagDecl object that are spelled with "enum." Example matches E, but not C, S or U. struct S {}; class C {}; union U {}; enum E {}; | |||
Matcher<TagDecl> | isStruct | ||
Matches TagDecl object that are spelled with "struct." Example matches S, but not C, U or E. struct S {}; class C {}; union U {}; enum E {}; | |||
Matcher<TagDecl> | isUnion | ||
Matches TagDecl object that are spelled with "union." Example matches U, but not C, S or E. struct S {}; class C {}; union U {}; enum E {}; | |||
Matcher<TemplateArgument> | equalsIntegralValue | std::string Value | |
Matches a TemplateArgument of integral type with a given value. Note that 'Value' is a string as the template argument's value is an arbitrary precision integer. 'Value' must be euqal to the canonical representation of that integral value in base 10. Given template<int T> struct C {}; C<42> c; classTemplateSpecializationDecl( hasAnyTemplateArgument(equalsIntegralValue("42"))) matches the implicit instantiation of C in C<42>. | |||
Matcher<TemplateArgument> | isIntegral | ||
Matches a TemplateArgument that is an integral value. Given template<int T> struct C {}; C<42> c; classTemplateSpecializationDecl( hasAnyTemplateArgument(isIntegral())) matches the implicit instantiation of C in C<42> with isIntegral() matching 42. | |||
Matcher<TemplateSpecializationType> | templateArgumentCountIs | unsigned N | |
Matches if the number of template arguments equals N. Given template<typename T> struct C {}; C<int> c; classTemplateSpecializationDecl(templateArgumentCountIs(1)) matches C<int>. | |||
Matcher<TypeLoc> | isExpandedFromMacro | std::string MacroName | |
Matches statements that are (transitively) expanded from the named macro. Does not match if only part of the statement is expanded from that macro or if different parts of the statement are expanded from different appearances of the macro. | |||
Matcher<TypeLoc> | isExpansionInFileMatching | StringRef RegExp, Regex::RegexFlags Flags = NoFlags | |
Matches AST nodes that were expanded within files whose name is partially matching a given regex. Example matches Y but not X (matcher = cxxRecordDecl(isExpansionInFileMatching("AST.*")) #include "ASTMatcher.h" class X {}; ASTMatcher.h: class Y {}; Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc> If the matcher is used in clang-query, RegexFlags parameter should be passed as a quoted string. e.g: "NoFlags". Flags can be combined with '|' example "IgnoreCase | BasicRegex" | |||
Matcher<TypeLoc> | isExpansionInMainFile | ||
Matches AST nodes that were expanded within the main-file. Example matches X but not Y (matcher = cxxRecordDecl(isExpansionInMainFile()) #include <Y.h> class X {}; Y.h: class Y {}; Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc> | |||
Matcher<TypeLoc> | isExpansionInSystemHeader | ||
Matches AST nodes that were expanded within system-header-files. Example matches Y but not X (matcher = cxxRecordDecl(isExpansionInSystemHeader()) #include <SystemHeader.h> class X {}; SystemHeader.h: class Y {}; Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc> | |||
Matcher<Type> | booleanType | ||
Matches type bool. Given struct S { bool func(); }; functionDecl(returns(booleanType())) matches "bool func();" | |||
Matcher<Type> | equalsBoundNode | std::string ID | |
Matches if a node equals a previously bound node. Matches a node if it equals the node previously bound to ID. Given class X { int a; int b; }; cxxRecordDecl( has(fieldDecl(hasName("a"), hasType(type().bind("t")))), has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t")))))) matches the class X, as a and b have the same type. Note that when multiple matches are involved via forEach* matchers, equalsBoundNodes acts as a filter. For example: compoundStmt( forEachDescendant(varDecl().bind("d")), forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d")))))) will trigger a match for each combination of variable declaration and reference to that variable declaration within a compound statement. | |||
Matcher<Type> | equalsNode | const Type* Other | |
Matches if a node equals another node. Type has pointer identity in the AST. | |||
Matcher<Type> | realFloatingPointType | ||
Matches any real floating-point type (float, double, long double). Given int i; float f; realFloatingPointType() matches "float f" but not "int i" | |||
Matcher<Type> | voidType | ||
Matches type void. Given struct S { void func(); }; functionDecl(returns(voidType())) matches "void func();" | |||
Matcher<UnaryExprOrTypeTraitExpr> | ofKind | UnaryExprOrTypeTrait Kind | |
Matches unary expressions of a certain kind. Given int x; int s = sizeof(x) + alignof(x) unaryExprOrTypeTraitExpr(ofKind(UETT_SizeOf)) matches sizeof(x) If the matcher is use from clang-query, UnaryExprOrTypeTrait parameter should be passed as a quoted string. e.g., ofKind("UETT_SizeOf"). | |||
Matcher<UnaryOperator> | hasAnyOperatorName | StringRef, ..., StringRef | |
Matches operator expressions (binary or unary) that have any of the specified names. hasAnyOperatorName("+", "-") Is equivalent to anyOf(hasOperatorName("+"), hasOperatorName("-")) | |||
Matcher<UnaryOperator> | hasOperatorName | std::string Name | |
Matches the operator Name of operator expressions and fold expressions (binary or unary). Example matches a || b (matcher = binaryOperator(hasOperatorName("||"))) !(a || b) Example matches `(0 + ... + args)` (matcher = cxxFoldExpr(hasOperatorName("+"))) template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } | |||
Matcher<UnresolvedMemberExpr> | isArrow | ||
Matches member expressions that are called with '->' as opposed to '.'. Member calls on the implicit this pointer match as called with '->'. Given class Y { void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; } template <class T> void f() { this->f<T>(); f<T>(); } int a; static int b; }; template <class T> class Z { void x() { this->m; } }; memberExpr(isArrow()) matches this->x, x, y.x, a, this->b cxxDependentScopeMemberExpr(isArrow()) matches this->m unresolvedMemberExpr(isArrow()) matches this->f<T>, f<T> | |||
Matcher<VarDecl> | hasAutomaticStorageDuration | ||
Matches a variable declaration that has automatic storage duration. Example matches x, but not y, z, or a. (matcher = varDecl(hasAutomaticStorageDuration()) void f() { int x; static int y; thread_local int z; } int a; | |||
Matcher<VarDecl> | hasGlobalStorage | ||
Matches a variable declaration that does not have local storage. Example matches y and z (matcher = varDecl(hasGlobalStorage()) void f() { int x; static int y; } int z; | |||
Matcher<VarDecl> | hasLocalStorage | ||
Matches a variable declaration that has function scope and is a non-static local variable. Example matches x (matcher = varDecl(hasLocalStorage()) void f() { int x; static int y; } int z; | |||
Matcher<VarDecl> | hasStaticStorageDuration | ||
Matches a variable declaration that has static storage duration. It includes the variable declared at namespace scope and those declared with "static" and "extern" storage class specifiers. void f() { int x; static int y; thread_local int z; } int a; static int b; extern int c; varDecl(hasStaticStorageDuration()) matches the function declaration y, a, b and c. | |||
Matcher<VarDecl> | hasThreadStorageDuration | ||
Matches a variable declaration that has thread storage duration. Example matches z, but not x, z, or a. (matcher = varDecl(hasThreadStorageDuration()) void f() { int x; static int y; thread_local int z; } int a; | |||
Matcher<VarDecl> | isConstexpr | ||
Matches constexpr variable and function declarations, and if constexpr. Given: constexpr int foo = 42; constexpr int bar(); void baz() { if constexpr(1 > 0) {} } varDecl(isConstexpr()) matches the declaration of foo. functionDecl(isConstexpr()) matches the declaration of bar. ifStmt(isConstexpr()) matches the if statement in baz. | |||
Matcher<VarDecl> | isConstinit | ||
Matches constinit variable declarations. Given: constinit int foo = 42; constinit const char* bar = "bar"; int baz = 42; [[clang::require_constant_initialization]] int xyz = 42; varDecl(isConstinit()) matches the declaration of `foo` and `bar`, but not `baz` and `xyz`. | |||
Matcher<VarDecl> | isDefinition | ||
Matches if a declaration has a body attached. Example matches A, va, fa class A {}; class B; // Doesn't match, as it has no body. int va; extern int vb; // Doesn't match, as it doesn't define the variable. void fa() {} void fb(); // Doesn't match, as it has no body. @interface X - (void)ma; // Doesn't match, interface is declaration. @end @implementation X - (void)ma {} @end Usable as: Matcher<TagDecl>, Matcher<VarDecl>, Matcher<FunctionDecl>, Matcher<ObjCMethodDecl> | |||
Matcher<VarDecl> | isExceptionVariable | ||
Matches a variable declaration that is an exception variable from a C++ catch block, or an Objective-C statement. Example matches x (matcher = varDecl(isExceptionVariable()) void f(int y) { try { } catch (int x) { } } | |||
Matcher<VarDecl> | isExplicitTemplateSpecialization | ||
Matches explicit template specializations of function, class, or static member variable template instantiations. Given template<typename T> void A(T t) { } template<> void A(int N) { } functionDecl(isExplicitTemplateSpecialization()) matches the specialization A<int>(). Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl> | |||
Matcher<VarDecl> | isExternC | ||
Matches extern "C" function or variable declarations. Given: extern "C" void f() {} extern "C" { void g() {} } void h() {} extern "C" int x = 1; extern "C" int y = 2; int z = 3; functionDecl(isExternC()) matches the declaration of f and g, but not the declaration of h. varDecl(isExternC()) matches the declaration of x and y, but not the declaration of z. | |||
Matcher<VarDecl> | isInitCapture | ||
Matches a variable serving as the implicit variable for a lambda init- capture. Example matches x (matcher = varDecl(isInitCapture())) auto f = [x=3]() { return x; }; | |||
Matcher<VarDecl> | isInline | ||
Matches functions, variables and namespace declarations that are marked with the inline keyword. Given inline void f(); void g(); namespace n { inline namespace m {} } inline int Foo = 5; functionDecl(isInline()) will match ::f(). namespaceDecl(isInline()) will match n::m. varDecl(isInline()) will match Foo; | |||
Matcher<VarDecl> | isStaticLocal | ||
Matches a static variable with local scope. Example matches y (matcher = varDecl(isStaticLocal())) void f() { int x; static int y; } static int z; | |||
Matcher<VarDecl> | isStaticStorageClass | ||
Matches variable/function declarations that have "static" storage class specifier ("static" keyword) written in the source. Given: static void f() {} static int i = 0; extern int j; int k; functionDecl(isStaticStorageClass()) matches the function declaration f. varDecl(isStaticStorageClass()) matches the variable declaration i. | |||
Matcher<VarDecl> | isTemplateInstantiation | ||
Matches template instantiations of function, class, or static member variable template instantiations. Given template <typename T> class X {}; class A {}; X<A> x; or template <typename T> class X {}; class A {}; template class X<A>; or template <typename T> class X {}; class A {}; extern template class X<A>; cxxRecordDecl(hasName("::X"), isTemplateInstantiation()) matches the template instantiation of X<A>. But given template <typename T> class X {}; class A {}; template <> class X<A> {}; X<A> x; cxxRecordDecl(hasName("::X"), isTemplateInstantiation()) does not match, as X<A> is an explicit template specialization. Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl> |
AST Traversal Matchers
Traversal matchers specify the relationship to other nodes that are reachable from the current node.
Note that there are special traversal matchers (has, hasDescendant, forEach and forEachDescendant) which work on all nodes and allow users to write more generic match expressions.
Return type | Name | Parameters | |
---|---|---|---|
Matcher<*> | binaryOperation | Matcher<*>...Matcher<*> | |
Matches nodes which can be used with binary operators. The code var1 != var2; might be represented in the clang AST as a binaryOperator, a cxxOperatorCallExpr or a cxxRewrittenBinaryOperator, depending on * whether the types of var1 and var2 are fundamental (binaryOperator) or at least one is a class type (cxxOperatorCallExpr) * whether the code appears in a template declaration, if at least one of the vars is a dependent-type (binaryOperator) * whether the code relies on a rewritten binary operator, such as a spaceship operator or an inverted equality operator (cxxRewrittenBinaryOperator) This matcher elides details in places where the matchers for the nodes are compatible. Given binaryOperation( hasOperatorName("!="), hasLHS(expr().bind("lhs")), hasRHS(expr().bind("rhs")) ) matches each use of "!=" in: struct S{ bool operator!=(const S&) const; }; void foo() { 1 != 2; S() != S(); } template<typename T> void templ() { 1 != 2; T() != S(); } struct HasOpEq { bool operator==(const HasOpEq &) const; }; void inverse() { HasOpEq s1; HasOpEq s2; if (s1 != s2) return; } struct HasSpaceship { bool operator<=>(const HasOpEq &) const; }; void use_spaceship() { HasSpaceship s1; HasSpaceship s2; if (s1 != s2) return; } | |||
Matcher<*> | eachOf | Matcher<*>, ..., Matcher<*> | |
Matches if any of the given matchers matches. Unlike anyOf, eachOf will generate a match result for each matching submatcher. For example, in: class A { int a; int b; }; The matcher: cxxRecordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")), has(fieldDecl(hasName("b")).bind("v")))) will generate two results binding "v", the first of which binds the field declaration of a, the second the field declaration of b. Usable as: Any Matcher | |||
Matcher<*> | findAll | Matcher<*> Matcher | |
Matches if the node or any descendant matches. Generates results for each match. For example, in: class A { class B {}; class C {}; }; The matcher: cxxRecordDecl(hasName("::A"), findAll(cxxRecordDecl(isDefinition()).bind("m"))) will generate results for A, B and C. Usable as: Any Matcher | |||
Matcher<*> | forEachDescendant | Matcher<*> | |
Matches AST nodes that have descendant AST nodes that match the provided matcher. Example matches X, A, A::X, B, B::C, B::C::X (matcher = cxxRecordDecl(forEachDescendant(cxxRecordDecl(hasName("X"))))) class X {}; class A { class X {}; }; // Matches A, because A::X is a class of name // X inside A. class B { class C { class X {}; }; }; DescendantT must be an AST base type. As opposed to 'hasDescendant', 'forEachDescendant' will cause a match for each result that matches instead of only on the first one. Note: Recursively combined ForEachDescendant can cause many matches: cxxRecordDecl(forEachDescendant(cxxRecordDecl( forEachDescendant(cxxRecordDecl()) ))) will match 10 times (plus injected class name matches) on: class A { class B { class C { class D { class E {}; }; }; }; }; Usable as: Any Matcher | |||
Matcher<*> | forEach | Matcher<*> | |
Matches AST nodes that have child AST nodes that match the provided matcher. Example matches X, Y, Y::X, Z::Y, Z::Y::X (matcher = cxxRecordDecl(forEach(cxxRecordDecl(hasName("X"))) class X {}; class Y { class X {}; }; // Matches Y, because Y::X is a class of name X // inside Y. class Z { class Y { class X {}; }; }; // Does not match Z. ChildT must be an AST base type. As opposed to 'has', 'forEach' will cause a match for each result that matches instead of only on the first one. Usable as: Any Matcher | |||
Matcher<*> | hasAncestor | Matcher<*> | |
Matches AST nodes that have an ancestor that matches the provided matcher. Given void f() { if (true) { int x = 42; } } void g() { for (;;) { int x = 43; } } expr(integerLiteral(hasAncestor(ifStmt()))) matches 42, but not 43. Usable as: Any Matcher | |||
Matcher<*> | hasDescendant | Matcher<*> | |
Matches AST nodes that have descendant AST nodes that match the provided matcher. Example matches X, Y, Z (matcher = cxxRecordDecl(hasDescendant(cxxRecordDecl(hasName("X"))))) class X {}; // Matches X, because X::X is a class of name X inside X. class Y { class X {}; }; class Z { class Y { class X {}; }; }; DescendantT must be an AST base type. Usable as: Any Matcher | |||
Matcher<*> | has | Matcher<*> | |
Matches AST nodes that have child AST nodes that match the provided matcher. Example matches X, Y (matcher = cxxRecordDecl(has(cxxRecordDecl(hasName("X"))) class X {}; // Matches X, because X::X is a class of name X inside X. class Y { class X {}; }; class Z { class Y { class X {}; }; }; // Does not match Z. ChildT must be an AST base type. Usable as: Any Matcher Note that has is direct matcher, so it also matches things like implicit casts and paren casts. If you are matching with expr then you should probably consider using ignoringParenImpCasts like: has(ignoringParenImpCasts(expr())). | |||
Matcher<*> | hasParent | Matcher<*> | |
Matches AST nodes that have a parent that matches the provided matcher. Given void f() { for (;;) { int x = 42; if (true) { int x = 43; } } } compoundStmt(hasParent(ifStmt())) matches "{ int x = 43; }". Usable as: Any Matcher | |||
Matcher<*> | invocation | Matcher<*>...Matcher<*> | |
Matches function calls and constructor calls Because CallExpr and CXXConstructExpr do not share a common base class with API accessing arguments etc, AST Matchers for code which should match both are typically duplicated. This matcher removes the need for duplication. Given code struct ConstructorTakesInt { ConstructorTakesInt(int i) {} }; void callTakesInt(int i) { } void doCall() { callTakesInt(42); } void doConstruct() { ConstructorTakesInt cti(42); } The matcher invocation(hasArgument(0, integerLiteral(equals(42)))) matches the expression in both doCall and doConstruct | |||
Matcher<*> | optionally | Matcher<*> | |
Matches any node regardless of the submatcher. However, optionally will retain any bindings generated by the submatcher. Useful when additional information which may or may not present about a main matching node is desired. For example, in: class Foo { int bar; } The matcher: cxxRecordDecl( optionally(has( fieldDecl(hasName("bar")).bind("var") ))).bind("record") will produce a result binding for both "record" and "var". The matcher will produce a "record" binding for even if there is no data member named "bar" in that class. Usable as: Any Matcher | |||
Matcher<*> | traverse | TraversalKind TK, Matcher<*> InnerMatcher | |
Causes all nested matchers to be matched with the specified traversal kind. Given void foo() { int i = 3.0; } The matcher traverse(TK_IgnoreUnlessSpelledInSource, varDecl(hasInitializer(floatLiteral().bind("init"))) ) matches the variable declaration with "init" bound to the "3.0". | |||
Matcher<AbstractConditionalOperator> | hasCondition | Matcher<Expr> InnerMatcher | |
Matches the condition expression of an if statement, for loop, switch statement or conditional operator. Example matches true (matcher = hasCondition(cxxBoolLiteral(equals(true)))) if (true) {} | |||
Matcher<AbstractConditionalOperator> | hasFalseExpression | Matcher<Expr> InnerMatcher | |
Matches the false branch expression of a conditional operator (binary or ternary). Example matches b condition ? a : b condition ?: b | |||
Matcher<AbstractConditionalOperator> | hasTrueExpression | Matcher<Expr> InnerMatcher | |
Matches the true branch expression of a conditional operator. Example 1 (conditional ternary operator): matches a condition ? a : b Example 2 (conditional binary operator): matches opaqueValueExpr(condition) condition ?: b | |||
Matcher<AddrLabelExpr> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<ArraySubscriptExpr> | hasBase | Matcher<Expr> InnerMatcher | |
Matches the base expression of an array subscript expression. Given int i[5]; void f() { i[1] = 42; } arraySubscriptExpression(hasBase(implicitCastExpr( hasSourceExpression(declRefExpr())))) matches i[1] with the declRefExpr() matching i | |||
Matcher<ArraySubscriptExpr> | hasIndex | Matcher<Expr> InnerMatcher | |
Matches the index expression of an array subscript expression. Given int i[5]; void f() { i[1] = 42; } arraySubscriptExpression(hasIndex(integerLiteral())) matches i[1] with the integerLiteral() matching 1 | |||
Matcher<ArraySubscriptExpr> | hasLHS | Matcher<Expr> InnerMatcher | |
Matches the left hand side of binary operator expressions. Example matches a (matcher = binaryOperator(hasLHS())) a || b | |||
Matcher<ArraySubscriptExpr> | hasRHS | Matcher<Expr> InnerMatcher | |
Matches the right hand side of binary operator expressions. Example matches b (matcher = binaryOperator(hasRHS())) a || b | |||
Matcher<ArrayType> | hasElementType | Matcher<Type> | |
Matches arrays and C99 complex types that have a specific element type. Given struct A {}; A a[7]; int b[7]; arrayType(hasElementType(builtinType())) matches "int b[7]" Usable as: Matcher<ArrayType>, Matcher<ComplexType> | |||
Matcher<AtomicType> | hasValueType | Matcher<Type> | |
Matches atomic types with a specific value type. Given _Atomic(int) i; _Atomic(float) f; atomicType(hasValueType(isInteger())) matches "_Atomic(int) i" Usable as: Matcher<AtomicType> | |||
Matcher<AutoType> | hasDeducedType | Matcher<Type> | |
Matches AutoType nodes where the deduced type is a specific type. Note: There is no TypeLoc for the deduced type and thus no getDeducedLoc() matcher. Given auto a = 1; auto b = 2.0; autoType(hasDeducedType(isInteger())) matches "auto a" Usable as: Matcher<AutoType> | |||
Matcher<BaseUsingDecl> | hasAnyUsingShadowDecl | Matcher<UsingShadowDecl> InnerMatcher | |
Matches any using shadow declaration. Given namespace X { void b(); } using X::b; usingDecl(hasAnyUsingShadowDecl(hasName("b")))) matches using X::b | |||
Matcher<BinaryOperator> | hasEitherOperand | Matcher<Expr> InnerMatcher | |
Matches if either the left hand side or the right hand side of a binary operator or fold expression matches. | |||
Matcher<BinaryOperator> | hasLHS | Matcher<Expr> InnerMatcher | |
Matches the left hand side of binary operator expressions. Example matches a (matcher = binaryOperator(hasLHS())) a || b | |||
Matcher<BinaryOperator> | hasOperands | Matcher<Expr> Matcher1, Matcher<Expr> Matcher2 | |
Matches if both matchers match with opposite sides of the binary operator or fold expression. Example matcher = binaryOperator(hasOperands(integerLiteral(equals(1), integerLiteral(equals(2))) 1 + 2 // Match 2 + 1 // Match 1 + 1 // No match 2 + 2 // No match | |||
Matcher<BinaryOperator> | hasRHS | Matcher<Expr> InnerMatcher | |
Matches the right hand side of binary operator expressions. Example matches b (matcher = binaryOperator(hasRHS())) a || b | |||
Matcher<BindingDecl> | forDecomposition | Matcher<ValueDecl> InnerMatcher | |
Matches the DecompositionDecl the binding belongs to. For example, in: void foo() { int arr[3]; auto &[f, s, t] = arr; f = 42; } The matcher: bindingDecl(hasName("f"), forDecomposition(decompositionDecl()) matches 'f' in 'auto &[f, s, t]'. | |||
Matcher<BlockDecl> | hasAnyParameter | Matcher<ParmVarDecl> InnerMatcher | |
Matches any parameter of a function or an ObjC method declaration or a block. Does not match the 'this' parameter of a method. Given class X { void f(int x, int y, int z) {} }; cxxMethodDecl(hasAnyParameter(hasName("y"))) matches f(int x, int y, int z) {} with hasAnyParameter(...) matching int y For ObjectiveC, given @interface I - (void) f:(int) y; @end the matcher objcMethodDecl(hasAnyParameter(hasName("y"))) matches the declaration of method f with hasParameter matching y. For blocks, given b = ^(int y) { printf("%d", y) }; the matcher blockDecl(hasAnyParameter(hasName("y"))) matches the declaration of the block b with hasParameter matching y. | |||
Matcher<BlockDecl> | hasParameter | unsigned N, Matcher<ParmVarDecl> InnerMatcher | |
Matches the n'th parameter of a function or an ObjC method declaration or a block. Given class X { void f(int x) {} }; cxxMethodDecl(hasParameter(0, hasType(varDecl()))) matches f(int x) {} with hasParameter(...) matching int x For ObjectiveC, given @interface I - (void) f:(int) y; @end the matcher objcMethodDecl(hasParameter(0, hasName("y"))) matches the declaration of method f with hasParameter matching y. | |||
Matcher<BlockDecl> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<BlockPointerType> | pointee | Matcher<Type> | |
Narrows PointerType (and similar) matchers to those where the pointee matches a given matcher. Given int *a; int const *b; float const *f; pointerType(pointee(isConstQualified(), isInteger())) matches "int const *b" Usable as: Matcher<BlockPointerType>, Matcher<MemberPointerType>, Matcher<PointerType>, Matcher<ReferenceType> | |||
Matcher<CXXBaseSpecifier> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<CXXBaseSpecifier> | hasType | Matcher<Decl> InnerMatcher | |
Overloaded to match the declaration of the expression's or value declaration's type. In case of a value declaration (for example a variable declaration), this resolves one layer of indirection. For example, in the value declaration "X x;", cxxRecordDecl(hasName("X")) matches the declaration of X, while varDecl(hasType(cxxRecordDecl(hasName("X")))) matches the declaration of x. Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X"))))) and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X"))))) and friend class X (matcher = friendDecl(hasType("X")) and public virtual X (matcher = cxxBaseSpecifier(hasType( cxxRecordDecl(hasName("X")))) class X {}; void y(X &x) { x; X z; } class Y { friend class X; }; class Z : public virtual X {}; Example matches class Derived (matcher = cxxRecordDecl(hasAnyBase(hasType(cxxRecordDecl(hasName("Base")))))) class Base {}; class Derived : Base {}; Usable as: Matcher<Expr>, Matcher<FriendDecl>, Matcher<ValueDecl>, Matcher<CXXBaseSpecifier> | |||
Matcher<CXXBaseSpecifier> | hasType | Matcher<QualType> InnerMatcher | |
Matches if the expression's or declaration's type matches a type matcher. Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X"))))) and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X"))))) and U (matcher = typedefDecl(hasType(asString("int"))) and friend class X (matcher = friendDecl(hasType("X")) and public virtual X (matcher = cxxBaseSpecifier(hasType( asString("class X"))) class X {}; void y(X &x) { x; X z; } typedef int U; class Y { friend class X; }; class Z : public virtual X {}; | |||
Matcher<CXXConstructExpr> | forEachArgumentWithParam | Matcher<Expr> ArgMatcher, Matcher<ParmVarDecl> ParamMatcher | |
Matches all arguments and their respective ParmVarDecl. Given void f(int i); int y; f(y); callExpr( forEachArgumentWithParam( declRefExpr(to(varDecl(hasName("y")))), parmVarDecl(hasType(isInteger())) )) matches f(y); with declRefExpr(...) matching int y and parmVarDecl(...) matching int i | |||
Matcher<CXXConstructExpr> | forEachArgumentWithParamType | Matcher<Expr> ArgMatcher, Matcher<QualType> ParamMatcher | |
Matches all arguments and their respective types for a CallExpr or CXXConstructExpr. It is very similar to forEachArgumentWithParam but it works on calls through function pointers as well. The difference is, that function pointers do not provide access to a ParmVarDecl, but only the QualType for each argument. Given void f(int i); int y; f(y); void (*f_ptr)(int) = f; f_ptr(y); callExpr( forEachArgumentWithParamType( declRefExpr(to(varDecl(hasName("y")))), qualType(isInteger()).bind("type) )) matches f(y) and f_ptr(y) with declRefExpr(...) matching int y and qualType(...) matching int | |||
Matcher<CXXConstructExpr> | hasAnyArgument | Matcher<Expr> InnerMatcher | |
Matches any argument of a call expression or a constructor call expression, or an ObjC-message-send expression. Given void x(int, int, int) { int y; x(1, y, 42); } callExpr(hasAnyArgument(declRefExpr())) matches x(1, y, 42) with hasAnyArgument(...) matching y For ObjectiveC, given @interface I - (void) f:(int) y; @end void foo(I *i) { [i f:12]; } objcMessageExpr(hasAnyArgument(integerLiteral(equals(12)))) matches [i f:12] | |||
Matcher<CXXConstructExpr> | hasArgument | unsigned N, Matcher<Expr> InnerMatcher | |
Matches the n'th argument of a call expression or a constructor call expression. Example matches y in x(y) (matcher = callExpr(hasArgument(0, declRefExpr()))) void x(int) { int y; x(y); } | |||
Matcher<CXXConstructExpr> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<CXXConstructorDecl> | forEachConstructorInitializer | Matcher<CXXCtorInitializer> InnerMatcher | |
Matches each constructor initializer in a constructor definition. Given class A { A() : i(42), j(42) {} int i; int j; }; cxxConstructorDecl(forEachConstructorInitializer( forField(decl().bind("x")) )) will trigger two matches, binding for 'i' and 'j' respectively. | |||
Matcher<CXXConstructorDecl> | hasAnyConstructorInitializer | Matcher<CXXCtorInitializer> InnerMatcher | |
Matches a constructor initializer. Given struct Foo { Foo() : foo_(1) { } int foo_; }; cxxRecordDecl(has(cxxConstructorDecl( hasAnyConstructorInitializer(anything()) ))) record matches Foo, hasAnyConstructorInitializer matches foo_(1) | |||
Matcher<CXXCtorInitializer> | forField | Matcher<FieldDecl> InnerMatcher | |
Matches the field declaration of a constructor initializer. Given struct Foo { Foo() : foo_(1) { } int foo_; }; cxxRecordDecl(has(cxxConstructorDecl(hasAnyConstructorInitializer( forField(hasName("foo_")))))) matches Foo with forField matching foo_ | |||
Matcher<CXXCtorInitializer> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<CXXCtorInitializer> | withInitializer | Matcher<Expr> InnerMatcher | |
Matches the initializer expression of a constructor initializer. Given struct Foo { Foo() : foo_(1) { } int foo_; }; cxxRecordDecl(has(cxxConstructorDecl(hasAnyConstructorInitializer( withInitializer(integerLiteral(equals(1))))))) matches Foo with withInitializer matching (1) | |||
Matcher<CXXDependentScopeMemberExpr> | hasObjectExpression | Matcher<Expr> InnerMatcher | |
Matches a member expression where the object expression is matched by a given matcher. Implicit object expressions are included; that is, it matches use of implicit `this`. Given struct X { int m; int f(X x) { x.m; return m; } }; memberExpr(hasObjectExpression(hasType(cxxRecordDecl(hasName("X"))))) matches `x.m`, but not `m`; however, memberExpr(hasObjectExpression(hasType(pointsTo( cxxRecordDecl(hasName("X")))))) matches `m` (aka. `this->m`), but not `x.m`. | |||
Matcher<CXXFoldExpr> | callee | Matcher<Stmt> InnerMatcher | |
Matches if the call or fold expression's callee expression matches. Given class Y { void x() { this->x(); x(); Y y; y.x(); } }; void f() { f(); } callExpr(callee(expr())) matches this->x(), x(), y.x(), f() with callee(...) matching this->x, x, y.x, f respectively Given template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } template <typename... Args> auto multiply(Args... args) { return (args * ... * 1); } cxxFoldExpr(callee(expr())) matches (args * ... * 1) with callee(...) matching * Note: Callee cannot take the more general internal::Matcher<Expr> because this introduces ambiguous overloads with calls to Callee taking a internal::Matcher<Decl>, as the matcher hierarchy is purely implemented in terms of implicit casts. | |||
Matcher<CXXFoldExpr> | hasEitherOperand | Matcher<Expr> InnerMatcher | |
Matches if either the left hand side or the right hand side of a binary operator or fold expression matches. | |||
Matcher<CXXFoldExpr> | hasFoldInit | Matcher<Expr> InnerMacher | |
Matches the operand that does not contain the parameter pack. Example matches `(0 + ... + args)` and `(args * ... * 1)` (matcher = cxxFoldExpr(hasFoldInit(expr()))) with hasFoldInit(...) matching `0` and `1` respectively template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } template <typename... Args> auto multiply(Args... args) { return (args * ... * 1); } | |||
Matcher<CXXFoldExpr> | hasLHS | Matcher<Expr> InnerMatcher | |
Matches the left hand side of binary operator expressions. Example matches a (matcher = binaryOperator(hasLHS())) a || b | |||
Matcher<CXXFoldExpr> | hasOperands | Matcher<Expr> Matcher1, Matcher<Expr> Matcher2 | |
Matches if both matchers match with opposite sides of the binary operator or fold expression. Example matcher = binaryOperator(hasOperands(integerLiteral(equals(1), integerLiteral(equals(2))) 1 + 2 // Match 2 + 1 // Match 1 + 1 // No match 2 + 2 // No match | |||
Matcher<CXXFoldExpr> | hasPattern | Matcher<Expr> InnerMacher | |
Matches the operand that contains the parameter pack. Example matches `(0 + ... + args)` (matcher = cxxFoldExpr(hasPattern(expr()))) with hasPattern(...) matching `args` template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } template <typename... Args> auto multiply(Args... args) { return (args * ... * 1); } | |||
Matcher<CXXFoldExpr> | hasRHS | Matcher<Expr> InnerMatcher | |
Matches the right hand side of binary operator expressions. Example matches b (matcher = binaryOperator(hasRHS())) a || b | |||
Matcher<CXXForRangeStmt> | hasBody | Matcher<Stmt> InnerMatcher | |
Matches a 'for', 'while', 'while' statement or a function or coroutine definition that has a given body. Note that in case of functions or coroutines this matcher only matches the definition itself and not the other declarations of the same function or coroutine. Given for (;;) {} forStmt(hasBody(compoundStmt())) matches 'for (;;) {}' with compoundStmt() matching '{}' Given void f(); void f() {} functionDecl(hasBody(compoundStmt())) matches 'void f() {}' with compoundStmt() matching '{}' but does not match 'void f();' | |||
Matcher<CXXForRangeStmt> | hasInitStatement | Matcher<Stmt> InnerMatcher | |
Matches selection statements with initializer. Given: void foo() { if (int i = foobar(); i > 0) {} switch (int i = foobar(); i) {} for (auto& a = get_range(); auto& x : a) {} } void bar() { if (foobar() > 0) {} switch (foobar()) {} for (auto& x : get_range()) {} } ifStmt(hasInitStatement(anything())) matches the if statement in foo but not in bar. switchStmt(hasInitStatement(anything())) matches the switch statement in foo but not in bar. cxxForRangeStmt(hasInitStatement(anything())) matches the range for statement in foo but not in bar. | |||
Matcher<CXXForRangeStmt> | hasLoopVariable | Matcher<VarDecl> InnerMatcher | |
Matches the initialization statement of a for loop. Example: forStmt(hasLoopVariable(anything())) matches 'int x' in for (int x : a) { } | |||
Matcher<CXXForRangeStmt> | hasRangeInit | Matcher<Expr> InnerMatcher | |
Matches the range initialization statement of a for loop. Example: forStmt(hasRangeInit(anything())) matches 'a' in for (int x : a) { } | |||
Matcher<CXXFunctionalCastExpr> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<CXXMemberCallExpr> | onImplicitObjectArgument | Matcher<Expr> InnerMatcher | |
Matches on the implicit object argument of a member call expression. Unlike `on`, matches the argument directly without stripping away anything. Given class Y { public: void m(); }; Y g(); class X : public Y { void g(); }; void z(Y y, X x) { y.m(); x.m(); x.g(); (g()).m(); } cxxMemberCallExpr(onImplicitObjectArgument(hasType( cxxRecordDecl(hasName("Y"))))) matches `y.m()`, `x.m()` and (`g()).m()`, but not `x.g()`). cxxMemberCallExpr(on(callExpr())) only matches `(g()).m()` (the parens are ignored). FIXME: Overload to allow directly matching types? | |||
Matcher<CXXMemberCallExpr> | on | Matcher<Expr> InnerMatcher | |
Matches on the implicit object argument of a member call expression, after stripping off any parentheses or implicit casts. Given class Y { public: void m(); }; Y g(); class X : public Y {}; void z(Y y, X x) { y.m(); (g()).m(); x.m(); } cxxMemberCallExpr(on(hasType(cxxRecordDecl(hasName("Y"))))) matches `y.m()` and `(g()).m()`. cxxMemberCallExpr(on(hasType(cxxRecordDecl(hasName("X"))))) matches `x.m()`. cxxMemberCallExpr(on(callExpr())) matches `(g()).m()`. FIXME: Overload to allow directly matching types? | |||
Matcher<CXXMemberCallExpr> | thisPointerType | Matcher<Decl> InnerMatcher | |
Overloaded to match the type's declaration. | |||
Matcher<CXXMemberCallExpr> | thisPointerType | Matcher<QualType> InnerMatcher | |
Matches if the type of the expression's implicit object argument either matches the InnerMatcher, or is a pointer to a type that matches the InnerMatcher. Given class Y { public: void m(); }; class X : public Y { void g(); }; void z() { Y y; y.m(); Y *p; p->m(); X x; x.m(); x.g(); } cxxMemberCallExpr(thisPointerType(hasDeclaration( cxxRecordDecl(hasName("Y"))))) matches `y.m()`, `p->m()` and `x.m()`. cxxMemberCallExpr(thisPointerType(hasDeclaration( cxxRecordDecl(hasName("X"))))) matches `x.g()`. | |||
Matcher<CXXMethodDecl> | forEachOverridden | Matcher<CXXMethodDecl> InnerMatcher | |
Matches each method overridden by the given method. This matcher may produce multiple matches. Given class A { virtual void f(); }; class B : public A { void f(); }; class C : public B { void f(); }; cxxMethodDecl(ofClass(hasName("C")), forEachOverridden(cxxMethodDecl().bind("b"))).bind("d") matches once, with "b" binding "A::f" and "d" binding "C::f" (Note that B::f is not overridden by C::f). The check can produce multiple matches in case of multiple inheritance, e.g. class A1 { virtual void f(); }; class A2 { virtual void f(); }; class C : public A1, public A2 { void f(); }; cxxMethodDecl(ofClass(hasName("C")), forEachOverridden(cxxMethodDecl().bind("b"))).bind("d") matches twice, once with "b" binding "A1::f" and "d" binding "C::f", and once with "b" binding "A2::f" and "d" binding "C::f". | |||
Matcher<CXXMethodDecl> | ofClass | Matcher<CXXRecordDecl> InnerMatcher | |
Matches the class declaration that the given method declaration belongs to. FIXME: Generalize this for other kinds of declarations. FIXME: What other kind of declarations would we need to generalize this to? Example matches A() in the last line (matcher = cxxConstructExpr(hasDeclaration(cxxMethodDecl( ofClass(hasName("A")))))) class A { public: A(); }; A a = A(); | |||
Matcher<CXXNewExpr> | hasAnyPlacementArg | Matcher<Expr> InnerMatcher | |
Matches any placement new expression arguments. Given: MyClass *p1 = new (Storage) MyClass(); cxxNewExpr(hasAnyPlacementArg(anything())) matches the expression 'new (Storage, 16) MyClass()'. | |||
Matcher<CXXNewExpr> | hasArraySize | Matcher<Expr> InnerMatcher | |
Matches array new expressions with a given array size. Given: MyClass *p1 = new MyClass[10]; cxxNewExpr(hasArraySize(integerLiteral(equals(10)))) matches the expression 'new MyClass[10]'. | |||
Matcher<CXXNewExpr> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<CXXNewExpr> | hasPlacementArg | unsigned Index, Matcher<Expr> InnerMatcher | |
Matches placement new expression arguments. Given: MyClass *p1 = new (Storage, 16) MyClass(); cxxNewExpr(hasPlacementArg(1, integerLiteral(equals(16)))) matches the expression 'new (Storage, 16) MyClass()'. | |||
Matcher<CXXNewExpr> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<CXXOperatorCallExpr> | hasEitherOperand | Matcher<Expr> InnerMatcher | |
Matches if either the left hand side or the right hand side of a binary operator or fold expression matches. | |||
Matcher<CXXOperatorCallExpr> | hasLHS | Matcher<Expr> InnerMatcher | |
Matches the left hand side of binary operator expressions. Example matches a (matcher = binaryOperator(hasLHS())) a || b | |||
Matcher<CXXOperatorCallExpr> | hasOperands | Matcher<Expr> Matcher1, Matcher<Expr> Matcher2 | |
Matches if both matchers match with opposite sides of the binary operator or fold expression. Example matcher = binaryOperator(hasOperands(integerLiteral(equals(1), integerLiteral(equals(2))) 1 + 2 // Match 2 + 1 // Match 1 + 1 // No match 2 + 2 // No match | |||
Matcher<CXXOperatorCallExpr> | hasRHS | Matcher<Expr> InnerMatcher | |
Matches the right hand side of binary operator expressions. Example matches b (matcher = binaryOperator(hasRHS())) a || b | |||
Matcher<CXXOperatorCallExpr> | hasUnaryOperand | Matcher<Expr> InnerMatcher | |
Matches if the operand of a unary operator matches. Example matches true (matcher = hasUnaryOperand( cxxBoolLiteral(equals(true)))) !true | |||
Matcher<CXXRecordDecl> | hasAnyBase | Matcher<CXXBaseSpecifier> BaseSpecMatcher | |
Matches C++ classes that have a direct or indirect base matching BaseSpecMatcher. Example: matcher hasAnyBase(hasType(cxxRecordDecl(hasName("SpecialBase")))) class Foo; class Bar : Foo {}; class Baz : Bar {}; class SpecialBase; class Proxy : SpecialBase {}; // matches Proxy class IndirectlyDerived : Proxy {}; //matches IndirectlyDerived FIXME: Refactor this and isDerivedFrom to reuse implementation. | |||
Matcher<CXXRecordDecl> | hasDirectBase | Matcher<CXXBaseSpecifier> BaseSpecMatcher | |
Matches C++ classes that have a direct base matching BaseSpecMatcher. Example: matcher hasDirectBase(hasType(cxxRecordDecl(hasName("SpecialBase")))) class Foo; class Bar : Foo {}; class Baz : Bar {}; class SpecialBase; class Proxy : SpecialBase {}; // matches Proxy class IndirectlyDerived : Proxy {}; // doesn't match | |||
Matcher<CXXRecordDecl> | hasMethod | Matcher<CXXMethodDecl> InnerMatcher | |
Matches the first method of a class or struct that satisfies InnerMatcher. Given: class A { void func(); }; class B { void member(); }; cxxRecordDecl(hasMethod(hasName("func"))) matches the declaration of A but not B. | |||
Matcher<CXXRecordDecl> | isDerivedFrom | Matcher<NamedDecl> Base | |
Matches C++ classes that are directly or indirectly derived from a class matching Base, or Objective-C classes that directly or indirectly subclass a class matching Base. Note that a class is not considered to be derived from itself. Example matches Y, Z, C (Base == hasName("X")) class X; class Y : public X {}; // directly derived class Z : public Y {}; // indirectly derived typedef X A; typedef A B; class C : public B {}; // derived from a typedef of X In the following example, Bar matches isDerivedFrom(hasName("X")): class Foo; typedef Foo X; class Bar : public Foo {}; // derived from a type that X is a typedef of In the following example, Bar matches isDerivedFrom(hasName("NSObject")) @interface NSObject @end @interface Bar : NSObject @end Usable as: Matcher<CXXRecordDecl>, Matcher<ObjCInterfaceDecl> | |||
Matcher<CXXRecordDecl> | isDirectlyDerivedFrom | Matcher<NamedDecl> Base | |
Matches C++ or Objective-C classes that are directly derived from a class matching Base. Note that a class is not considered to be derived from itself. Example matches Y, C (Base == hasName("X")) class X; class Y : public X {}; // directly derived class Z : public Y {}; // indirectly derived typedef X A; typedef A B; class C : public B {}; // derived from a typedef of X In the following example, Bar matches isDerivedFrom(hasName("X")): class Foo; typedef Foo X; class Bar : public Foo {}; // derived from a type that X is a typedef of | |||
Matcher<CXXRecordDecl> | isSameOrDerivedFrom | Matcher<NamedDecl> Base | |
Similar to isDerivedFrom(), but also matches classes that directly match Base. | |||
Matcher<CXXRewrittenBinaryOperator> | hasEitherOperand | Matcher<Expr> InnerMatcher | |
Matches if either the left hand side or the right hand side of a binary operator or fold expression matches. | |||
Matcher<CXXRewrittenBinaryOperator> | hasLHS | Matcher<Expr> InnerMatcher | |
Matches the left hand side of binary operator expressions. Example matches a (matcher = binaryOperator(hasLHS())) a || b | |||
Matcher<CXXRewrittenBinaryOperator> | hasOperands | Matcher<Expr> Matcher1, Matcher<Expr> Matcher2 | |
Matches if both matchers match with opposite sides of the binary operator or fold expression. Example matcher = binaryOperator(hasOperands(integerLiteral(equals(1), integerLiteral(equals(2))) 1 + 2 // Match 2 + 1 // Match 1 + 1 // No match 2 + 2 // No match | |||
Matcher<CXXRewrittenBinaryOperator> | hasRHS | Matcher<Expr> InnerMatcher | |
Matches the right hand side of binary operator expressions. Example matches b (matcher = binaryOperator(hasRHS())) a || b | |||
Matcher<CXXTemporaryObjectExpr> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<CXXUnresolvedConstructExpr> | hasAnyArgument | Matcher<Expr> InnerMatcher | |
Matches any argument of a call expression or a constructor call expression, or an ObjC-message-send expression. Given void x(int, int, int) { int y; x(1, y, 42); } callExpr(hasAnyArgument(declRefExpr())) matches x(1, y, 42) with hasAnyArgument(...) matching y For ObjectiveC, given @interface I - (void) f:(int) y; @end void foo(I *i) { [i f:12]; } objcMessageExpr(hasAnyArgument(integerLiteral(equals(12)))) matches [i f:12] | |||
Matcher<CXXUnresolvedConstructExpr> | hasArgument | unsigned N, Matcher<Expr> InnerMatcher | |
Matches the n'th argument of a call expression or a constructor call expression. Example matches y in x(y) (matcher = callExpr(hasArgument(0, declRefExpr()))) void x(int) { int y; x(y); } | |||
Matcher<CXXUnresolvedConstructExpr> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<CallExpr> | callee | Matcher<Decl> InnerMatcher | |
Matches 1) if the call expression's callee's declaration matches the given matcher; or 2) if the Obj-C message expression's callee's method declaration matches the given matcher. Example matches y.x() (matcher = callExpr(callee( cxxMethodDecl(hasName("x"))))) class Y { public: void x(); }; void z() { Y y; y.x(); } Example 2. Matches [I foo] with objcMessageExpr(callee(objcMethodDecl(hasName("foo")))) @interface I: NSObject +(void)foo; @end ... [I foo] | |||
Matcher<CallExpr> | callee | Matcher<Stmt> InnerMatcher | |
Matches if the call or fold expression's callee expression matches. Given class Y { void x() { this->x(); x(); Y y; y.x(); } }; void f() { f(); } callExpr(callee(expr())) matches this->x(), x(), y.x(), f() with callee(...) matching this->x, x, y.x, f respectively Given template <typename... Args> auto sum(Args... args) { return (0 + ... + args); } template <typename... Args> auto multiply(Args... args) { return (args * ... * 1); } cxxFoldExpr(callee(expr())) matches (args * ... * 1) with callee(...) matching * Note: Callee cannot take the more general internal::Matcher<Expr> because this introduces ambiguous overloads with calls to Callee taking a internal::Matcher<Decl>, as the matcher hierarchy is purely implemented in terms of implicit casts. | |||
Matcher<CallExpr> | forEachArgumentWithParam | Matcher<Expr> ArgMatcher, Matcher<ParmVarDecl> ParamMatcher | |
Matches all arguments and their respective ParmVarDecl. Given void f(int i); int y; f(y); callExpr( forEachArgumentWithParam( declRefExpr(to(varDecl(hasName("y")))), parmVarDecl(hasType(isInteger())) )) matches f(y); with declRefExpr(...) matching int y and parmVarDecl(...) matching int i | |||
Matcher<CallExpr> | forEachArgumentWithParamType | Matcher<Expr> ArgMatcher, Matcher<QualType> ParamMatcher | |
Matches all arguments and their respective types for a CallExpr or CXXConstructExpr. It is very similar to forEachArgumentWithParam but it works on calls through function pointers as well. The difference is, that function pointers do not provide access to a ParmVarDecl, but only the QualType for each argument. Given void f(int i); int y; f(y); void (*f_ptr)(int) = f; f_ptr(y); callExpr( forEachArgumentWithParamType( declRefExpr(to(varDecl(hasName("y")))), qualType(isInteger()).bind("type) )) matches f(y) and f_ptr(y) with declRefExpr(...) matching int y and qualType(...) matching int | |||
Matcher<CallExpr> | hasAnyArgument | Matcher<Expr> InnerMatcher | |
Matches any argument of a call expression or a constructor call expression, or an ObjC-message-send expression. Given void x(int, int, int) { int y; x(1, y, 42); } callExpr(hasAnyArgument(declRefExpr())) matches x(1, y, 42) with hasAnyArgument(...) matching y For ObjectiveC, given @interface I - (void) f:(int) y; @end void foo(I *i) { [i f:12]; } objcMessageExpr(hasAnyArgument(integerLiteral(equals(12)))) matches [i f:12] | |||
Matcher<CallExpr> | hasArgument | unsigned N, Matcher<Expr> InnerMatcher | |
Matches the n'th argument of a call expression or a constructor call expression. Example matches y in x(y) (matcher = callExpr(hasArgument(0, declRefExpr()))) void x(int) { int y; x(y); } | |||
Matcher<CallExpr> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<CaseStmt> | hasCaseConstant | Matcher<Expr> InnerMatcher | |
If the given case statement does not use the GNU case range extension, matches the constant given in the statement. Given switch (1) { case 1: case 1+1: case 3 ... 4: ; } caseStmt(hasCaseConstant(integerLiteral())) matches "case 1:" | |||
Matcher<CastExpr> | hasSourceExpression | Matcher<Expr> InnerMatcher | |
Matches if the cast's source expression or opaque value's source expression matches the given matcher. Example 1: matches "a string" (matcher = castExpr(hasSourceExpression(cxxConstructExpr()))) class URL { URL(string); }; URL url = "a string"; Example 2: matches 'b' (matcher = opaqueValueExpr(hasSourceExpression(implicitCastExpr(declRefExpr()))) int a = b ?: 1; | |||
Matcher<ClassTemplateSpecializationDecl> | forEachTemplateArgument | Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationType, class template specialization, variable template specialization, and function template specialization nodes where the template argument matches the inner matcher. This matcher may produce multiple matches. Given template <typename T, unsigned N, unsigned M> struct Matrix {}; constexpr unsigned R = 2; Matrix<int, R * 2, R * 4> M; template <typename T, typename U> void f(T&& t, U&& u) {} bool B = false; f(R, B); templateSpecializationType(forEachTemplateArgument(isExpr(expr()))) matches twice, with expr() matching 'R * 2' and 'R * 4' functionDecl(forEachTemplateArgument(refersToType(builtinType()))) matches the specialization f<unsigned, bool> twice, for 'unsigned' and 'bool' | |||
Matcher<ClassTemplateSpecializationDecl> | hasAnyTemplateArgumentLoc | Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations that have at least one `TemplateArgumentLoc` matching the given `InnerMatcher`. Given template<typename T> class A {}; A<int> a; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasAnyTemplateArgumentLoc( hasTypeLoc(loc(asString("int"))))))) matches `A<int> a`. | |||
Matcher<ClassTemplateSpecializationDecl> | hasAnyTemplateArgument | Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationTypes, class template specializations, variable template specializations, and function template specializations that have at least one TemplateArgument matching the given InnerMatcher. Given template<typename T> class A {}; template<> class A<double> {}; A<int> a; template<typename T> f() {}; void func() { f<int>(); }; classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToType(asString("int")))) matches the specialization A<int> functionDecl(hasAnyTemplateArgument(refersToType(asString("int")))) matches the specialization f<int> | |||
Matcher<ClassTemplateSpecializationDecl> | hasSpecializedTemplate | Matcher<ClassTemplateDecl> InnerMatcher | |
Matches the specialized template of a specialization declaration. Given template<typename T> class A {}; #1 template<> class A<int> {}; #2 classTemplateSpecializationDecl(hasSpecializedTemplate(classTemplateDecl())) matches '#2' with classTemplateDecl() matching the class template declaration of 'A' at #1. | |||
Matcher<ClassTemplateSpecializationDecl> | hasTemplateArgumentLoc | unsigned Index, Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations where the n'th `TemplateArgumentLoc` matches the given `InnerMatcher`. Given template<typename T, typename U> class A {}; A<double, int> b; A<int, double> c; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasTemplateArgumentLoc(0, hasTypeLoc(loc(asString("double"))))))) matches `A<double, int> b`, but not `A<int, double> c`. | |||
Matcher<ClassTemplateSpecializationDecl> | hasTemplateArgument | unsigned N, Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationType, class template specializations, variable template specializations, and function template specializations where the n'th TemplateArgument matches the given InnerMatcher. Given template<typename T, typename U> class A {}; A<bool, int> b; A<int, bool> c; template<typename T> void f() {} void func() { f<int>(); }; classTemplateSpecializationDecl(hasTemplateArgument( 1, refersToType(asString("int")))) matches the specialization A<bool, int> functionDecl(hasTemplateArgument(0, refersToType(asString("int")))) matches the specialization f<int> | |||
Matcher<ComplexType> | hasElementType | Matcher<Type> | |
Matches arrays and C99 complex types that have a specific element type. Given struct A {}; A a[7]; int b[7]; arrayType(hasElementType(builtinType())) matches "int b[7]" Usable as: Matcher<ArrayType>, Matcher<ComplexType> | |||
Matcher<CompoundLiteralExpr> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<CompoundStmt> | hasAnySubstatement | Matcher<Stmt> InnerMatcher | |
Matches compound statements where at least one substatement matches a given matcher. Also matches StmtExprs that have CompoundStmt as children. Given { {}; 1+2; } hasAnySubstatement(compoundStmt()) matches '{ {}; 1+2; }' with compoundStmt() matching '{}' | |||
Matcher<CoroutineBodyStmt> | hasBody | Matcher<Stmt> InnerMatcher | |
Matches a 'for', 'while', 'while' statement or a function or coroutine definition that has a given body. Note that in case of functions or coroutines this matcher only matches the definition itself and not the other declarations of the same function or coroutine. Given for (;;) {} forStmt(hasBody(compoundStmt())) matches 'for (;;) {}' with compoundStmt() matching '{}' Given void f(); void f() {} functionDecl(hasBody(compoundStmt())) matches 'void f() {}' with compoundStmt() matching '{}' but does not match 'void f();' | |||
Matcher<DecayedType> | hasDecayedType | Matcher<QualType> InnerType | |
Matches the decayed type, whoes decayed type matches InnerMatcher | |||
Matcher<DeclRefExpr> | hasAnyTemplateArgumentLoc | Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations that have at least one `TemplateArgumentLoc` matching the given `InnerMatcher`. Given template<typename T> class A {}; A<int> a; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasAnyTemplateArgumentLoc( hasTypeLoc(loc(asString("int"))))))) matches `A<int> a`. | |||
Matcher<DeclRefExpr> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<DeclRefExpr> | hasTemplateArgumentLoc | unsigned Index, Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations where the n'th `TemplateArgumentLoc` matches the given `InnerMatcher`. Given template<typename T, typename U> class A {}; A<double, int> b; A<int, double> c; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasTemplateArgumentLoc(0, hasTypeLoc(loc(asString("double"))))))) matches `A<double, int> b`, but not `A<int, double> c`. | |||
Matcher<DeclRefExpr> | throughUsingDecl | Matcher<UsingShadowDecl> Inner | |
Matches if a node refers to a declaration through a specific using shadow declaration. Examples: namespace a { int f(); } using a::f; int x = f(); declRefExpr(throughUsingDecl(anything())) matches f namespace a { class X{}; } using a::X; X x; typeLoc(loc(usingType(throughUsingDecl(anything())))) matches X Usable as: Matcher<DeclRefExpr>, Matcher<UsingType> | |||
Matcher<DeclRefExpr> | to | Matcher<Decl> InnerMatcher | |
Matches a DeclRefExpr that refers to a declaration that matches the specified matcher. Example matches x in if(x) (matcher = declRefExpr(to(varDecl(hasName("x"))))) bool x; if (x) {} | |||
Matcher<DeclStmt> | containsDeclaration | unsigned N, Matcher<Decl> InnerMatcher | |
Matches the n'th declaration of a declaration statement. Note that this does not work for global declarations because the AST breaks up multiple-declaration DeclStmt's into multiple single-declaration DeclStmt's. Example: Given non-global declarations int a, b = 0; int c; int d = 2, e; declStmt(containsDeclaration( 0, varDecl(hasInitializer(anything())))) matches only 'int d = 2, e;', and declStmt(containsDeclaration(1, varDecl())) matches 'int a, b = 0' as well as 'int d = 2, e;' but 'int c;' is not matched. | |||
Matcher<DeclStmt> | hasSingleDecl | Matcher<Decl> InnerMatcher | |
Matches the Decl of a DeclStmt which has a single declaration. Given int a, b; int c; declStmt(hasSingleDecl(anything())) matches 'int c;' but not 'int a, b;'. | |||
Matcher<DeclaratorDecl> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<Decl> | hasDeclContext | Matcher<Decl> InnerMatcher | |
Matches declarations whose declaration context, interpreted as a Decl, matches InnerMatcher. Given namespace N { namespace M { class D {}; } } cxxRcordDecl(hasDeclContext(namedDecl(hasName("M")))) matches the declaration of class D. | |||
Matcher<DecltypeType> | hasUnderlyingType | Matcher<Type> | |
Matches DecltypeType or UsingType nodes to find the underlying type. Given decltype(1) a = 1; decltype(2.0) b = 2.0; decltypeType(hasUnderlyingType(isInteger())) matches the type of "a" Usable as: Matcher<DecltypeType>, Matcher<UsingType> | |||
Matcher<DecompositionDecl> | hasAnyBinding | Matcher<BindingDecl> InnerMatcher | |
Matches any binding of a DecompositionDecl. For example, in: void foo() { int arr[3]; auto &[f, s, t] = arr; f = 42; } The matcher: decompositionDecl(hasAnyBinding(bindingDecl(hasName("f").bind("fBinding")))) matches the decomposition decl with 'f' bound to "fBinding". | |||
Matcher<DecompositionDecl> | hasBinding | unsigned N, Matcher<BindingDecl> InnerMatcher | |
Matches the Nth binding of a DecompositionDecl. For example, in: void foo() { int arr[3]; auto &[f, s, t] = arr; f = 42; } The matcher: decompositionDecl(hasBinding(0, bindingDecl(hasName("f").bind("fBinding")))) matches the decomposition decl with 'f' bound to "fBinding". | |||
Matcher<DoStmt> | hasBody | Matcher<Stmt> InnerMatcher | |
Matches a 'for', 'while', 'while' statement or a function or coroutine definition that has a given body. Note that in case of functions or coroutines this matcher only matches the definition itself and not the other declarations of the same function or coroutine. Given for (;;) {} forStmt(hasBody(compoundStmt())) matches 'for (;;) {}' with compoundStmt() matching '{}' Given void f(); void f() {} functionDecl(hasBody(compoundStmt())) matches 'void f() {}' with compoundStmt() matching '{}' but does not match 'void f();' | |||
Matcher<DoStmt> | hasCondition | Matcher<Expr> InnerMatcher | |
Matches the condition expression of an if statement, for loop, switch statement or conditional operator. Example matches true (matcher = hasCondition(cxxBoolLiteral(equals(true)))) if (true) {} | |||
Matcher<ElaboratedTypeLoc> | hasNamedTypeLoc | Matcher<TypeLoc> InnerMatcher | |
Matches elaborated `TypeLoc`s that have a named `TypeLoc` matching `InnerMatcher`. Given template <typename T> class C {}; class C<int> c; class D {}; class D d; elaboratedTypeLoc(hasNamedTypeLoc(templateSpecializationTypeLoc())); matches the `TypeLoc` of the variable declaration of `c`, but not `d`. | |||
Matcher<ElaboratedType> | hasQualifier | Matcher<NestedNameSpecifier> InnerMatcher | |
Matches ElaboratedTypes whose qualifier, a NestedNameSpecifier, matches InnerMatcher if the qualifier exists. Given namespace N { namespace M { class D {}; } } N::M::D d; elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N")))) matches the type of the variable declaration of d. | |||
Matcher<ElaboratedType> | namesType | Matcher<QualType> InnerMatcher | |
Matches ElaboratedTypes whose named type matches InnerMatcher. Given namespace N { namespace M { class D {}; } } N::M::D d; elaboratedType(namesType(recordType( hasDeclaration(namedDecl(hasName("D")))))) matches the type of the variable declaration of d. | |||
Matcher<EnumType> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<ExplicitCastExpr> | hasDestinationType | Matcher<QualType> InnerMatcher | |
Matches casts whose destination type matches a given matcher. (Note: Clang's AST refers to other conversions as "casts" too, and calls actual casts "explicit" casts.) | |||
Matcher<ExplicitCastExpr> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<Expr> | hasType | Matcher<Decl> InnerMatcher | |
Overloaded to match the declaration of the expression's or value declaration's type. In case of a value declaration (for example a variable declaration), this resolves one layer of indirection. For example, in the value declaration "X x;", cxxRecordDecl(hasName("X")) matches the declaration of X, while varDecl(hasType(cxxRecordDecl(hasName("X")))) matches the declaration of x. Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X"))))) and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X"))))) and friend class X (matcher = friendDecl(hasType("X")) and public virtual X (matcher = cxxBaseSpecifier(hasType( cxxRecordDecl(hasName("X")))) class X {}; void y(X &x) { x; X z; } class Y { friend class X; }; class Z : public virtual X {}; Example matches class Derived (matcher = cxxRecordDecl(hasAnyBase(hasType(cxxRecordDecl(hasName("Base")))))) class Base {}; class Derived : Base {}; Usable as: Matcher<Expr>, Matcher<FriendDecl>, Matcher<ValueDecl>, Matcher<CXXBaseSpecifier> | |||
Matcher<Expr> | hasType | Matcher<QualType> InnerMatcher | |
Matches if the expression's or declaration's type matches a type matcher. Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X"))))) and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X"))))) and U (matcher = typedefDecl(hasType(asString("int"))) and friend class X (matcher = friendDecl(hasType("X")) and public virtual X (matcher = cxxBaseSpecifier(hasType( asString("class X"))) class X {}; void y(X &x) { x; X z; } typedef int U; class Y { friend class X; }; class Z : public virtual X {}; | |||
Matcher<Expr> | ignoringElidableConstructorCall | Matcher<Expr> InnerMatcher | |
Matches expressions that match InnerMatcher that are possibly wrapped in an elidable constructor and other corresponding bookkeeping nodes. In C++17, elidable copy constructors are no longer being generated in the AST as it is not permitted by the standard. They are, however, part of the AST in C++14 and earlier. So, a matcher must abstract over these differences to work in all language modes. This matcher skips elidable constructor-call AST nodes, `ExprWithCleanups` nodes wrapping elidable constructor-calls and various implicit nodes inside the constructor calls, all of which will not appear in the C++17 AST. Given struct H {}; H G(); void f() { H D = G(); } ``varDecl(hasInitializer(ignoringElidableConstructorCall(callExpr())))`` matches ``H D = G()`` in C++11 through C++17 (and beyond). | |||
Matcher<Expr> | ignoringImpCasts | Matcher<Expr> InnerMatcher | |
Matches expressions that match InnerMatcher after any implicit casts are stripped off. Parentheses and explicit casts are not discarded. Given int arr[5]; int a = 0; char b = 0; const int c = a; int *d = arr; long e = (long) 0l; The matchers varDecl(hasInitializer(ignoringImpCasts(integerLiteral()))) varDecl(hasInitializer(ignoringImpCasts(declRefExpr()))) would match the declarations for a, b, c, and d, but not e. While varDecl(hasInitializer(integerLiteral())) varDecl(hasInitializer(declRefExpr())) only match the declarations for a. | |||
Matcher<Expr> | ignoringImplicit | Matcher<Expr> InnerMatcher | |
Matches expressions that match InnerMatcher after any implicit AST nodes are stripped off. Parentheses and explicit casts are not discarded. Given class C {}; C a = C(); C b; C c = b; The matchers varDecl(hasInitializer(ignoringImplicit(cxxConstructExpr()))) would match the declarations for a, b, and c. While varDecl(hasInitializer(cxxConstructExpr())) only match the declarations for b and c. | |||
Matcher<Expr> | ignoringParenCasts | Matcher<Expr> InnerMatcher | |
Matches expressions that match InnerMatcher after parentheses and casts are stripped off. Implicit and non-C Style casts are also discarded. Given int a = 0; char b = (0); void* c = reinterpret_cast<char*>(0); char d = char(0); The matcher varDecl(hasInitializer(ignoringParenCasts(integerLiteral()))) would match the declarations for a, b, c, and d. while varDecl(hasInitializer(integerLiteral())) only match the declaration for a. | |||
Matcher<Expr> | ignoringParenImpCasts | Matcher<Expr> InnerMatcher | |
Matches expressions that match InnerMatcher after implicit casts and parentheses are stripped off. Explicit casts are not discarded. Given int arr[5]; int a = 0; char b = (0); const int c = a; int *d = (arr); long e = ((long) 0l); The matchers varDecl(hasInitializer(ignoringParenImpCasts(integerLiteral()))) varDecl(hasInitializer(ignoringParenImpCasts(declRefExpr()))) would match the declarations for a, b, c, and d, but not e. while varDecl(hasInitializer(integerLiteral())) varDecl(hasInitializer(declRefExpr())) would only match the declaration for a. | |||
Matcher<Expr> | ignoringParens | Matcher<Expr> InnerMatcher | |
Overload ignoringParens for Expr. Given const char* str = ("my-string"); The matcher implicitCastExpr(hasSourceExpression(ignoringParens(stringLiteral()))) would match the implicit cast resulting from the assignment. | |||
Matcher<FieldDecl> | hasInClassInitializer | Matcher<Expr> InnerMatcher | |
Matches non-static data members that have an in-class initializer. Given class C { int a = 2; int b = 3; int c; }; fieldDecl(hasInClassInitializer(integerLiteral(equals(2)))) matches 'int a;' but not 'int b;'. fieldDecl(hasInClassInitializer(anything())) matches 'int a;' and 'int b;' but not 'int c;'. | |||
Matcher<ForStmt> | hasBody | Matcher<Stmt> InnerMatcher | |
Matches a 'for', 'while', 'while' statement or a function or coroutine definition that has a given body. Note that in case of functions or coroutines this matcher only matches the definition itself and not the other declarations of the same function or coroutine. Given for (;;) {} forStmt(hasBody(compoundStmt())) matches 'for (;;) {}' with compoundStmt() matching '{}' Given void f(); void f() {} functionDecl(hasBody(compoundStmt())) matches 'void f() {}' with compoundStmt() matching '{}' but does not match 'void f();' | |||
Matcher<ForStmt> | hasCondition | Matcher<Expr> InnerMatcher | |
Matches the condition expression of an if statement, for loop, switch statement or conditional operator. Example matches true (matcher = hasCondition(cxxBoolLiteral(equals(true)))) if (true) {} | |||
Matcher<ForStmt> | hasIncrement | Matcher<Stmt> InnerMatcher | |
Matches the increment statement of a for loop. Example: forStmt(hasIncrement(unaryOperator(hasOperatorName("++")))) matches '++x' in for (x; x < N; ++x) { } | |||
Matcher<ForStmt> | hasLoopInit | Matcher<Stmt> InnerMatcher | |
Matches the initialization statement of a for loop. Example: forStmt(hasLoopInit(declStmt())) matches 'int x = 0' in for (int x = 0; x < N; ++x) { } | |||
Matcher<FriendDecl> | hasType | Matcher<Decl> InnerMatcher | |
Overloaded to match the declaration of the expression's or value declaration's type. In case of a value declaration (for example a variable declaration), this resolves one layer of indirection. For example, in the value declaration "X x;", cxxRecordDecl(hasName("X")) matches the declaration of X, while varDecl(hasType(cxxRecordDecl(hasName("X")))) matches the declaration of x. Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X"))))) and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X"))))) and friend class X (matcher = friendDecl(hasType("X")) and public virtual X (matcher = cxxBaseSpecifier(hasType( cxxRecordDecl(hasName("X")))) class X {}; void y(X &x) { x; X z; } class Y { friend class X; }; class Z : public virtual X {}; Example matches class Derived (matcher = cxxRecordDecl(hasAnyBase(hasType(cxxRecordDecl(hasName("Base")))))) class Base {}; class Derived : Base {}; Usable as: Matcher<Expr>, Matcher<FriendDecl>, Matcher<ValueDecl>, Matcher<CXXBaseSpecifier> | |||
Matcher<FriendDecl> | hasType | Matcher<QualType> InnerMatcher | |
Matches if the expression's or declaration's type matches a type matcher. Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X"))))) and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X"))))) and U (matcher = typedefDecl(hasType(asString("int"))) and friend class X (matcher = friendDecl(hasType("X")) and public virtual X (matcher = cxxBaseSpecifier(hasType( asString("class X"))) class X {}; void y(X &x) { x; X z; } typedef int U; class Y { friend class X; }; class Z : public virtual X {}; | |||
Matcher<FunctionDecl> | forEachTemplateArgument | Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationType, class template specialization, variable template specialization, and function template specialization nodes where the template argument matches the inner matcher. This matcher may produce multiple matches. Given template <typename T, unsigned N, unsigned M> struct Matrix {}; constexpr unsigned R = 2; Matrix<int, R * 2, R * 4> M; template <typename T, typename U> void f(T&& t, U&& u) {} bool B = false; f(R, B); templateSpecializationType(forEachTemplateArgument(isExpr(expr()))) matches twice, with expr() matching 'R * 2' and 'R * 4' functionDecl(forEachTemplateArgument(refersToType(builtinType()))) matches the specialization f<unsigned, bool> twice, for 'unsigned' and 'bool' | |||
Matcher<FunctionDecl> | hasAnyBody | Matcher<Stmt> InnerMatcher | |
Matches a function declaration that has a given body present in the AST. Note that this matcher matches all the declarations of a function whose body is present in the AST. Given void f(); void f() {} void g(); functionDecl(hasAnyBody(compoundStmt())) matches both 'void f();' and 'void f() {}' with compoundStmt() matching '{}' but does not match 'void g();' | |||
Matcher<FunctionDecl> | hasAnyParameter | Matcher<ParmVarDecl> InnerMatcher | |
Matches any parameter of a function or an ObjC method declaration or a block. Does not match the 'this' parameter of a method. Given class X { void f(int x, int y, int z) {} }; cxxMethodDecl(hasAnyParameter(hasName("y"))) matches f(int x, int y, int z) {} with hasAnyParameter(...) matching int y For ObjectiveC, given @interface I - (void) f:(int) y; @end the matcher objcMethodDecl(hasAnyParameter(hasName("y"))) matches the declaration of method f with hasParameter matching y. For blocks, given b = ^(int y) { printf("%d", y) }; the matcher blockDecl(hasAnyParameter(hasName("y"))) matches the declaration of the block b with hasParameter matching y. | |||
Matcher<FunctionDecl> | hasAnyTemplateArgumentLoc | Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations that have at least one `TemplateArgumentLoc` matching the given `InnerMatcher`. Given template<typename T> class A {}; A<int> a; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasAnyTemplateArgumentLoc( hasTypeLoc(loc(asString("int"))))))) matches `A<int> a`. | |||
Matcher<FunctionDecl> | hasAnyTemplateArgument | Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationTypes, class template specializations, variable template specializations, and function template specializations that have at least one TemplateArgument matching the given InnerMatcher. Given template<typename T> class A {}; template<> class A<double> {}; A<int> a; template<typename T> f() {}; void func() { f<int>(); }; classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToType(asString("int")))) matches the specialization A<int> functionDecl(hasAnyTemplateArgument(refersToType(asString("int")))) matches the specialization f<int> | |||
Matcher<FunctionDecl> | hasBody | Matcher<Stmt> InnerMatcher | |
Matches a 'for', 'while', 'while' statement or a function or coroutine definition that has a given body. Note that in case of functions or coroutines this matcher only matches the definition itself and not the other declarations of the same function or coroutine. Given for (;;) {} forStmt(hasBody(compoundStmt())) matches 'for (;;) {}' with compoundStmt() matching '{}' Given void f(); void f() {} functionDecl(hasBody(compoundStmt())) matches 'void f() {}' with compoundStmt() matching '{}' but does not match 'void f();' | |||
Matcher<FunctionDecl> | hasExplicitSpecifier | Matcher<Expr> InnerMatcher | |
Matches the expression in an explicit specifier if present in the given declaration. Given template<bool b> struct S { S(int); // #1 explicit S(double); // #2 operator int(); // #3 explicit operator bool(); // #4 explicit(false) S(bool) // # 7 explicit(true) S(char) // # 8 explicit(b) S(S) // # 9 }; S(int) -> S<true> // #5 explicit S(double) -> S<false> // #6 cxxConstructorDecl(hasExplicitSpecifier(constantExpr())) will match #7, #8 and #9, but not #1 or #2. cxxConversionDecl(hasExplicitSpecifier(constantExpr())) will not match #3 or #4. cxxDeductionGuideDecl(hasExplicitSpecifier(constantExpr())) will not match #5 or #6. | |||
Matcher<FunctionDecl> | hasParameter | unsigned N, Matcher<ParmVarDecl> InnerMatcher | |
Matches the n'th parameter of a function or an ObjC method declaration or a block. Given class X { void f(int x) {} }; cxxMethodDecl(hasParameter(0, hasType(varDecl()))) matches f(int x) {} with hasParameter(...) matching int x For ObjectiveC, given @interface I - (void) f:(int) y; @end the matcher objcMethodDecl(hasParameter(0, hasName("y"))) matches the declaration of method f with hasParameter matching y. | |||
Matcher<FunctionDecl> | hasReturnTypeLoc | Matcher<TypeLoc> ReturnMatcher | |
Matches a function declared with the specified return `TypeLoc`. Given int f() { return 5; } void g() {} functionDecl(hasReturnTypeLoc(loc(asString("int")))) matches the declaration of `f`, but not `g`. | |||
Matcher<FunctionDecl> | hasTemplateArgumentLoc | unsigned Index, Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations where the n'th `TemplateArgumentLoc` matches the given `InnerMatcher`. Given template<typename T, typename U> class A {}; A<double, int> b; A<int, double> c; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasTemplateArgumentLoc(0, hasTypeLoc(loc(asString("double"))))))) matches `A<double, int> b`, but not `A<int, double> c`. | |||
Matcher<FunctionDecl> | hasTemplateArgument | unsigned N, Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationType, class template specializations, variable template specializations, and function template specializations where the n'th TemplateArgument matches the given InnerMatcher. Given template<typename T, typename U> class A {}; A<bool, int> b; A<int, bool> c; template<typename T> void f() {} void func() { f<int>(); }; classTemplateSpecializationDecl(hasTemplateArgument( 1, refersToType(asString("int")))) matches the specialization A<bool, int> functionDecl(hasTemplateArgument(0, refersToType(asString("int")))) matches the specialization f<int> | |||
Matcher<FunctionDecl> | returns | Matcher<QualType> InnerMatcher | |
Matches the return type of a function declaration. Given: class X { int f() { return 1; } }; cxxMethodDecl(returns(asString("int"))) matches int f() { return 1; } | |||
Matcher<IfStmt> | hasCondition | Matcher<Expr> InnerMatcher | |
Matches the condition expression of an if statement, for loop, switch statement or conditional operator. Example matches true (matcher = hasCondition(cxxBoolLiteral(equals(true)))) if (true) {} | |||
Matcher<IfStmt> | hasConditionVariableStatement | Matcher<DeclStmt> InnerMatcher | |
Matches the condition variable statement in an if statement. Given if (A* a = GetAPointer()) {} hasConditionVariableStatement(...) matches 'A* a = GetAPointer()'. | |||
Matcher<IfStmt> | hasElse | Matcher<Stmt> InnerMatcher | |
Matches the else-statement of an if statement. Examples matches the if statement (matcher = ifStmt(hasElse(cxxBoolLiteral(equals(true))))) if (false) false; else true; | |||
Matcher<IfStmt> | hasInitStatement | Matcher<Stmt> InnerMatcher | |
Matches selection statements with initializer. Given: void foo() { if (int i = foobar(); i > 0) {} switch (int i = foobar(); i) {} for (auto& a = get_range(); auto& x : a) {} } void bar() { if (foobar() > 0) {} switch (foobar()) {} for (auto& x : get_range()) {} } ifStmt(hasInitStatement(anything())) matches the if statement in foo but not in bar. switchStmt(hasInitStatement(anything())) matches the switch statement in foo but not in bar. cxxForRangeStmt(hasInitStatement(anything())) matches the range for statement in foo but not in bar. | |||
Matcher<IfStmt> | hasThen | Matcher<Stmt> InnerMatcher | |
Matches the then-statement of an if statement. Examples matches the if statement (matcher = ifStmt(hasThen(cxxBoolLiteral(equals(true))))) if (false) true; else false; | |||
Matcher<ImplicitCastExpr> | hasImplicitDestinationType | Matcher<QualType> InnerMatcher | |
Matches implicit casts whose destination type matches a given matcher. | |||
Matcher<InitListExpr> | hasInit | unsigned N, Matcher<Expr> InnerMatcher | |
Matches the n'th item of an initializer list expression. Example matches y. (matcher = initListExpr(hasInit(0, expr()))) int x{y}. | |||
Matcher<InitListExpr> | hasSyntacticForm | Matcher<Expr> InnerMatcher | |
Matches the syntactic form of init list expressions (if expression have it). | |||
Matcher<InjectedClassNameType> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<LabelStmt> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<LambdaCapture> | capturesVar | Matcher<ValueDecl> InnerMatcher | |
Matches a `LambdaCapture` that refers to the specified `VarDecl`. The `VarDecl` can be a separate variable that is captured by value or reference, or a synthesized variable if the capture has an initializer. Given void foo() { int x; auto f = [x](){}; auto g = [x = 1](){}; } In the matcher lambdaExpr(hasAnyCapture(lambdaCapture(capturesVar(hasName("x")))), capturesVar(hasName("x")) matches `x` and `x = 1`. | |||
Matcher<LambdaExpr> | forEachLambdaCapture | Matcher<LambdaCapture> InnerMatcher | |
Matches each lambda capture in a lambda expression. Given int main() { int x, y; float z; auto f = [=]() { return x + y + z; }; } lambdaExpr(forEachLambdaCapture( lambdaCapture(capturesVar(varDecl(hasType(isInteger())))))) will trigger two matches, binding for 'x' and 'y' respectively. | |||
Matcher<LambdaExpr> | hasAnyCapture | Matcher<LambdaCapture> InnerMatcher | |
Matches any capture in a lambda expression. Given void foo() { int t = 5; auto f = [=](){ return t; }; } lambdaExpr(hasAnyCapture(lambdaCapture())) and lambdaExpr(hasAnyCapture(lambdaCapture(refersToVarDecl(hasName("t"))))) both match `[=](){ return t; }`. | |||
Matcher<MemberExpr> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<MemberExpr> | hasObjectExpression | Matcher<Expr> InnerMatcher | |
Matches a member expression where the object expression is matched by a given matcher. Implicit object expressions are included; that is, it matches use of implicit `this`. Given struct X { int m; int f(X x) { x.m; return m; } }; memberExpr(hasObjectExpression(hasType(cxxRecordDecl(hasName("X"))))) matches `x.m`, but not `m`; however, memberExpr(hasObjectExpression(hasType(pointsTo( cxxRecordDecl(hasName("X")))))) matches `m` (aka. `this->m`), but not `x.m`. | |||
Matcher<MemberExpr> | member | Matcher<ValueDecl> InnerMatcher | |
Matches a member expression where the member is matched by a given matcher. Given struct { int first, second; } first, second; int i(second.first); int j(first.second); memberExpr(member(hasName("first"))) matches second.first but not first.second (because the member name there is "second"). | |||
Matcher<MemberPointerType> | pointee | Matcher<Type> | |
Narrows PointerType (and similar) matchers to those where the pointee matches a given matcher. Given int *a; int const *b; float const *f; pointerType(pointee(isConstQualified(), isInteger())) matches "int const *b" Usable as: Matcher<BlockPointerType>, Matcher<MemberPointerType>, Matcher<PointerType>, Matcher<ReferenceType> | |||
Matcher<NamedDecl> | hasUnderlyingDecl | Matcher<NamedDecl> InnerMatcher | |
Matches a NamedDecl whose underlying declaration matches the given matcher. Given namespace N { template<class T> void f(T t); } template <class T> void g() { using N::f; f(T()); } unresolvedLookupExpr(hasAnyDeclaration( namedDecl(hasUnderlyingDecl(hasName("::N::f"))))) matches the use of f in g() . | |||
Matcher<NestedNameSpecifierLoc> | hasPrefix | Matcher<NestedNameSpecifierLoc> InnerMatcher | |
Matches on the prefix of a NestedNameSpecifierLoc. Given struct A { struct B { struct C {}; }; }; A::B::C c; nestedNameSpecifierLoc(hasPrefix(loc(specifiesType(asString("struct A"))))) matches "A::" | |||
Matcher<NestedNameSpecifierLoc> | loc | Matcher<NestedNameSpecifier> InnerMatcher | |
Matches NestedNameSpecifierLocs for which the given inner NestedNameSpecifier-matcher matches. | |||
Matcher<NestedNameSpecifierLoc> | specifiesTypeLoc | Matcher<TypeLoc> InnerMatcher | |
Matches nested name specifier locs that specify a type matching the given TypeLoc. Given struct A { struct B { struct C {}; }; }; A::B::C c; nestedNameSpecifierLoc(specifiesTypeLoc(loc(type( hasDeclaration(cxxRecordDecl(hasName("A"))))))) matches "A::" | |||
Matcher<NestedNameSpecifier> | hasPrefix | Matcher<NestedNameSpecifier> InnerMatcher | |
Matches on the prefix of a NestedNameSpecifier. Given struct A { struct B { struct C {}; }; }; A::B::C c; nestedNameSpecifier(hasPrefix(specifiesType(asString("struct A")))) and matches "A::" | |||
Matcher<NestedNameSpecifier> | specifiesNamespace | Matcher<NamespaceDecl> InnerMatcher | |
Matches nested name specifiers that specify a namespace matching the given namespace matcher. Given namespace ns { struct A {}; } ns::A a; nestedNameSpecifier(specifiesNamespace(hasName("ns"))) matches "ns::" | |||
Matcher<NestedNameSpecifier> | specifiesType | Matcher<QualType> InnerMatcher | |
Matches nested name specifiers that specify a type matching the given QualType matcher without qualifiers. Given struct A { struct B { struct C {}; }; }; A::B::C c; nestedNameSpecifier(specifiesType( hasDeclaration(cxxRecordDecl(hasName("A"))) )) matches "A::" | |||
Matcher<OMPExecutableDirective> | hasAnyClause | Matcher<OMPClause> InnerMatcher | |
Matches any clause in an OpenMP directive. Given #pragma omp parallel #pragma omp parallel default(none) ``ompExecutableDirective(hasAnyClause(anything()))`` matches ``omp parallel default(none)``. | |||
Matcher<OMPExecutableDirective> | hasStructuredBlock | Matcher<Stmt> InnerMatcher | |
Matches the structured-block of the OpenMP executable directive Prerequisite: the executable directive must not be standalone directive. If it is, it will never match. Given #pragma omp parallel ; #pragma omp parallel {} ``ompExecutableDirective(hasStructuredBlock(nullStmt()))`` will match ``;`` | |||
Matcher<ObjCInterfaceDecl> | isDerivedFrom | Matcher<NamedDecl> Base | |
Matches C++ classes that are directly or indirectly derived from a class matching Base, or Objective-C classes that directly or indirectly subclass a class matching Base. Note that a class is not considered to be derived from itself. Example matches Y, Z, C (Base == hasName("X")) class X; class Y : public X {}; // directly derived class Z : public Y {}; // indirectly derived typedef X A; typedef A B; class C : public B {}; // derived from a typedef of X In the following example, Bar matches isDerivedFrom(hasName("X")): class Foo; typedef Foo X; class Bar : public Foo {}; // derived from a type that X is a typedef of In the following example, Bar matches isDerivedFrom(hasName("NSObject")) @interface NSObject @end @interface Bar : NSObject @end Usable as: Matcher<CXXRecordDecl>, Matcher<ObjCInterfaceDecl> | |||
Matcher<ObjCInterfaceDecl> | isDirectlyDerivedFrom | Matcher<NamedDecl> Base | |
Matches C++ or Objective-C classes that are directly derived from a class matching Base. Note that a class is not considered to be derived from itself. Example matches Y, C (Base == hasName("X")) class X; class Y : public X {}; // directly derived class Z : public Y {}; // indirectly derived typedef X A; typedef A B; class C : public B {}; // derived from a typedef of X In the following example, Bar matches isDerivedFrom(hasName("X")): class Foo; typedef Foo X; class Bar : public Foo {}; // derived from a type that X is a typedef of | |||
Matcher<ObjCInterfaceDecl> | isSameOrDerivedFrom | Matcher<NamedDecl> Base | |
Similar to isDerivedFrom(), but also matches classes that directly match Base. | |||
Matcher<ObjCMessageExpr> | callee | Matcher<Decl> InnerMatcher | |
Matches 1) if the call expression's callee's declaration matches the given matcher; or 2) if the Obj-C message expression's callee's method declaration matches the given matcher. Example matches y.x() (matcher = callExpr(callee( cxxMethodDecl(hasName("x"))))) class Y { public: void x(); }; void z() { Y y; y.x(); } Example 2. Matches [I foo] with objcMessageExpr(callee(objcMethodDecl(hasName("foo")))) @interface I: NSObject +(void)foo; @end ... [I foo] | |||
Matcher<ObjCMessageExpr> | hasAnyArgument | Matcher<Expr> InnerMatcher | |
Matches any argument of a call expression or a constructor call expression, or an ObjC-message-send expression. Given void x(int, int, int) { int y; x(1, y, 42); } callExpr(hasAnyArgument(declRefExpr())) matches x(1, y, 42) with hasAnyArgument(...) matching y For ObjectiveC, given @interface I - (void) f:(int) y; @end void foo(I *i) { [i f:12]; } objcMessageExpr(hasAnyArgument(integerLiteral(equals(12)))) matches [i f:12] | |||
Matcher<ObjCMessageExpr> | hasArgument | unsigned N, Matcher<Expr> InnerMatcher | |
Matches the n'th argument of a call expression or a constructor call expression. Example matches y in x(y) (matcher = callExpr(hasArgument(0, declRefExpr()))) void x(int) { int y; x(y); } | |||
Matcher<ObjCMessageExpr> | hasReceiver | Matcher<Expr> InnerMatcher | |
Matches if the Objective-C message is sent to an instance, and the inner matcher matches on that instance. For example the method call in NSString *x = @"hello"; [x containsString:@"h"]; is matched by objcMessageExpr(hasReceiver(declRefExpr(to(varDecl(hasName("x")))))) | |||
Matcher<ObjCMessageExpr> | hasReceiverType | Matcher<QualType> InnerMatcher | |
Matches on the receiver of an ObjectiveC Message expression. Example matcher = objCMessageExpr(hasReceiverType(asString("UIWebView *"))); matches the [webView ...] message invocation. NSString *webViewJavaScript = ... UIWebView *webView = ... [webView stringByEvaluatingJavaScriptFromString:webViewJavascript]; | |||
Matcher<ObjCMethodDecl> | hasAnyParameter | Matcher<ParmVarDecl> InnerMatcher | |
Matches any parameter of a function or an ObjC method declaration or a block. Does not match the 'this' parameter of a method. Given class X { void f(int x, int y, int z) {} }; cxxMethodDecl(hasAnyParameter(hasName("y"))) matches f(int x, int y, int z) {} with hasAnyParameter(...) matching int y For ObjectiveC, given @interface I - (void) f:(int) y; @end the matcher objcMethodDecl(hasAnyParameter(hasName("y"))) matches the declaration of method f with hasParameter matching y. For blocks, given b = ^(int y) { printf("%d", y) }; the matcher blockDecl(hasAnyParameter(hasName("y"))) matches the declaration of the block b with hasParameter matching y. | |||
Matcher<ObjCMethodDecl> | hasParameter | unsigned N, Matcher<ParmVarDecl> InnerMatcher | |
Matches the n'th parameter of a function or an ObjC method declaration or a block. Given class X { void f(int x) {} }; cxxMethodDecl(hasParameter(0, hasType(varDecl()))) matches f(int x) {} with hasParameter(...) matching int x For ObjectiveC, given @interface I - (void) f:(int) y; @end the matcher objcMethodDecl(hasParameter(0, hasName("y"))) matches the declaration of method f with hasParameter matching y. | |||
Matcher<ObjCPropertyDecl> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<OpaqueValueExpr> | hasSourceExpression | Matcher<Expr> InnerMatcher | |
Matches if the cast's source expression or opaque value's source expression matches the given matcher. Example 1: matches "a string" (matcher = castExpr(hasSourceExpression(cxxConstructExpr()))) class URL { URL(string); }; URL url = "a string"; Example 2: matches 'b' (matcher = opaqueValueExpr(hasSourceExpression(implicitCastExpr(declRefExpr()))) int a = b ?: 1; | |||
Matcher<OverloadExpr> | hasAnyDeclaration | Matcher<Decl> InnerMatcher | |
Matches an OverloadExpr if any of the declarations in the set of overloads matches the given matcher. Given template <typename T> void foo(T); template <typename T> void bar(T); template <typename T> void baz(T t) { foo(t); bar(t); } unresolvedLookupExpr(hasAnyDeclaration( functionTemplateDecl(hasName("foo")))) matches foo in foo(t); but not bar in bar(t); | |||
Matcher<ParenType> | innerType | Matcher<Type> | |
Matches ParenType nodes where the inner type is a specific type. Given int (*ptr_to_array)[4]; int (*ptr_to_func)(int); varDecl(hasType(pointsTo(parenType(innerType(functionType()))))) matches ptr_to_func but not ptr_to_array. Usable as: Matcher<ParenType> | |||
Matcher<PointerTypeLoc> | hasPointeeLoc | Matcher<TypeLoc> PointeeMatcher | |
Matches pointer `TypeLoc`s that have a pointee `TypeLoc` matching `PointeeMatcher`. Given int* x; pointerTypeLoc(hasPointeeLoc(loc(asString("int")))) matches `int*`. | |||
Matcher<PointerType> | pointee | Matcher<Type> | |
Narrows PointerType (and similar) matchers to those where the pointee matches a given matcher. Given int *a; int const *b; float const *f; pointerType(pointee(isConstQualified(), isInteger())) matches "int const *b" Usable as: Matcher<BlockPointerType>, Matcher<MemberPointerType>, Matcher<PointerType>, Matcher<ReferenceType> | |||
Matcher<QualType> | hasCanonicalType | Matcher<QualType> InnerMatcher | |
Matches QualTypes whose canonical type matches InnerMatcher. Given: typedef int &int_ref; int a; int_ref b = a; varDecl(hasType(qualType(referenceType()))))) will not match the declaration of b but varDecl(hasType(qualType(hasCanonicalType(referenceType())))))) does. | |||
Matcher<QualType> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<QualType> | ignoringParens | Matcher<QualType> InnerMatcher | |
Matches types that match InnerMatcher after any parens are stripped. Given void (*fp)(void); The matcher varDecl(hasType(pointerType(pointee(ignoringParens(functionType()))))) would match the declaration for fp. | |||
Matcher<QualType> | pointsTo | Matcher<Decl> InnerMatcher | |
Overloaded to match the pointee type's declaration. | |||
Matcher<QualType> | pointsTo | Matcher<QualType> InnerMatcher | |
Matches if the matched type is a pointer type and the pointee type matches the specified matcher. Example matches y->x() (matcher = cxxMemberCallExpr(on(hasType(pointsTo cxxRecordDecl(hasName("Y"))))))) class Y { public: void x(); }; void z() { Y *y; y->x(); } | |||
Matcher<QualType> | references | Matcher<Decl> InnerMatcher | |
Overloaded to match the referenced type's declaration. | |||
Matcher<QualType> | references | Matcher<QualType> InnerMatcher | |
Matches if the matched type is a reference type and the referenced type matches the specified matcher. Example matches X &x and const X &y (matcher = varDecl(hasType(references(cxxRecordDecl(hasName("X")))))) class X { void a(X b) { X &x = b; const X &y = b; } }; | |||
Matcher<QualifiedTypeLoc> | hasUnqualifiedLoc | Matcher<TypeLoc> InnerMatcher | |
Matches `QualifiedTypeLoc`s that have an unqualified `TypeLoc` matching `InnerMatcher`. Given int* const x; const int y; qualifiedTypeLoc(hasUnqualifiedLoc(pointerTypeLoc())) matches the `TypeLoc` of the variable declaration of `x`, but not `y`. | |||
Matcher<RecordType> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<ReferenceTypeLoc> | hasReferentLoc | Matcher<TypeLoc> ReferentMatcher | |
Matches reference `TypeLoc`s that have a referent `TypeLoc` matching `ReferentMatcher`. Given int x = 3; int& xx = x; referenceTypeLoc(hasReferentLoc(loc(asString("int")))) matches `int&`. | |||
Matcher<ReferenceType> | pointee | Matcher<Type> | |
Narrows PointerType (and similar) matchers to those where the pointee matches a given matcher. Given int *a; int const *b; float const *f; pointerType(pointee(isConstQualified(), isInteger())) matches "int const *b" Usable as: Matcher<BlockPointerType>, Matcher<MemberPointerType>, Matcher<PointerType>, Matcher<ReferenceType> | |||
Matcher<ReturnStmt> | hasReturnValue | Matcher<Expr> InnerMatcher | |
Matches the return value expression of a return statement Given return a + b; hasReturnValue(binaryOperator()) matches 'return a + b' with binaryOperator() matching 'a + b' | |||
Matcher<StmtExpr> | hasAnySubstatement | Matcher<Stmt> InnerMatcher | |
Matches compound statements where at least one substatement matches a given matcher. Also matches StmtExprs that have CompoundStmt as children. Given { {}; 1+2; } hasAnySubstatement(compoundStmt()) matches '{ {}; 1+2; }' with compoundStmt() matching '{}' | |||
Matcher<Stmt> | alignOfExpr | Matcher<UnaryExprOrTypeTraitExpr> InnerMatcher | |
Same as unaryExprOrTypeTraitExpr, but only matching alignof. | |||
Matcher<Stmt> | forCallable | Matcher<Decl> InnerMatcher | |
Matches declaration of the function, method, or block the statement belongs to. Given: F& operator=(const F& o) { std::copy_if(o.begin(), o.end(), begin(), [](V v) { return v > 0; }); return *this; } returnStmt(forCallable(functionDecl(hasName("operator=")))) matches 'return *this' but does not match 'return v > 0' Given: -(void) foo { int x = 1; dispatch_sync(queue, ^{ int y = 2; }); } declStmt(forCallable(objcMethodDecl())) matches 'int x = 1' but does not match 'int y = 2'. whereas declStmt(forCallable(blockDecl())) matches 'int y = 2' but does not match 'int x = 1'. | |||
Matcher<Stmt> | forFunction | Matcher<FunctionDecl> InnerMatcher | |
Matches declaration of the function the statement belongs to. Deprecated. Use forCallable() to correctly handle the situation when the declaration is not a function (but a block or an Objective-C method). forFunction() not only fails to take non-functions into account but also may match the wrong declaration in their presence. Given: F& operator=(const F& o) { std::copy_if(o.begin(), o.end(), begin(), [](V v) { return v > 0; }); return *this; } returnStmt(forFunction(hasName("operator="))) matches 'return *this' but does not match 'return v > 0' | |||
Matcher<Stmt> | sizeOfExpr | Matcher<UnaryExprOrTypeTraitExpr> InnerMatcher | |
Same as unaryExprOrTypeTraitExpr, but only matching sizeof. | |||
Matcher<SubstTemplateTypeParmType> | hasReplacementType | Matcher<Type> | |
Matches template type parameter substitutions that have a replacement type that matches the provided matcher. Given template <typename T> double F(T t); int i; double j = F(i); substTemplateTypeParmType(hasReplacementType(type())) matches int | |||
Matcher<SwitchStmt> | forEachSwitchCase | Matcher<SwitchCase> InnerMatcher | |
Matches each case or default statement belonging to the given switch statement. This matcher may produce multiple matches. Given switch (1) { case 1: case 2: default: switch (2) { case 3: case 4: ; } } switchStmt(forEachSwitchCase(caseStmt().bind("c"))).bind("s") matches four times, with "c" binding each of "case 1:", "case 2:", "case 3:" and "case 4:", and "s" respectively binding "switch (1)", "switch (1)", "switch (2)" and "switch (2)". | |||
Matcher<SwitchStmt> | hasCondition | Matcher<Expr> InnerMatcher | |
Matches the condition expression of an if statement, for loop, switch statement or conditional operator. Example matches true (matcher = hasCondition(cxxBoolLiteral(equals(true)))) if (true) {} | |||
Matcher<SwitchStmt> | hasInitStatement | Matcher<Stmt> InnerMatcher | |
Matches selection statements with initializer. Given: void foo() { if (int i = foobar(); i > 0) {} switch (int i = foobar(); i) {} for (auto& a = get_range(); auto& x : a) {} } void bar() { if (foobar() > 0) {} switch (foobar()) {} for (auto& x : get_range()) {} } ifStmt(hasInitStatement(anything())) matches the if statement in foo but not in bar. switchStmt(hasInitStatement(anything())) matches the switch statement in foo but not in bar. cxxForRangeStmt(hasInitStatement(anything())) matches the range for statement in foo but not in bar. | |||
Matcher<TagType> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<TemplateArgumentLoc> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<TemplateArgument> | isExpr | Matcher<Expr> InnerMatcher | |
Matches a sugar TemplateArgument that refers to a certain expression. Given struct B { int next; }; template<int(B::*next_ptr)> struct A {}; A<&B::next> a; templateSpecializationType(hasAnyTemplateArgument( isExpr(hasDescendant(declRefExpr(to(fieldDecl(hasName("next")))))))) matches the specialization A<&B::next> with fieldDecl(...) matching B::next | |||
Matcher<TemplateArgument> | refersToDeclaration | Matcher<Decl> InnerMatcher | |
Matches a canonical TemplateArgument that refers to a certain declaration. Given struct B { int next; }; template<int(B::*next_ptr)> struct A {}; A<&B::next> a; classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToDeclaration(fieldDecl(hasName("next"))))) matches the specialization A<&B::next> with fieldDecl(...) matching B::next | |||
Matcher<TemplateArgument> | refersToIntegralType | Matcher<QualType> InnerMatcher | |
Matches a TemplateArgument that refers to an integral type. Given template<int T> struct C {}; C<42> c; classTemplateSpecializationDecl( hasAnyTemplateArgument(refersToIntegralType(asString("int")))) matches the implicit instantiation of C in C<42>. | |||
Matcher<TemplateArgument> | refersToTemplate | Matcher<TemplateName> InnerMatcher | |
Matches a TemplateArgument that refers to a certain template. Given template<template <typename> class S> class X {}; template<typename T> class Y {}; X<Y> xi; classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToTemplate(templateName()))) matches the specialization X<Y> | |||
Matcher<TemplateArgument> | refersToType | Matcher<QualType> InnerMatcher | |
Matches a TemplateArgument that refers to a certain type. Given struct X {}; template<typename T> struct A {}; A<X> a; classTemplateSpecializationDecl(hasAnyTemplateArgument(refersToType( recordType(hasDeclaration(recordDecl(hasName("X"))))))) matches the specialization of struct A generated by A<X>. | |||
Matcher<TemplateSpecializationTypeLoc> | hasAnyTemplateArgumentLoc | Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations that have at least one `TemplateArgumentLoc` matching the given `InnerMatcher`. Given template<typename T> class A {}; A<int> a; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasAnyTemplateArgumentLoc( hasTypeLoc(loc(asString("int"))))))) matches `A<int> a`. | |||
Matcher<TemplateSpecializationTypeLoc> | hasTemplateArgumentLoc | unsigned Index, Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations where the n'th `TemplateArgumentLoc` matches the given `InnerMatcher`. Given template<typename T, typename U> class A {}; A<double, int> b; A<int, double> c; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasTemplateArgumentLoc(0, hasTypeLoc(loc(asString("double"))))))) matches `A<double, int> b`, but not `A<int, double> c`. | |||
Matcher<TemplateSpecializationType> | forEachTemplateArgument | Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationType, class template specialization, variable template specialization, and function template specialization nodes where the template argument matches the inner matcher. This matcher may produce multiple matches. Given template <typename T, unsigned N, unsigned M> struct Matrix {}; constexpr unsigned R = 2; Matrix<int, R * 2, R * 4> M; template <typename T, typename U> void f(T&& t, U&& u) {} bool B = false; f(R, B); templateSpecializationType(forEachTemplateArgument(isExpr(expr()))) matches twice, with expr() matching 'R * 2' and 'R * 4' functionDecl(forEachTemplateArgument(refersToType(builtinType()))) matches the specialization f<unsigned, bool> twice, for 'unsigned' and 'bool' | |||
Matcher<TemplateSpecializationType> | hasAnyTemplateArgument | Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationTypes, class template specializations, variable template specializations, and function template specializations that have at least one TemplateArgument matching the given InnerMatcher. Given template<typename T> class A {}; template<> class A<double> {}; A<int> a; template<typename T> f() {}; void func() { f<int>(); }; classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToType(asString("int")))) matches the specialization A<int> functionDecl(hasAnyTemplateArgument(refersToType(asString("int")))) matches the specialization f<int> | |||
Matcher<TemplateSpecializationType> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<TemplateSpecializationType> | hasTemplateArgument | unsigned N, Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationType, class template specializations, variable template specializations, and function template specializations where the n'th TemplateArgument matches the given InnerMatcher. Given template<typename T, typename U> class A {}; A<bool, int> b; A<int, bool> c; template<typename T> void f() {} void func() { f<int>(); }; classTemplateSpecializationDecl(hasTemplateArgument( 1, refersToType(asString("int")))) matches the specialization A<bool, int> functionDecl(hasTemplateArgument(0, refersToType(asString("int")))) matches the specialization f<int> | |||
Matcher<TemplateTypeParmType> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<TypeLoc> | loc | Matcher<QualType> InnerMatcher | |
Matches TypeLocs for which the given inner QualType-matcher matches. | |||
Matcher<TypedefNameDecl> | hasTypeLoc | Matcher<TypeLoc> Inner | |
Matches if the type location of a node matches the inner matcher. Examples: int x; declaratorDecl(hasTypeLoc(loc(asString("int")))) matches int x auto x = int(3); cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int")))) matches int(3) struct Foo { Foo(int, int); }; auto x = Foo(1, 2); cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo")))) matches Foo(1, 2) Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>, Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>, Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>, Matcher<CXXUnresolvedConstructExpr>, Matcher<CompoundLiteralExpr>, Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>, Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>, Matcher<TypedefNameDecl> | |||
Matcher<TypedefNameDecl> | hasType | Matcher<QualType> InnerMatcher | |
Matches if the expression's or declaration's type matches a type matcher. Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X"))))) and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X"))))) and U (matcher = typedefDecl(hasType(asString("int"))) and friend class X (matcher = friendDecl(hasType("X")) and public virtual X (matcher = cxxBaseSpecifier(hasType( asString("class X"))) class X {}; void y(X &x) { x; X z; } typedef int U; class Y { friend class X; }; class Z : public virtual X {}; | |||
Matcher<TypedefType> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<Type> | hasUnqualifiedDesugaredType | Matcher<Type> InnerMatcher | |
Matches if the matched type matches the unqualified desugared type of the matched node. For example, in: class A {}; using B = A; The matcher type(hasUnqualifiedDesugaredType(recordType())) matches both B and A. | |||
Matcher<UnaryExprOrTypeTraitExpr> | hasArgumentOfType | Matcher<QualType> InnerMatcher | |
Matches unary expressions that have a specific type of argument. Given int a, c; float b; int s = sizeof(a) + sizeof(b) + alignof(c); unaryExprOrTypeTraitExpr(hasArgumentOfType(asString("int")) matches sizeof(a) and alignof(c) | |||
Matcher<UnaryOperator> | hasUnaryOperand | Matcher<Expr> InnerMatcher | |
Matches if the operand of a unary operator matches. Example matches true (matcher = hasUnaryOperand( cxxBoolLiteral(equals(true)))) !true | |||
Matcher<UnresolvedMemberExpr> | hasObjectExpression | Matcher<Expr> InnerMatcher | |
Matches a member expression where the object expression is matched by a given matcher. Implicit object expressions are included; that is, it matches use of implicit `this`. Given struct X { int m; int f(X x) { x.m; return m; } }; memberExpr(hasObjectExpression(hasType(cxxRecordDecl(hasName("X"))))) matches `x.m`, but not `m`; however, memberExpr(hasObjectExpression(hasType(pointsTo( cxxRecordDecl(hasName("X")))))) matches `m` (aka. `this->m`), but not `x.m`. | |||
Matcher<UnresolvedUsingType> | hasDeclaration | Matcher<Decl> InnerMatcher | |
Matches a node if the declaration associated with that node matches the given matcher. The associated declaration is: - for type nodes, the declaration of the underlying type - for CallExpr, the declaration of the callee - for MemberExpr, the declaration of the referenced member - for CXXConstructExpr, the declaration of the constructor - for CXXNewExpr, the declaration of the operator new - for ObjCIvarExpr, the declaration of the ivar For type nodes, hasDeclaration will generally match the declaration of the sugared type. Given class X {}; typedef X Y; Y y; in varDecl(hasType(hasDeclaration(decl()))) the decl will match the typedefDecl. A common use case is to match the underlying, desugared type. This can be achieved by using the hasUnqualifiedDesugaredType matcher: varDecl(hasType(hasUnqualifiedDesugaredType( recordType(hasDeclaration(decl()))))) In this matcher, the decl will match the CXXRecordDecl of class X. Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>, Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>, Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>, Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>, Matcher<TagType>, Matcher<TemplateSpecializationType>, Matcher<TemplateTypeParmType>, Matcher<TypedefType>, Matcher<UnresolvedUsingType> | |||
Matcher<UsingShadowDecl> | hasTargetDecl | Matcher<NamedDecl> InnerMatcher | |
Matches a using shadow declaration where the target declaration is matched by the given matcher. Given namespace X { int a; void b(); } using X::a; using X::b; usingDecl(hasAnyUsingShadowDecl(hasTargetDecl(functionDecl()))) matches using X::b but not using X::a | |||
Matcher<UsingType> | hasUnderlyingType | Matcher<Type> | |
Matches DecltypeType or UsingType nodes to find the underlying type. Given decltype(1) a = 1; decltype(2.0) b = 2.0; decltypeType(hasUnderlyingType(isInteger())) matches the type of "a" Usable as: Matcher<DecltypeType>, Matcher<UsingType> | |||
Matcher<UsingType> | throughUsingDecl | Matcher<UsingShadowDecl> Inner | |
Matches if a node refers to a declaration through a specific using shadow declaration. Examples: namespace a { int f(); } using a::f; int x = f(); declRefExpr(throughUsingDecl(anything())) matches f namespace a { class X{}; } using a::X; X x; typeLoc(loc(usingType(throughUsingDecl(anything())))) matches X Usable as: Matcher<DeclRefExpr>, Matcher<UsingType> | |||
Matcher<ValueDecl> | hasType | Matcher<Decl> InnerMatcher | |
Overloaded to match the declaration of the expression's or value declaration's type. In case of a value declaration (for example a variable declaration), this resolves one layer of indirection. For example, in the value declaration "X x;", cxxRecordDecl(hasName("X")) matches the declaration of X, while varDecl(hasType(cxxRecordDecl(hasName("X")))) matches the declaration of x. Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X"))))) and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X"))))) and friend class X (matcher = friendDecl(hasType("X")) and public virtual X (matcher = cxxBaseSpecifier(hasType( cxxRecordDecl(hasName("X")))) class X {}; void y(X &x) { x; X z; } class Y { friend class X; }; class Z : public virtual X {}; Example matches class Derived (matcher = cxxRecordDecl(hasAnyBase(hasType(cxxRecordDecl(hasName("Base")))))) class Base {}; class Derived : Base {}; Usable as: Matcher<Expr>, Matcher<FriendDecl>, Matcher<ValueDecl>, Matcher<CXXBaseSpecifier> | |||
Matcher<ValueDecl> | hasType | Matcher<QualType> InnerMatcher | |
Matches if the expression's or declaration's type matches a type matcher. Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X"))))) and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X"))))) and U (matcher = typedefDecl(hasType(asString("int"))) and friend class X (matcher = friendDecl(hasType("X")) and public virtual X (matcher = cxxBaseSpecifier(hasType( asString("class X"))) class X {}; void y(X &x) { x; X z; } typedef int U; class Y { friend class X; }; class Z : public virtual X {}; | |||
Matcher<VarDecl> | hasInitializer | Matcher<Expr> InnerMatcher | |
Matches a variable declaration that has an initializer expression that matches the given matcher. Example matches x (matcher = varDecl(hasInitializer(callExpr()))) bool y() { return true; } bool x = y(); | |||
Matcher<VarTemplateSpecializationDecl> | forEachTemplateArgument | Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationType, class template specialization, variable template specialization, and function template specialization nodes where the template argument matches the inner matcher. This matcher may produce multiple matches. Given template <typename T, unsigned N, unsigned M> struct Matrix {}; constexpr unsigned R = 2; Matrix<int, R * 2, R * 4> M; template <typename T, typename U> void f(T&& t, U&& u) {} bool B = false; f(R, B); templateSpecializationType(forEachTemplateArgument(isExpr(expr()))) matches twice, with expr() matching 'R * 2' and 'R * 4' functionDecl(forEachTemplateArgument(refersToType(builtinType()))) matches the specialization f<unsigned, bool> twice, for 'unsigned' and 'bool' | |||
Matcher<VarTemplateSpecializationDecl> | hasAnyTemplateArgumentLoc | Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations that have at least one `TemplateArgumentLoc` matching the given `InnerMatcher`. Given template<typename T> class A {}; A<int> a; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasAnyTemplateArgumentLoc( hasTypeLoc(loc(asString("int"))))))) matches `A<int> a`. | |||
Matcher<VarTemplateSpecializationDecl> | hasAnyTemplateArgument | Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationTypes, class template specializations, variable template specializations, and function template specializations that have at least one TemplateArgument matching the given InnerMatcher. Given template<typename T> class A {}; template<> class A<double> {}; A<int> a; template<typename T> f() {}; void func() { f<int>(); }; classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToType(asString("int")))) matches the specialization A<int> functionDecl(hasAnyTemplateArgument(refersToType(asString("int")))) matches the specialization f<int> | |||
Matcher<VarTemplateSpecializationDecl> | hasTemplateArgumentLoc | unsigned Index, Matcher<TemplateArgumentLoc> InnerMatcher | |
Matches template specialization `TypeLoc`s, class template specializations, variable template specializations, and function template specializations where the n'th `TemplateArgumentLoc` matches the given `InnerMatcher`. Given template<typename T, typename U> class A {}; A<double, int> b; A<int, double> c; varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasTemplateArgumentLoc(0, hasTypeLoc(loc(asString("double"))))))) matches `A<double, int> b`, but not `A<int, double> c`. | |||
Matcher<VarTemplateSpecializationDecl> | hasTemplateArgument | unsigned N, Matcher<TemplateArgument> InnerMatcher | |
Matches templateSpecializationType, class template specializations, variable template specializations, and function template specializations where the n'th TemplateArgument matches the given InnerMatcher. Given template<typename T, typename U> class A {}; A<bool, int> b; A<int, bool> c; template<typename T> void f() {} void func() { f<int>(); }; classTemplateSpecializationDecl(hasTemplateArgument( 1, refersToType(asString("int")))) matches the specialization A<bool, int> functionDecl(hasTemplateArgument(0, refersToType(asString("int")))) matches the specialization f<int> | |||
Matcher<VariableArrayType> | hasSizeExpr | Matcher<Expr> InnerMatcher | |
Matches VariableArrayType nodes that have a specific size expression. Given void f(int b) { int a[b]; } variableArrayType(hasSizeExpr(ignoringImpCasts(declRefExpr(to( varDecl(hasName("b"))))))) matches "int a[b]" | |||
Matcher<WhileStmt> | hasBody | Matcher<Stmt> InnerMatcher | |
Matches a 'for', 'while', 'while' statement or a function or coroutine definition that has a given body. Note that in case of functions or coroutines this matcher only matches the definition itself and not the other declarations of the same function or coroutine. Given for (;;) {} forStmt(hasBody(compoundStmt())) matches 'for (;;) {}' with compoundStmt() matching '{}' Given void f(); void f() {} functionDecl(hasBody(compoundStmt())) matches 'void f() {}' with compoundStmt() matching '{}' but does not match 'void f();' | |||
Matcher<WhileStmt> | hasCondition | Matcher<Expr> InnerMatcher | |
Matches the condition expression of an if statement, for loop, switch statement or conditional operator. Example matches true (matcher = hasCondition(cxxBoolLiteral(equals(true)))) if (true) {} |